
Aequationes Mathematicae 48 (1994) 100- I 11 0001-9054/94/010100-12 $1.50 + 0.20/0 
University of  Waterloo © 1994 Birkh/iuser Verlag, Basel 

S o m e  remarks  on s - convex  functions 

H .  H U D Z I K  AND L.  M A L I G R A N D A  

Summary. Two kinds of  s-convexity (0 < s < 1) are discussed. It is proved among others that s-convex- 
ity in the second sense is essentially stronger than the s-convexity in the first, original, sense whenever 
0 < s < 1. Some properties of  s-convex functions in both senses are considered and various examples and 
counterexamples are given. 

I. Introduction 

Two definitions of  s-convexity (0 < s < 1) of real-valued functions are known in 
the literature. 

A function f :  R+ -*R, where R+ = [0, oo), is said to be s-convex in the f i r s t  sense 

if 

f (zu +jOv) < ~'f(u) + ~y(v) (l) 

for all u, v ~ R+ and all ct, fl > 0 with ct s + fls = 1. We denote this by f e  K 1. This 
definition of  s-convexity, for so called q~-functions, was introduced by Orlicz in [4] 
and was used in the theory of  Orlicz spaces (cf. [2], [3], [5]). A function f :  R+ --* R+ 
is said to be a tp-function if f ( 0 )  = 0 and f is nondecreasing and continuous. 

A function f :  R+ ~ R is said to be s-convex in the second sense if inequality (1) 
holds for all u, v e R+ and all 0~, fl > 0 with ~ + fl = 1. We denote this by f e  K 2. 
This definition of  s-convexity may be found in [1], where the problem, when the 
rationally s-con~,ex functions are s-convex, was considered. 

Of course, both s-convexities mean just the convexity when s = 1. 
This paper is divided into two parts. The first part is devoted to the s-convex 

functions in both senses. It consists of  necessary conditions on the functions to be 
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in the classes K~ or  K~ and a theorem about  superposi t ion of  functions f rom class 
K] .  Fo r  example,  if  f ,  g ~ K] then the functions f +  g and max( f ,  g) are also in K] .  
If, moreover ,  we know that  f ( 0 ) =  0 then the s-convexi ty  in the second sense 
implies s-convexi ty  in the first sense but  not  conversely and if s decreases then the 
classes K~ and K~ z increase. In the second part ,  s -convex non-negat ive functions are 
considered. We will prove  a theorem about  the superposi t ion and the produc t  o f  
two functions in classes K ~  and K]2, respectively. On an example we will see that  
functions in K ] need not  be cont inuous on (0, oo). On another  example  we will see 
that  s-convexi ty  (with 0 < s < 1) o f  a ~p-function f need not  imply that  f is o f  the 
form f ( u ) =  dO(u s) or f ( u ) =  ~(u)  s, where • is a convex ~p-function. Some other  
propert ies  o f  s -convex functions are also given in this second part.  

2. On s-convex functions 

We start  with the following propert ies  o f  s-convex functions. 

THEOREM 1. Let 0 < s < 1. 
(a) l f  f ~ K~ then f is non-decreasing on (0, ~ )  and 

f ( 0  +) ..= lim f (u)  <f(O). 
u ~ 0  + 

(b) l f  f ~ K~ then f is non-negative on [0, ~ ) .  

Proof. (a)  We have, for  u > 0 and ~ ~ [0, 1], 

f [ (~  '/~ + ( I -- ~) ' /0u] < ~f(u) + ( 1 -- or)f (u) = f(u). 

The function 

h(~) = ~ ~/s + (1 - ~) ~/" 

is cont inuous on [0, 1], decreasing on [0, 1/2], increasing on [1/2, 1] and  
h([0, 1]) = [h(1/2), h(l)]  = [2 ~- i/s, 1]. This yields that  

f ( tu)  <f (u)  Yu > O, t ~ [2'  - us, 1]. (2) 

I f  now t ~ [2 2o - I/a), 1] then t U2 ~ [2 ~ - ~/', 1]. Therefore,  by the fact that  (2) holds for 

all u > 0, we get 

f ( tu )  = f ( t  I/2(t U2U)) < f ( t  I/2U) < f (u)  
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for all u > 0. By induct ion we then obtain that  

f ( tu)  <f(u) Vu > O, t ~ (0, 11. (3) 

Therefore, taking 0 < u < v and applying (3), we get 

f (u) =f((u/v)v) < f(v), 

which means that  f is non-decreasing on (0, o~). 
The second par t  we can prove in the following way. Fo r  u > 0 we have 

f(~u) =f(~u + 80) < o~Sf(u) +/~sf(0) 

and taking u--* 0 + we get 

lim f (u) < lim f(o~u) < or" lira f (u)  + Bsf(O), 
u ~ 0  + u ~ 0  + u ---* 0 + 

and so 

lim f (u) < f(O). 
u - * O  + 

(b) We have for  u E R + ,  

f (u) =f (u /2  + u/2) < f(u)/2 s + f(u)/2 s = 2 ' -  Sf(u). 

Therefore,  ( 2 1 - ' -  1)f(u) > 0 and so f (u)  > O. 

REMARK 1. The above  results do  not  hold, in general, in the case o f  convex 

functions, i.e. when s = 1, because a convex function f :  R+ --* R, need not  be either 

non-decreasing or  non-negative. 

REMARK 2. I f  0 < s < 1, then the function f ~  K~ is non-decreasing on (0, ~ )  

but  not  necessarily on [0, oo). 

EXAMPLE 1. Let 0 < s < 1 and a, b, c E R. Defining, for u ~ R + ,  

a if u = 0, 

f ( u ) =  b u ' + c  if u > 0 ,  
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we have the following. 

(i) I f  b > 0 and c -< a then f ~  K] .  
(ii) I f  b > 0 and c < a then f is non-decreasing on (0, ~ )  b u t ' n o t  on [0, ~ ) .  

(iii) I f b - > 0 a n d 0 < c < a t h e r / f e K  2. 

(iv) I f  b > 0 and c < 0  t h e n f C K ~ .  
In the p r o o f  of  (i) there are two non-trivial  cases: 

1°. u , v > 0 .  Then ~ u + f l v > O a n d  

f (au + fly) = b(~u +flv) ~ + c < b(a'u ~ + fl~v ~) + c 

= b(a~u ~ + B 'v9  + c(~ ~ + ~ 9  

= ~'(bu" + c) + B'(bv ~ + c) = ~y (u )  + ~y(v) .  

20 . v > u = 0 a n d , 6 ' > 0 .  Then 

f (a0 +/~v) =f(#v) = b ~ v  ~ + c = b~Sv s + c(~ s + ~ 0  

= ~'c + #s(bv ~ + c) = . ' c  + # ' f ( v )  ~ a Sa + / ~ y ( v )  

= ~*f(o) + l~Y(v). 

Similarly we can prove  (iii). Proper ty  (ii) is obvious  and proper ty  (iv) immediately 
follows f rom Theo rem l (b)  since for  sufficiently small u the function f is negative. 

F r o m  known examples  of  s -convex functions we can build up other  s-convex 
functions using the following composi t ion  proper ty .  

THEOREM 2. Let  0 < s <  1. I f  f ,  g ~ K~ and if F: R2---}R is a convex and 
non-decreasing function in each variable then the function h: R+ ~ R defined by 

h(u) = F(f(u) ,  g(u)) 

is in K]. In particular, if  f ,  g ~ K~ then f + g, m a x ( f , g ) ~ K ] .  

Proof I f  u, v e R+ then for  all ~, fl > 0 with ~t ~ + fl~ = 1 we have 

h(au + fly) = F(f(~u + fly), g(~u + fly)) 

< F(~y(u )  + ~y(v ) ,  ~Sg(u) + ~g(v) )  

< ~F( f (u ) ,  g(u)) + fl~F(f(v), g(v)) = a~h(u) + fl~h(v). 
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Since F(u, v) = u + v and F(u, v) = max(u, v) are non-decreasing convex functions 
on  R 2, therefore they yield particular cases o f  our  theorem. 

It is impor tant  to know when the condit ion a t ' +  f l s=  1 (~ + fl = 1) in the 

definition of  K] (K~) can be equivalently replaced by the condit ion ~ ' +  f ix< 1 
(0t + f < 1, respectively). 

THEOREM 3. (a) Let  f ~ K  ]. Then inequality (1) holds for  all u, v e R +  and all 
or, [3 > 0 with a s + f "  < 1 i f  and only i f  f (O) < O. 

(b) Let  f E K~. Then inequality (1) holds for  all u ,v  ~ R+ and all ~, [3 > 0 with 
+ [3 < 1 i f  and only i f f (O)  = O. 

Proof  (a) Necessity is obvious by taking u = v = 0 and • = f = 0. Therefore 

assume that  u, v E R + ,  ~ t , f > 0  and 0 < y = a  s + f ' < l .  Put a = a y -  t/" and 
b = fly - l/,. Then a s + b s = as/y + fl'/y = 1 and so we have sufficiency: 

f (~u  + fv )  = f ( a ~  ~/Su + by ~/'v) 

< a'f(~, l/Su) + b' f(y I/'v) 

= a'f[y l/su "J¢" ( 1 - -  7 ) I ] s0 ]  -~  bSf[] ' lily + ( 1 - y)l/s0] 

< a'Iyf(u) + ( 1 - y)f(0)] + bs[yf(v) + ( 1 - y)f(0)] 

= aS?f (u) + bsyf(v) + ( 1 - y)f(0)  < ~Sf(u) + f~f(v). 

(b) Necessity. Taking  u = v = • = fl = 0 we ob ta in f (O)  < 0 and using Theorem 
l(a)  we get f(O) > O, therefore f ( O ) =  O. 

Sufficiency. Let u, v e R+ and a, fl -> 0 with 0 < y = • + /3  < 1. Put a = 0~]y and 

b = f / y .  T h e n a + b = a / y + f / y = !  and  so 

f(otu + fly) = f (ayu + byv) 

< aSf(yu) + bSf(yv) = a~f[yu + (1 - y)0] + b'f[yv + (1 - y)0] 

a~[y'f(u) + ( 1 -- y)~f(0)] + bS[y~f(v) + ( 1 - y) ' f (0)]  

= a ' rV (u )  + b 'y ' f (c )  + (1 - y)V(O) = ~V(u)  + fV (v ) .  

Using the above theorem we can compare  both  definitions o f  the s-convexity. 

THEOREM 4. (a) Let  0 < s < 1. [ f  f E K 2 and f(O) = 0 then f ~ K].  
(b) Let O < s l  < su < 1. I f f e K 2 2  andf(O)  = 0  t h e n f ~ K 2 , .  
(c) Let  0 < si < s2 < 1. I f  f ~ K]2 and f(O) < 0 then f ¢ K],.  



' Vol. 48, 1994 Some remarks on s-convex functions 105 

Proof. (a) Assume that  f e  K~ and f ( 0 )  = 0. F o r  u, v e R+ and ~, 13 > 0 with 

Gt s + fl~ = 1, we have ct + fl _< ct" + fl~ = 1 and,  by Theorem 3(b), we ob ta in  

f(otu + fly) < a~f(u) + fl~f(v), 

which means  that  f e K 1 . 

(b)  Assume  that  f~K~2 and  that  u, v > 0, a, fl > 0 with ~ + f l  = 1. Then we 

have 

f(otu + fly) < 0~s2f(u) + fls2f(v) < ot ~f(u) + fl~f(v), 

which means  that  f ~ K 2 S l  o 

(c) Assume tha t  f ~ K ] 2  and that  u, v > 0, ~, fl > 0 with ~ '  +f l~ '  = 1. Then 
~2 + p~2 < ~,1 + /~1  = I and  according  to Theorem 3(a) we have 

f (~u + #v) ~ ~s~f(u) + l~ f (v )  <- ~',f(u) + #',f(v), 

which means  that  f ~  K]I .  

3. On non-negative s-convex functions 

Let  us note  first that ,  i f  f is a non-negat ive  funct ion f rom K~ and f ( 0 )  = 0, then 

f is r ight  con t inuous  at  0, i.e., f ( 0  +) = f ( 0 )  = 0. 

W e  prove  now the fol lowing o ther  i m p o r t a n t  observat ion .  

THEOREM 5. Let 0 < s < 1 and let p: R+ --*R+ be a non-decreasing function. 
Then the function f defined for u e R+ by 

f (u)  = u s/° -S~p(u) (4) 

belongs to K2. 

Proof. Let  v > u > 0 and ~, fl > 0 with ~t ~ + fls = 1. We will cons ider  two cases. 

1 °. Let  ~u + fly < u. Then 

f(~u + fly) < f(u)  = (o~ ~ + fls)f(u) < ~f(u)  + fl~f(v). 
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2 °. Let  ~u + fly > u. This yields/~v > ( 1 - ~t)u and so fl > 0. 

Since a g ~t s for 0t 6 [0, 1], we get  ~ - g*+ l _< ~ _ ~t,+ 1 and  then 

i.e., 

,x,a/(! --,x) -< #'-"--#. (5) 

W e  have also 

~u +/~v -< (~ +/~)v ~ ( ~  + Pgv  = v, 

and,  in view o f  (5), 

o~u + ~v  < o~flv/( 1 - cz) + fly < ( i l l  - ~ _ ~)v  + / J r  = f l l  - Sv ,  

whence 

(~u + ~v)'/"-~) <-/~v ~:c~ - ' )  (6) 

Apply ing  (6) and  the mono ton ic i ty  o f  p,  we get 

f(o~u + f ly)  = (otu + / ? v )  ~O - *)p(au + fly) 

[~v "c'- ')p(~u + ~v) ~ ~ v  ":c'- ~)pCv) 

= 13"f(v) ~ a~f(u) + B'f(v), 

which finishes the proof .  

REMARK 3. F o r  0 < s < 1 funct ions  in K] need not  be con t inuous  on  (0, oo). 

EXAMPLE 2. Let 0 < s < 1 and  k > 1. Define, for u E R + ,  

= : U  5/'(1 - s) i f 0 < u < l ,  

f ( u )  ~ k u  ~/" --') i f  U > 1. 

The  f u n c t i o n f i s  non-negat ive ,  d i scon t inuous  at  u = 1 and  belongs  to K] bu t  no t  to  
K, 2 

AEQ. MATH.  
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Proof I t  was  p r o v e d  in T h e o r e m  5 t h a t f 6  K ] .  N o w ,  we wil l  p r o v e  t h a t  f ¢  K 2. 
T a k e  a n  a r b i t r a r y  a > 1 a n d  pu t  u = 1. C o n s i d e r  all  v > 1 such t ha t  au  +/~v = 

+flv = a, where  ~, fl -> 0 a n d  a + ~ = 1. In  the  case  when  f ~  K 2 it m u s t  be 

ka ̀ i(l -~) < c~ ~ + k(  1 - ~)~[(a - ~)1( 1 - ~)]s/(l - ~) (7) 

for  a l l a > l  a n d  a l l 0 < ~ - < l .  

Def ine  the  func t ions  

f , ( a )  = a s + k( 1 - a)~[(a - a)/( 1 - ~)] s/o - ~) _ karl(, - ~) 

These  func t ions  are  c o n t i n u o u s  on  the in t e rva l  (a, oo) a n d  

g(~) = f ~ ( l )  = a~ + k( 1 - a)" - k. 

T h e  func t ion  g is c o n t i n u o u s  on  [0, 1] a n d  g(1)  = 1 - k  < 0. There fo re ,  there  is a 

n u m b e r  ~o, 0 < % < 1, such  t ha t  g ( % )  = f = o ( 1 )  < 0. The  con t i nu i t y  o f f=  o y ie lds  t ha t  

f~o(a) < 0 fo r  a ce r t a in  a > 1, i.e. i nequa l i t y  (7) does  n o t  ho ld ,  which  m e a n s  t h a t  

f ¢  K~. 

THEOREM 6. Let f ~K~ l and g ~K~2, where 0 < s ~ , s 2  < 1. 

(a) l f  f is a non-decreasing function and g is non-negative function such that 
f ( 0 )  < 0 = g (0)  then the composition f o g o f f  with g belongs to K 1, where 

S - " = S I S  2 . 

(b) Assume that 0 < sl, s2 < 1. I f  f and g are non-negative functions such that 
either f ( O ) =  0 and g ( 0  +) = g ( 0 )  or g(O)= 0 and f ( 0  +) = f ( 0 )  then the 
product fg  o f f  and g belongs to K], where s = m i n ( s l ,  s2). 

Proof. ( a )  Le t  u, v ~ R +  a n d  ~,/~ > 0 wi th  a s + / ~ s =  1, where  s = sis2. Since 

ate, + fls, < a~1,2 +/~s,s2 = 1 fo r  i = 1, 2, the re fo re ,  a c c o r d i n g  to  T h e o r e m  3(a)  a n d  

the a s s u m p t i o n s ,  we have  

f o g(au + fly) =f(g(otu + fly)) <f(a~2g(u) + fl~2g(v)) 

< ot~'~2f(g(u)) + fl'q"zf(g(v)) = a~f o g(u) + fl~f o g(v), 

which  m e a n s  t h a t  f o g e K~. 

(b )  A c c o r d i n g  to  T h e o r e m  l (a ) ,  b o t h  func t ions  f a n d  g are  n o n - d e c r e a s i n g  on  

(0, ~ ) .  T h e r e f o r e  

(f(u) - f ( v ) ) ( g ( v )  - g ( u ) )  ~ o 
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or, equivalently, 

f(u)g(v) + f(v)g(~) g f(u)g(u) + f(v)g(v) (8) 

for all v > u > 0 .  If  v > u = 0  then inequality (8) is still true because f , g  are 
non-negative and either f (0 )  = 0 and g(0 +) = g(0) or g(0) = 0 and f ( 0  +) = f ( 0 ) .  
Now let u,v e R+ and ~,fl-> 0 with ~ s + f l ~ =  1, where s =min(s~,s2). Then 
ct s' + [3 ~' < ~ + fl~ = 1 for i = 1, 2 and by Theorem 3(a) and inequality (8) we have 

f(~u + #v)g(~u + ~v) 

<- (a',f(u) + ~',f(v))(~'~g(u) + 13~g¢v)) 

= 0 ~51 + s 2 U ( u ) g ( u )  "JI- ot~'fl*2f(u)g(v) + o~2fl~lf(v)g(u) + fl~' + ~zf(v)g(v) 

<--~:'f(u)g(u) + zs~(f(u)g(v) + f(v)g(u)) + ~'f(v)g(v) 

<- ~2"f(u)g(u) + . '# '( f(u)g(u) + f(v)g(v)) + ~2"f(v)g(v) 

= ay(u)g(u) + II~f(v)g(v), 

which means that fg  ~ K2. 

REMARK 4. From the above proof  it is also easy to see that, if f is a 
non-decreasing function in K~ and g is a non-negative convex function on [0, ~ ) ,  
then the composition f o g  o f f  with g belongs to K 2. 

REMARK 5. Convex functions on [0, oo) need not be monotonic. However, i f f  
and g are non-negative, convex and either both are non-decreasing or both are 
non-increasing on [0, ~ )  then the product fg  is also a convex function. 

COROLLARY 1. If ¢~ is a convex tp-function and g is a tp-function from K~ then 
the composition ¢~ o g belongs to K 1. In particular, the cp-function h(u)= dP(u s) 
belongs to K~. 

COROLLARY 2. I f  cb is a convex tp-function and f is a cp-function from K 2 then 
the composition f o ~ belongs to K~. In particular, the q~-function h(u)= ~(uO 
belongs to K 2. 

EXAMPLE 3. Let 0 < s < 1. Then there exists a ~o-function f in the class K~ 
which is neither of  the form @(u s) nor q~(u) s with a convex function q~. 
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Define 

f ( u )  = ~u f o r 0 < u < l  
( u" for u > 1. 

We will prove  t h a t f e  K 2. Assume that  u, v ~ R + ,  ~,/~ > 0 and ~ +/~ = 1. We have 
obviously that  for u, v -> 1 as well as for  u, v e [0, 1] inequality (1) holds. Let us 
consider the remaining cases. 

1 °. O - < u < l , v - >  1 a n d ~ u + / ~ v - < l .  Then,  since ~-< 1 a n d f l v <  1, 

f(~zu + fly) = ~xu + fly < odu + fl~v s = otSf(u) + ~sf (v) .  

2 °. 0 < u < 1, v > 1 and  au + / J r  > 1. We need to prove the inequality 

(otu + ~v) s < otSu + ~sv~. (9) 

Fix an arbi t rary  a > 1 and assume that  ~u +/~v = a. Inequali ty (9) is then equiva- 
lent to 

a S < - o ~ S u + ( a - o ~ u )  s Vu s [ 0 ,  1]. (10) 

Define on the interval [0, 1] the function 

h(u) = ot Su + (a - otu)s _ a s. 

We want  to prove  that  h(u) > 0 for all u e [0, 1]. 
Since h " ( u ) =  ~ Z s ( s -  1 ) ( a -  au) ~ - z < -  0 therefore h has no local m in imum on 

the interval [0, 1]. Thus  

inf{h(u): u ~ [0, 1]} = min{h(0), h ( l )}  

= min{0, 0~ ~ + (a - ~)~ - a ~} = 0, 

and so h(u) > 0 for  all u ~ [0, 1], which finishes the p r o o f  o f  the fact that  f E  K~. 
Now,  for  

O ( u ) = { ;  '/" foru>l,f°r0~u<l' 

we have that  f ( u )  = ~(u  ~) = @(u)" and • is non-convex ~o-function. 
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THEOREM 7. I f  O < s < 1 and f ~ K~ is a q~-function then there exists a convex 
qJ-function • such that 

f(2-1/Su) ~ *(u s) <- f (u)  

for all u ~ O. 

Proof  By the s-convexity of the function f and by f(O)= O, we obtain 
f (au)  <- aSf(u) for all u > 0 and all ~ e [0, 1]. 

Assume now that v > u > O. Then f (u  I/*) ~f((u/v)t/*v ~/~) < (u/v)f(vl/S), i.e., 

f (ut /Olu < f(v'/O/v. (11) 

Inequality ( l  l) means that the function f(u]/O/u is a non-decreasing function on 
(0, oo). Define 

{ i  X for u = 0, 

• (u) = f ( t l /O/ td t  for u >0 .  

Then • is a convex ~o-function and 

• (uO = f ( t  l/O/t dt < ( f ( (uO l/*)/u')u~ =f(u) ,  

F • (u ~) > f ( t  '/O/t at >- (f((u72)~r,)2u - 0 u 7 2  --f(2-'/~u). 
du ~/2 

Therefore, 

f (  2 -  l/su) < I~(U s) <-- f ( u )  

for all u > 0, which means that the function W defined by qJ(u) = O(u ~) is equivalent 
to f ( t h i s  kind of equivalence is taken from the theory of Orlicz spaces--cf. [ 3], [5]), 
and the proof is complete. 
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