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Some remarks on s-convex functions

H. HuDZIK AND L. MALIGRANDA

Summary. Two kinds of s-convexity (0 < 5 < 1) are discussed. It is proved among others that s-convex-
ity in the second sense is essentially stronger than the s-convexity in the first, original, sense whenever
0 < s < 1. Some properties of s-convex functions in both senses are considered and various examples and
counterexamples are given.

1. Introduction

Two definitions of s-convexity (0 < s < 1) of real-valued functions are known in
the literature.

A function f: R, — R, where R, =[0, c0), is said to be s-convex in the first sense
if

Sfau + Bv) < ’f(u) + B7f(v) (D

for all u, ve R, and all «, 8 =0 with «®*+ #°=1. We denote this by fe K!. This
definition of s-convexity, for so called ¢-functions, was introduced by Orlicz in [4]
and was used in the theory of Orlicz spaces (cf. [2], [3], [S]). A function f: R, - R,
is said to be a @-function if f(0) =0 and f is nondecreasing and continuous.

A function f: R, — R is said to be s-convex in the second sense if inequality (1)
holds for all u, ve R, and all «, § 2 0 with « + § = 1. We denote this by fe K2.
This definition of s-convexity may be found in [1], where the problem, when the
rationally s-conbex functions are s-convex, was considered.

Of course, both s-convexities mean just the convexity when s = 1.

This paper is divided into two parts. The first part is devoted to the s-convex
functions in both senses. It consists of necessary conditions on the functions to be
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in the classes K! or K? and a theorem about superposition of functions from class
K!. For example, if £, g € K! then the functions f + g and max(f, g) are also in K!.
If, moreover, we know that f(0) =0 then the s-convexity in the second sense
implies s-convexity in the first sense but not conversely and if s decreases then the
classes K! and K? increase. In the second part, s-convex non-negative functions are
considered. We will prove a theorem about the superposition and the product of
two functions in classes K; and K}, respectively. On an example we will see that
functions in X! need not be continuous on (0, c0). On another example we will see
that s-convexity (with 0 <s < 1) of a ¢-function f need not imply that fis of the
form f(u) = ®(u®) or f(u) = ®(u)*, where @ is a convex ¢@-function. Some other
properties of s-convex functions are also given in this second part.

2. On s-convex functions

We start with the following properties of s-convex functions.

THEOREM 1. Let 0 <s < 1.
(@) If feK! then f is non-decreasing on (0, ) and

J(0%) ==ulirgl+f(u) < f(0).
(b) If f € K? then f is non-negative on [0, o).
Proof. (a) We have, for u >0 and a [0, 1],
ST@" 4+ (1 = 2) )] < af (@) + (1 — 0)f () =f(w).
The function
o) = a"s 4+ (1 —a) '

is continuous on [0, 1), decreasing on [0, 1/2], increasing on [1/2,1] and
A0, 1]) = [A(1/2), K(1)] =[2' ~ '/, 1]. This yields that

f(tw) < f(u) Vu>0,1e[2' V5 1] 2)

If now ¢ €[22 — 9 1] then t'/2 € [2! ~ !5, 1]. Therefore, by the fact that (2) holds for
all u >0, we get

Slew) = f(¢'2(t' ) < f(¢"u) < f(w)
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for all # > 0. By induction we then obtain that
f(tu) < f(w) Yu>0,1e(0,1].

Therefore, taking 0 <u < v and applying (3), we get
S@) =f((ufv)) < f(v),

which means that f is non-decreasing on (0, <0).
The second part we can prove in the following way. For u > 0 we have

Sloaw) = flau + B0) < o’f () + B(0)
and taking u -0+ we get

lim f() < lim flow) <o’ Lim fu) +Bf(0),
and so

lim_f(u) < £(0).

(b) We have for u e R, ,

) =f(@/2+u/2) < f@)[2° + @) /2 =2'~*f(w).

Therefore, (2! ~*— 1)) = 0 and so f(u) 2 0.

(3

REMARK 1. The above results do not hold, in general, in the case of convex
functions, i.e. when s = 1, because a convex function f: R, — R, need not be either

non-decreasing or non-negative.

REMARK 2. If 0 < s < 1, then the function fe K! is non-decreasing on (0, )

but not necessarily on [0, c0).
EXAMPLE 1. Let 0 <s <1 and q, b, ¢ € R. Defining, for ue R,

a ifu=090,

S = {bu‘+c ifu>0,
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we have the following.
(i) If 5 20 and ¢ < a then fe K].
(i) If b 20 and ¢ < a then f is non-decreasing on (0, c0) but not on [0, o).
(iii) If b 20 and 0 < ¢ < g then fe K2,
(iv) If b >0 and ¢ <0 then f ¢ K2.
In the proof of (i) there are two non-trivial cases:

1° u,v > 0. Then au + fv >0 and
Slou + Bv) = blau + pv)° + ¢ < b(o*u® + Bv*) + ¢
= b’ + Bv) + ol + B)
=a’(bu’ + ¢) + B(bv’ + ) = a’f(u) + B (v).
2%, p>u=0and §>0. Then
J(@0+ o) =f(Bv) = bf*v* + ¢ = bf*v* + c(a® + B°)

= o’c + B(bv® + ¢) = a’c + Bf(v) < a'a + B (v)
= a’f(0) + B°f(@).

Similarly we can prove (iii). Property (ii) is obvious and property (iv) immediately
follows from Theorem 1(b) since for sufficiently small # the function f is negative.

From known examples of s-convex functions we can build up other s-convex
functions using the following composition property.

THEOREM 2. Let 0<s<1. If f,geK! and if F: R*-R is a convex and
non-decreasing function in each variable then the function h: R, — R defined by

h(u) = F(f(w), g())
is in K!. In particular, if f,g € K} then f+ g, max(f,g) e K.,
Proof. If u,ve R, then for all o, 8 2 0 with 2®*+ =1 we have

h(au + po) = F(f(oxu + Pv), glau + pv))
< F(o'f(w) + B (v), a’g(w) + Bg(v))
< a’F(f(w), g(W) + B°F(f(v), g(v)) = a’h(u) + B*h(v).
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Since F(u,v) =u +v and F(u, v) = max(u, v) are non-decreasing convex functions
on R?, therefore they yield particular cases of our theorem.

It is important to know when the condition a*+ =1 (x +f=1) in the
definition of K} (K?) can be equivalently replaced by the condition a®+ f°< 1
(o + B < 1, respectively).

THEOREM 3. (@) Let f€ K!. Then inequality (1) holds for all u,v € R, and all
a, B =0 with a*+ °<1 if and only if f(0) <0.

(b) Let fe K2. Then inequality (1) holds for all u,ve R, and all a, B 20 with
o+ B <1 ifand only if f(0)=0.

Proof. (a) Necessity is obvious by taking u =v =0 and o = p = 0. Therefore
assume that w,veR,, 0,20 and O0<y=a*+B°<1. Put a=ay ' and
b =py=—'~. Then a*+ b*=a’/y + f*/y = 1 and so we have sufficiency:

flom + Bv) = flay"u + by'Fv)

< a¥f(y'u) + b (y'v)

=a’fly " u + (1 = )01 + b5fTy v + (1 — y) 0]
< a’lyf ) + (1= p)f(0)] + 6Ty ) + (1 —¥)f(0)]
= a*yf(u) + b*yf(v) + (1 — p)f(0) < a’f(u) + B (v).

(b) Necessity. Taking ¥ =v =a = f = 0 we obtain f(0) <0 and using Theorem
1(a) we get f(0) = 0, therefore f(0) =0.

Sufficiency. Let u,ve R, and «,f 20 with0<y=a + f < 1. Put a =a/y and
b=p/y. Thena+b=a/y+B/y =1 and so

Slau + pv) = flayu + byv)

< aif(yu) +bf(y) = a’fTyu + (1 - )01 + bfTyv + (1 - y)0]
<aTyf) + (1 =9)70)] + 6Ty () + (1 —)f(0)]
=a%yf() + by () + (1 —)f(0) = a’f(u) + Bf (v).

Using the above theorem we can compare both definitions of the s-convexity.

THEOREM 4. (a) Let 0<s < 1. If fe K? and f(0) =0 then fe K].
(b) Let 0<5,<5,< 1. If fe K2, and f(0) =0 then fe K7 .
(¢) Let 0<s,<s;< 1. If fe K], and f(0) <0 then fe K] .
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Proof. (a) Assume that fe K2 and f(0) =0. For u,ve R, and «, B =0 with
a4+ B°=1, we have a + f <a’+ B*=1 and, by Theorem 3(b), we obtain

Sflou + pv) < af(u) + Bf(v),
which means that fe€ K!.

(b) Assume that feK?, and that w,0 20,a,# >0 with o + 8 =1. Then we
have

Slow + Py < a2f(u) + B2 (v) < a”f () + B/ (v),
which means that e K7 .
(c) Assume that fe K|, and that u,v20,a,f 20 with ' + 9 =1. Then

a2+ B2 < a®t + %1 =1 and according to Theorem 3(a) we have

Sloau + Bv) < «2f(u) + B2 (v) < &”'f () + B (v),

which means that fe K} .

3. On non-negative s-convex functions

Let us note first that, if fis a non-negative function from K! and f(0) =0, then
[ is right continuous at 0, i.e., f(0*) =f(0) =0.
We prove now the following other important observation.

THEOREM 5. Let 0<s <1 and let p: R, - R, be a non-decreasing function.
Then the function f defined for u € R, by

fw) == Ip(u) (4)
belongs to K.

Proof. Let v 2u 20 and «, f = 0 with &° + f° = 1. We will consider two cases.

1°. Let au + fv < u. Then

flau + Bv) < flw) = («* + B)f (W) < af(w) + B ().
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2° Let ou + fv > u. This yields fv > (1 —a)u and so § > 0.
Since a < a* for x €[0, 1], we get « —a**!' <o’ —a*+! and then
a/(1—a) <a’/(1 —a’) =(1-B?/p’,
i.e.,
af/(1—a) <B'~*—B. (5)
We have also
au+ v < (@ + B <(a* + W =v,
and, in view of (5),
oau + Pv S afv/(1—a) + o < (B'~*— o + po =p' v,
whence
(o + By =) < Bops/A =9, 6)
Applying (6) and the monotonicity of p, we get

Slou + Bv) = (au + ﬁ.v)s/‘l ~'n(au + Pv)
< B = p(au + Br) < Bv'" ~p(v)
= B (v) < a’f(w) + Bf(v),

which finishes the proof.
REMARK 3. For 0 <s < 1 functions in K} need not be continuous on (0, ).
EXAMPLE 2. Let 0 <s <1 and k > 1. Define, for ue R,

wil=9 ifo<u<l,
fe) = {ku’/“"’ ifu>1.

The function fis non-negative, discontinuous at ¥ = 1 and belongs to X! but not to
K2
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Proof. It was proved in Theorem 5 that fe K!. Now, we will prove that f¢ K2,
Take an arbitrary @ > 1 and put % = 1. Consider all v > 1 such that au + fv =
o + fv = a, where o, 20 and o + B = 1. In the case when fe K? it must be

ka9 < o + k(1 — a)[(@ — o) /(1 — )]/ = (7

foralla>1and all 0 <o < 1.
Define the functions

f;z(a) =’ 4+ k(] — a)f[(a — 0()/(1 _ a)]s/(l —s5) __ ka’l(' _s)-
These functions are continuous on the interval (a, 00) and
g@) =f(1) =o'+ k(1 —a)* — k.

The function g is continuous on [0, 1] and g(1) =1 — &k < 0. Therefore, there is a
number o, 0 < &y < 1, such that g{ay) = £, (1) < 0. The continuity of f; yields that
f«,(@ <0 for a certain a > 1, i.e. inequality (7) does not hold, which means that
f¢K:.
THEOREM 6. Let fe K] and g € K;,, where 0 <s,,s, < 1.
(a) If [ is a non-decreasing function and g is non-negative function such that
f(0) < 0=g(0) then the composition f o g of f with g belongs to K., where
5 =85,.
(b) Assume that 0<s,,s,<]1. If f and g are non-negative functions such that
either f(0) =0 and g(0%) =g(0) or g(0) =0 and f(0*) =f(0) then the
product fg of f and g belongs to K}, where s = min(s,, 5,).

Proof. (a) Let u,ve R, and a, 8 20 with a’+ f*=1, where s = 5,5,. Since
asi+ B < a2 4 go2=1 for i =1, 2, therefore, according to Theorem 3(a) and
the assumptions, we have

f o glan + o) = f(glou + Bv)) < f(a*g(w) + p*g(v))

< a12f(g(w) + B (gw)) = a’f - gw) + Bf = g(v),
which means that fo g e K!.

(b) According to Theorem 1(a), both functions f and g are non-decreasing on
(0, o). Therefore

(/@) - f0))(g) —g@) <0
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or, equivalently,

S()g(v) + f(v)g(w) < fwg(u) +f(v)g(v) (8)

for all v 2u>0. If v >u =0 then inequality (8) is still true because f, g are
non-negative and either f(0) =0 and g(0*) = g(0) or g(0) =0 and f(0*) = f(0).
Now let u,veR, and o, f =0 with «*+ =1, where s =min(s,,s,). Then
a4 pi<a’+ f*=1 for i =1, 2 and by Theorem 3(a) and inequality (8) we have
S(ou + Bo)g(ou + Bv)

< (" () + B () e"g(w) + B2g(v))

= o’ T 2f (w)g(u) + o' B2 (w)g(v) + a2 (v)g(w) + B * 2f (v)g(v)

< a®f(w)gw) + a*B(f(Weg®) + f(0)gw) + B>/ (v)g(v)

< a®f(u)g(u) + a*B(f(Weg) +/(©)g() + B>/ (v)e(v)

= a’f(u)g(u) + Bf(v)g(v),

which means that fg € K!.

REMARK 4. From the above proof it is also easy to see that, if f is a
non-decreasing function in K? and g is a non-negative convex function on [0, o),
then the composition fo g of f with g belongs to K2.

REMARK 5. Convex functions on [0, c0) need not be monotonic. However, if f
and g are non-negative, convex and either both are non-decreasing or both are
non-increasing on [0, o) then the product fz is also a convex function.

_ COROLLARY 1. If ® is a convex @-function and g is a @-function from K. then
the composition ® g belongs to K!. In particular, the @-function h(u) = ®(u®)
belongs to K!.

COROLLARY 2. If ® is a convex @-function and f is a @-function from K? then
the composition fo® belongs to K?. In particular, the @-function h(u) = ®(u®)
belongs to K2.

EXAMPLE 3. Let 0 <s < 1. Then there exists a ¢-function f in the class K2
which is neither of the form ®(u*) nor ®(u)* with a convex function ®.
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Define

u for0su<li
u* foru>1.

S ={

We will prove that f e K?. Assume thatu,ve R, , o, f =0and « + 8 = 1. We have
obviously that for u, v =1 as well as for u, v € [0, 1] inequality (1) holds. Let us
consider the remaining cases.

1°. 0<u<1,v21and au+ fv < 1. Then, since « <1 and fv <1,

Sl + Bv) = au + Pv < o'u + [v° = o*f(1) + Bf(v).
2. 0<u<l,v=1and au + fv > 1. We need to prove the inequality
(o + Po)* < o*u + B . &)

Fix an arbitrary a > 1 and assume that au + fv = a. Inequality (9) is then equiva-
lent to

a’ < a'u + (a — o)’ Vu [0, 1]. (10)
Define on the interval [0, 1] the function

h(u) = a’u + (@ — au)* — a*.
We want to prove that A(u) = 0 for all u €[0, 1].

Since h"(u) = a%s(s — 1)(a@ — au)* ~2 < 0 therefore h has no local minimum on

the interval [0, 1]. Thus

inf{A(u): u € [0, 1]} = min{A(0), A(1)}

=min{0, 2’ + (@ —a)* —a*} =0,

and so A(u) = 0 for all u [0, 1], which finishes the proof of the fact that f'e K?.
Now, for

ul* forQ0<u<l,
u foru>1,

q@:{

we have that f(u) = ®(u*) = ®(u)* and ® is non-convex @-function.
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THEOREM 7, If 0 <s <1 and f e K! is a @-function then there exists a convex
@-function ® such that

S27ou) <D(w) < f(w)
Jor all u=0.

Proof. By the s-convexity of the function f and by f(0) =0, we obtain
Slow) < o’f(w) for all u =0 and all x [0, 1].
Assume now that v >u = 0. Then f(u'*) < f((u/v)*v') < (u/)f ("), ie.,

S fu < f0'")/v. (1D

Inequality (11) means that the function f(z'”)/u is a non-decreasing function on
(0, c0). Define

0 for u =0,

®() = J f(t")/tde for u > 0.
0

Then @ is a convex ¢-function and
D) = L S e de < (f(@)") u )t = f(w),

0wy 2 [ S ede = (T2 Y202 = 2 ),

usf2

Therefore,
fQ27u) < @) < f(w)

for all ¥ = 0, which means that the function W defined by W(u) = ®(«°) is equivalent
to f(this kind of equivalence is taken from the theory of Orlicz spaces—cf. [3], [5]),
and the proof is complete.
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