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Abstract: We obtain an intrinsic formula of a Ricci soliton vector
field and a differential condition for the non-steady case to be gradient.
Next we provide a condition for a Ricci soliton on a Kaehler manifold
to be a Kaehler-Ricci soliton. Finally we give an example supporting
the first result.
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1. Introduction

A Ricci Soliton is a generalization of a Einstein manifold, and defined as
a complete Riemannian manifold (M, g) with a vector field V , satisfying
the equation

LV g + 2Ric = 2λg (1)

where LV denotes Lie derivative along V , Ric denotes the Ricci tensor
of g and λ a real constant. The Ricci soliton is a special self similar
solution of the Hamilton’s Ricci flow: ∂

∂t
g(t) = −2Ric(t) with initial

condition g(0) = g; and is said to be shrinking, steady, or expanding
accordingly as λ > 0, = 0 or < 0 respectively. In particular, if V is
the gradient of a smooth function f on M , i.e., V = grad f , up to the
addition of a Killing vector field, then we say that the Ricci soliton is
gradient and f is the potential function. For a gradient Ricci soliton,
equation (1) becomes

Hessf + 2Ric = 2λg (2)

where Hess denotes the Hessian operator ∇∇ (∇ denoting the covari-
ant derivative operator with respect to the Riemannian connection of

1



2

g). The following formulas are well known (see Chow et.al [1] and
Petersen and Wylie: [4]) for a gradient Ricci soliton:

Q(grad f) =
1

2
grad S (3)

|grad f |2 + S − 2λf = a constant (4)

∆f − |grad f |2 + 2λf = a constant (5)

where ∆f is the g-trace of Hessf , Q is the Ricci operator defined by
g(QX, Y ) = Ric(X, Y ) for arbitrary vector fields X, Y on M , and S
denotes the scalar curvature of g.

A seminal result of Perelman [3] says that a compact Ricci soliton
is necessarily gradient. In this article, we first provide a geometric
operator-theoretic condition on V so that it may become gradient for
the non-steady case. The 1-form metrically equivalent to V is denoted
by v and is given by v(X) = g(V,X) for an arbitrary vector field X on
M . For a p-form ω, we denote the co-differential operator by δ, i.e., δω
is a (p−1)-form such that (δω)i2···ip = −∇i1ωi1···ip . The interior product
operator of ω by V is denoted by iV such that (iV ω)i2···ip = V i1ωi1···ip .
We now state our result as follows.

Theorem 1.1. The Ricci soliton vector field V and its metric dual
1-form v satisfy the following intrinsic formula:

2λv = d(|V |2 + δv) + 2(δ + iV )dv (6)

So, a non-steady Ricci soliton is gradient (i.e. v is exact) if and only
if (δ + iV )dv is exact.

Corollary 1.2. A non-steady Ricci soliton (M, g, V, λ) with v closed
is gradient.

Remark 1. In general, v closed need not imply v exact (i.e., V gradi-
ent) unless M is simply connected.

Next, we consider a Kaehler-Ricci soliton (see [1]) which is defined as a
Kaehler manifold (M, g, J) satisfying the Ricci soliton equation (1) for
a vector field V which is an infinitesimal automorphism of the complex
structure J , i.e.

LV J = 0. (7)

A vector field V satisfying (7) is also known as a real holomorphic
vector field or a contravariant analytic vector field (see Yano [5]). It is
known (see Feldman, Ilmanen and Knopf [2]) that a Ricci soliton as a
Kaehler metric is a Kaehler-Ricci soliton if it is gradient. We provide
a generalization of this result as follows.

Theorem 1.3. A Ricci soliton which is also a Kaehler metric is Kaehler-
Ricci soliton if and only if dv is J-invariant.
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2. Proofs of The Results

In the following X, Y, Z will denote arbitrary vector fields on M .

Proof of Theorem 1.1 Equation (1) can be written as

g(∇XV, Y ) + g(∇Y V,X) + 2Ric(X, Y ) = 2λg(X, Y ) (8)

The exterior derivative dv of the 1-form v is given by

g(∇XV, Y )− g(∇Y V,X) = 2(dv)(X, Y ) (9)

As dv is skew-symmetric, we define a tensor field F of type (1, 1) by

(dv)(X, Y ) = g(X,FY ) (10)

Obviously, F is skew self-adjoint, i.e. g(X,FY ) = −g(Y, FX). Thus
equation (9) assumes the form.g(∇XV, Y )− g(∇Y V,X) = 2g(X,FY ).
Adding it to equation (8) side by side, and factoring Y out gives

∇XV = −QX + λX − FX (11)

Using this equation we compute R(Y,X)V = ∇Y∇XV − ∇X∇Y V −
∇[Y,X]V and obtain

R(Y,X)V = (∇XQ)Y − (∇YQ)X + (∇XF )Y − (∇Y F )X (12)

We note that (dv)(X, Y ) = g(X,FY ) and dv is closed. Hence

g(X, (∇Y F )Z) + g(Y, (∇ZF )X) + g(Z, (∇XF )Y ) = 0 (13)

Taking inner product of (12) with Z we have

g(R(Y,X)V, Z) = g((∇XQ)Y, Z)− g((∇YQ)X,Z)

+ g(Z, (∇XF )Y )− g(Z, (∇Y F )X) (14)

The skew self-adjointness of F implies skew self-adjointness of∇Y F and
so the last term of (14) including the minus sign equals g(X, (∇Y F )Z).
Using (13) in (14) gives

g(R(Y,X)V, Z) = (∇XRic)(Y, Z)− (∇YRic)(X,Z)

− g(Y, (∇ZF )X) (15)

Let (ei) be a local orthonormal frame on M . Setting Y = Z = ei in
(15) and summing over i = 1, · · · , n provides

Ric(X, V ) =
1

2
X(S)− (divF )X (16)

Next, we compute the covariant derivative of the squared g-norm of V
using (11) as follows.

∇X |V |2 = 2g(∇XV, V ) = −2Ric(X, V )+2λg(X, V )−2g(FX, V ) (17)

Eliminating Ric(X, V ) between (16) and (17) shows

∇X |V |2 +X(S) = 2λg(X, V ) + 2((divF )X + g(FV,X)) (18)
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In view of (10) we note that the last term in (18) is equivalent to
−2(δ + iV )(dv)(X). Hence (18) can be expressed as

d(|V |2 + S) = 2λv − 2(δ + iV )dv (19)

Now, taking the g-trace of equation (1) gives δv = S − nλ and hence
we get dδv = dS. Using this consequence in (19) we obtain the formula
(6). The second part of the theorem follows from this formula, because
λ 6= 0 by hypothesis. This completes the proof.

Remark 2. Contracting the Ricci soliton equation (1) in local coor-
dinates and then differentiating gives

∇j∇iV
i = −∇jS. (20)

Differentiating the Ricci soliton equation (1) gives∇i∇jV
i = −∇i∇iVj−

∇jS. Using this and (20) we obtain

R k
j Vk +∇i∇iVj = 0. (21)

A vector field V on a Riemannian manifold (M, g) satisfying equation
(21) was studied by K. Yano and T. Nagano in [7] and was termed a
geodesic vector field (not to be confused with vector field whose inte-
gral curves are geodesics). Actually, (21) is equivalent to the condition
(LV∇)(ei, ei) = 0 (i summed over 1, ..., n), where ei is a local orthonor-
mal frame onM . Obvious examples of a geodesic vector field are Killing
vector fields (LV g = 0) and affine Killing vector fields (LV∇ = 0). For
a compact Riemannian manifold we know that a divergence-free ge-
odesic vector field is Killing (see Yano [6]). We noted earlier that a
Ricci soliton vector field V on a Riemannian manifold (not necessarily
compact) satisfies (21), and hence we conclude that a Ricci soliton vec-
tor field V is a new example of a geodesic vector field in the sense of [7].

Remark 3. Equations (16), (19) and (6) are generalizations of the
corresponding formulas (3), (4) and (5) for a gradient Ricci soliton re-
spectively, because in the gradient case v = df which implies dv = 0
and hence F = 0.

Proof Of Theorem 1.3. Operating J on (11) we have

J∇XV = −JQX + λJX − JFX.

Next, substituting JX for X in (11) we get

∇JXV = −QJX + λJX − FJX.

Taking the difference between the above two equations and noting that
J commutes with the Ricci operator Q for a Kaehler manifold, we find

J∇XV −∇JXV = (FJ − JF )X. (22)
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At this point, we note that

(LV J)X = LV JX − JLVX

= ∇V JX −∇JXV − J∇VX + J∇XV

= J∇XV −∇JXV

where we have used the fact that J is parallel for a Kaehler structure.
The use of the foregoing equation in (22) gives

(LV J)X = (FJ − JF )X. (23)

Now using the equation (11), the Kaehlerian properties: JQ = QJ ,
g(JX, JY ) = g(X, Y ), g(JX, Y ) = −g(X, JY ), skew-symmetry of F ,
and a straightforward computation we obtain

2[(dv)(JX, JY )− (dv)(X, Y )] = g(J(FJ − JF )X, Y ).

The use of (23) in the above equation provides

(dv)(JX, JY )− (dv)(X, Y ) =
1

2
g(J(LV J)X, Y ).

This shows that LV J = 0 if and only if (dv)(JX, JY ) = (dv)(X, Y ),
i.e. dv is J-invariant, completing the proof.

Remark 4. For a gradient Ricci soliton, v = df and hence dv = 0,
and Theorem 2 implies LV J = 0 and so recovers the known result
(mentioned earlier) that the gradient Ricci soliton on a Kaehler mani-
fold is indeed Kaehler-Ricci soliton. Non-gradient examples satisfying
the Kaehler-Ricci soliton condition (dv)(JX, JY ) = (dv)(X, Y ) are the
cases when (i) dv = Ω and (ii) dv = ρ where Ω is the Kaehler 2-form
defined by Ω(X, Y ) = g(X, JY ), and ρ is the Ricci 2-form defined by
ρ(X, Y ) = g(QX, JY ). We note that, both Ω and ρ are closed and
J-invariant.

3. An Example Supporting Theorem 1.1

Let us consider R3 with Euclidean metric δij for which the Ricci soliton
equation is

∂ivj + ∂jvi = 2λδij.

It can be verified easily that a solution of this equation is

v = (λx1 + x2 − x3)dx1 + (λx2 + x3 − x1)dx2
+ (λx3 + x1 − x2)dx3. (24)

Computing its exterior derivative we get

dv = −2(dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1). (25)

We also compute

δdv = ∗d ∗ (dv) = −2 ∗ d(dx3 + dx1 + dx2) = 0.
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iV dv = (dv)(V ) = −2[(λ(x3 − x2) + 2x1 − x2 − x3)dx1
+ (λ(x1 − x3) + 2x2 − x3 − x1)dx2
+ (λ(x2 − x1) + 2x3 − x1 − x2)dx3].

Re-arranging the terms we obtain

δdv + iV dv = 2λ[(x2 − x3)dx1 + (x3 − x1)dx2 + (x1 − x2)dx3]
− d[(x2 − x3)2 + (x3 − x1)2 + (x1 − x2)2].

Let us denote the 1-form δdv + iV dv by θ. It turns out that

dθ = −4λ(dx1 ∧ dx2 + dx2 ∧ dx3 + dx3 ∧ dx1).
Use of equation (25) in the above shows dθ = 2λdv. Thus, for λ 6= 0, we
see that θ = (δ+iV )dv is not exact because v is not exact [evident from
equation (25)]. This is in agreement with the conclusion of Theorem
1.1. We also note that the Ricci soliton of this example is not gradient.
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