## Some remarks on $\boldsymbol{s}$-convex functions

H. Hudzik and L. Maligranda

Summary. Two kinds of $s$-convexity ( $0<s \leq 1$ ) are discussed. It is proved among others that $s$-convexity in the second sense is essentially stronger than the $s$-convexity in the first, original, sense whenever $0<s<1$. Some properties of $s$-convex functions in both senses are considered and various examples and counterexamples are given.

## 1. Introduction

Two definitions of $s$-convexity ( $0<s \leq 1$ ) of real-valued functions are known in the literature.

A function $f: R_{+} \rightarrow R$, where $R_{+}=[0, \infty)$, is said to be $s$-convex in the first sense if

$$
\begin{equation*}
f(\alpha u+\beta v) \leq \alpha^{s} f(u)+\beta^{s} f(v) \tag{1}
\end{equation*}
$$

for all $u, v \in R_{+}$and all $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$. We denote this by $f \in K_{s}^{1}$. This definition of $s$-convexity, for so called $\varphi$-functions, was introduced by Orlicz in [4] and was used in the theory of Orlicz spaces (cf. [2], [3], [5]). A function $f: R_{+} \rightarrow R_{+}$ is said to be a $\varphi$-function if $f(0)=0$ and $f$ is nondecreasing and continuous.

A function $f: R_{+} \rightarrow R$ is said to be $s$-convex in the second sense if inequality (1) holds for all $u, v \in R_{+}$and all $\alpha, \beta \geq 0$ with $\alpha+\beta=1$. We denote this by $f \in K_{s}^{2}$. This definition of $s$-convexity may be found in [1], where the problem, when the rationally $s$-convex functions are $s$-convex, was considered.

Of course, both $s$-convexities mean just the convexity when $s=1$.
This paper is divided into two parts. The first part is devoted to the $s$-convex functions in both senses. It consists of necessary conditions on the functions to be

[^0]in the classes $K_{s}^{1}$ or $K_{s}^{2}$ and a theorem about superposition of functions from class $K_{s}^{\mathbf{1}}$. For example, if $f, g \in K_{s}^{1}$ then the functions $f+g$ and $\max (f, g)$ are also in $K_{s}^{1}$. If, moreover, we know that $f(0)=0$ then the $s$-convexity in the second sense implies $s$-convexity in the first sense but not conversely and if $s$ decreases then the classes $K_{s}^{1}$ and $K_{s}^{2}$ increase. In the second part, $s$-convex non-negative functions are considered. We will prove a theorem about the superposition and the product of two functions in classes $K_{s_{1}}^{1}$ and $K_{s_{2}}^{1}$, respectively. On an example we will see that functions in $K_{s}^{1}$ need not be continuous on ( $0, \infty$ ). On another example we will see that $s$-convexity (with $0<s<1$ ) of a $\varphi$-function $f$ need not imply that $f$ is of the form $f(u)=\Phi\left(u^{s}\right)$ or $f(u)=\Phi(u)^{s}$, where $\Phi$ is a convex $\varphi$-function. Some other properties of $s$-convex functions are also given in this second part.

## 2. On $\boldsymbol{s}$-convex functions

We start with the following properties of $s$-convex functions.

Theorem 1. Let $0<s<1$.
(a) If $f \in K_{s}^{1}$ then $f$ is non-decreasing on $(0, \infty)$ and

$$
f\left(0^{+}\right):=\lim _{u \rightarrow 0^{+}} f(u) \leq f(0)
$$

(b) If $f \in K_{s}^{2}$ then $f$ is non-negative on $[0, \infty)$.

Proof. (a) We have, for $u>0$ and $\alpha \in[0,1]$,

$$
f\left[\left(\alpha^{1 / s}+(1-\alpha)^{1 / s}\right) u\right] \leq \alpha f(u)+(1-\alpha) f(u)=f(u)
$$

The function

$$
h(\alpha)=\alpha^{1 / s}+(1-\alpha)^{1 / s}
$$

is continuous on $[0,1]$, decreasing on $[0,1 / 2]$, increasing on $[1 / 2,1]$ and $h([0,1])=[h(1 / 2), h(1)]=\left[2^{1-1 / s}, 1\right]$. This yields that

$$
\begin{equation*}
f(t u) \leq f(u) \quad \forall u>0, t \in\left[2^{1-1 / s}, 1\right] . \tag{2}
\end{equation*}
$$

If now $t \in\left[2^{2(1-1 / s)}, 1\right]$ then $t^{1 / 2} \in\left[2^{1-1 / s}, 1\right]$. Therefore, by the fact that (2) holds for all $u>0$, we get

$$
f(t u)=f\left(t^{1 / 2}\left(t^{1 / 2} u\right)\right) \leq f\left(t^{1 / 2} u\right) \leq f(u)
$$

for all $u>0$. By induction we then obtain that

$$
\begin{equation*}
f(t u) \leq f(u) \quad \forall u>0, t \in(0,1] . \tag{3}
\end{equation*}
$$

Therefore, taking $0<u \leq v$ and applying (3), we get

$$
f(u)=f((u / v) v) \leq f(v)
$$

which means that $f$ is non-decreasing on ( $0, \infty$ ).
The second part we can prove in the following way. For $u>0$ we have

$$
f(\alpha u)=f(\alpha u+\beta 0) \leq \alpha^{s} f(u)+\beta^{s} f(0)
$$

and taking $u \rightarrow 0^{+}$we get

$$
\lim _{u \rightarrow 0^{+}} f(u) \leq \lim _{u \rightarrow 0^{+}} f(\alpha u) \leq \alpha^{s} \lim _{u \rightarrow 0^{+}} f(u)+\beta^{s} f(0),
$$

and so

$$
\lim _{u \rightarrow 0^{+}} f(u) \leq f(0)
$$

(b) We have for $u \in R_{+}$,

$$
f(u)=f(u / 2+u / 2) \leq f(u) / 2^{s}+f(u) / 2^{s}=2^{1-s} f(u) .
$$

Therefore, $\left(2^{1-s}-1\right) f(u) \geq 0$ and so $f(u) \geq 0$.

REMARK 1. The above results do not hold, in general, in the case of convex functions, i.e. when $s=1$, because a convex function $f: R_{+} \rightarrow R$, need not be either non-decreasing or non-negative.

REMARK 2. If $0<s<1$, then the function $f \in K_{s}^{1}$ is non-decreasing on $(0, \infty)$ but not necessarily on $[0, \infty)$.

Example 1. Let $0<s<1$ and $a, b, c \in R$. Defining, for $u \in R_{+}$,

$$
f(u)= \begin{cases}a & \text { if } u=0 \\ b u^{s}+c & \text { if } u>0\end{cases}
$$

we have the following.
(i) If $b \geq 0$ and $c \leq a$ then $f \in K_{s}^{1}$.
(ii) If $b \geq 0$ and $c<a$ then $f$ is non-decreasing on ( $0, \infty$ ) but not on [ $0, \infty$ ).
(iii) If $b \geq 0$ and $0 \leq c \leq a$ then $f \in K_{s}^{2}$.
(iv) If $b>0$ and $c<0$ then $f \notin K_{s}^{2}$.

In the proof of (i) there are two non-trivial cases:
$1^{0} . u, v>0$. Then $\alpha u+\beta v>0$ and

$$
\begin{aligned}
f(\alpha u+\beta v) & =b(\alpha u+\beta v)^{s}+c \leq b\left(\alpha^{s} u^{s}+\beta^{s} v^{s}\right)+c \\
& =b\left(\alpha^{s} u^{s}+\beta^{s} v^{s}\right)+c\left(\alpha^{s}+\beta^{s}\right) \\
& =\alpha^{s}\left(b u^{s}+c\right)+\beta^{s}\left(b v^{s}+c\right)=\alpha^{s} f(u)+\beta^{s} f(v)
\end{aligned}
$$

$2^{0} . v>u=0$ and $\beta>0$. Then

$$
\begin{aligned}
f(\alpha 0+\beta v) & =f(\beta v)=b \beta^{s} v^{s}+c=b \beta^{s} v^{s}+c\left(\alpha^{s}+\beta^{s}\right) \\
& =\alpha^{s} c+\beta^{s}\left(b v^{s}+c\right)=\alpha^{s} c+\beta^{s} f(v) \leq \alpha^{s} a+\beta^{s} f(v) \\
& =\alpha^{s} f(0)+\beta^{s} f(v)
\end{aligned}
$$

Similarly we can prove (iii). Property (ii) is obvious and property (iv) immediately follows from Theorem (b) since for sufficiently small $u$ the function $f$ is negative.

From known examples of $s$-convex functions we can build up other $s$-convex functions using the following composition property.

Theorem 2. Let $0<s \leq 1$. If $f, g \in K_{s}^{1}$ and if $F: R^{2} \rightarrow R$ is a convex and non-decreasing function in each variable then the function $h: R_{+} \rightarrow R$ defined by

$$
h(u)=F(f(u), g(u))
$$

is in $K_{s}^{1}$. In particular, if $f, g \in K_{s}^{1}$ then $f+g, \max (f, g) \in K_{s}^{1}$.

Proof. If $u, v \in R_{+}$then for all $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ we have

$$
\begin{aligned}
h(\alpha u & +\beta v)=F(f(\alpha u+\beta v), g(\alpha u+\beta v)) \\
& \leq F\left(\alpha^{s} f(u)+\beta^{s} f(v), \alpha^{s} g(u)+\beta^{s} g(v)\right) \\
& \leq \alpha^{s} F(f(u), g(u))+\beta^{s} F(f(v), g(v))=\alpha^{s} h(u)+\beta^{s} h(v)
\end{aligned}
$$

Since $F(u, v)=u+v$ and $F(u, v)=\max (u, v)$ are non-decreasing convex functions on $R^{2}$, therefore they yield particular cases of our theorem.

It is important to know when the condition $\alpha^{s}+\beta^{s}=1(\alpha+\beta=1)$ in the definition of $K_{s}^{1}\left(K_{s}^{2}\right)$ can be equivalently replaced by the condition $\alpha^{s}+\beta^{s} \leq 1$ ( $\alpha+\beta \leq 1$, respectively).

Theorem 3. (a) Let $f \in K_{s}^{1}$. Then inequality (1) holds for all $u, v \in R_{+}$and all $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s} \leq 1$ if and only if $f(0) \leq 0$.
(b) Let $f \in K_{s}^{2}$. Then inequality (1) holds for all $u, v \in R_{+}$and all $\alpha, \beta \geq 0$ with $\alpha+\beta \leq 1$ if and only if $f(0)=0$.

Proof. (a) Necessity is obvious by taking $u=v=0$ and $\alpha=\beta=0$. Therefore assume that $u, v \in R_{+}, \alpha, \beta \geq 0$ and $0<\gamma=\alpha^{s}+\beta^{s}<1$. Put $a=\alpha \gamma^{-1 / s}$ and $b=\beta \gamma^{-1 / s}$. Then $a^{s}+b^{s}=\alpha^{s} / \gamma+\beta^{s} / \gamma=1$ and so we have sufficiency:

$$
\begin{aligned}
f(\alpha u+\beta v) & =f\left(a \gamma^{1 / s} u+b \gamma^{1 / s} v\right) \\
& \leq a^{s} f\left(\gamma^{1 / s} u\right)+b^{s} f\left(\gamma^{1 / s} v\right) \\
& =a^{s} f\left[\gamma^{1 / s} u+(1-\gamma)^{1 / s} 0\right]+b^{s} f\left[\gamma^{1 / s} v+(1-\gamma)^{1 / s} 0\right] \\
& \leq a^{s}[\gamma f(u)+(1-\gamma) f(0)]+b^{s}[\gamma f(v)+(1-\gamma) f(0)] \\
& =a^{s} \gamma f(u)+b^{s} \gamma f(v)+(1-\gamma) f(0) \leq \alpha^{s} f(u)+\beta^{s} f(v) .
\end{aligned}
$$

(b) Necessity. Taking $u=v=\alpha=\beta=0$ we obtain $f(0) \leq 0$ and using Theorem (a) we get $f(0) \geq 0$, therefore $f(0)=0$.

Sufficiency. Let $u, v \in R_{+}$and $\alpha, \beta \geq 0$ with $0<\gamma=\alpha+\beta<1$. Put $a=\alpha / \gamma$ and $b=\beta / \gamma$. Then $a+b=\alpha / \gamma+\beta / \gamma=1$ and so

$$
\begin{aligned}
f(\alpha u+\beta v) & =f(a \gamma u+b \gamma v) \\
& \leq a^{s} f(\gamma u)+b^{s} f(\gamma v)=a^{s} f[\gamma u+(1-\gamma) 0]+b^{s} f[\gamma v+(1-\gamma) 0] \\
& \leq a^{s}\left[\gamma^{s} f(u)+(1-\gamma)^{s} f(0)\right]+b^{s}\left[\gamma^{s} f(v)+(1-\gamma)^{s} f(0)\right] \\
& =a^{s} \gamma^{s} f(u)+b^{s} \gamma^{s} f(v)+(1-\gamma)^{s} f(0)=\alpha^{s} f(u)+\beta^{s} f(v)
\end{aligned}
$$

Using the above theorem we can compare both definitions of the $s$-convexity.
Theorem 4. (a) Let $0<s \leq 1$. If $f \in K_{s}^{2}$ and $f(0)=0$ then $f \in K_{s}^{1}$.
(b) Let $0<s_{1} \leq s_{2} \leq 1$. If $f \in K_{s_{2}}^{2}$ and $f(0)=0$ then $f \in K_{s_{1}}^{2}$.
(c) Let $0<s_{1} \leq s_{2} \leq 1$. If $f \in K_{s_{2}}^{1}$ and $f(0) \leq 0$ then $f \in K_{s_{1}}^{1}$.

Proof. (a) Assume that $f \in K_{s}^{2}$ and $f(0)=0$. For $u, v \in R_{+}$and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$, we have $\alpha+\beta \leq \alpha^{s}+\beta^{s}=1$ and, by Theorem 3(b), we obtain

$$
f(\alpha u+\beta v) \leq \alpha^{s} f(u)+\beta^{s} f(v)
$$

which means that $f \in K_{s}^{1}$.
(b) Assume that $f \in K_{s_{2}}^{2}$ and that $u, v \geq 0, \alpha, \beta \geq 0$ with $\alpha+\beta=1$. Then we have

$$
f(\alpha u+\beta v) \leq \alpha^{s_{2}} f(u)+\beta^{s_{2}} f(v) \leq \alpha^{s_{1}} f(u)+\beta^{s_{1}} f(v),
$$

which means that $f \in K_{s_{1}}^{2}$.
(c) Assume that $f \in K_{s_{2}}^{1}$ and that $u, v \geq 0, \alpha, \beta \geq 0$ with $\alpha^{s_{1}}+\beta^{s_{1}}=1$. Then $\alpha^{s_{2}}+\beta^{s_{2}} \leq \alpha^{s_{1}}+\beta^{s_{1}}=1$ and according to Theorem 3(a) we have

$$
f(\alpha u+\beta v) \leq \alpha^{s_{2}} f(u)+\beta^{s_{2}} f(v) \leq \alpha^{s_{1}} f(u)+\beta^{s_{1}} f(v)
$$

which means that $f \in K_{s_{1}}^{1}$.

## 3. On non-negative $s$-convex functions

Let us note first that, if $f$ is a non-negative function from $K_{s}^{1}$ and $f(0)=0$, then $f$ is right continuous at 0 , i.e., $f\left(0^{+}\right)=f(0)=0$.

We prove now the following other important observation.

Theorem 5. Let $0<s<1$ and let $p: R_{+} \rightarrow R_{+}$be a non-decreasing function. Then the function $f$ defined for $u \in R_{+} b y$

$$
\begin{equation*}
f(u)=u^{s /(1-s)} p(u) \tag{4}
\end{equation*}
$$

belongs to $K_{s}^{1}$.

Proof. Let $v \geq u \geq 0$ and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$. We will consider two cases.
$1^{0}$. Let $\alpha u+\beta v \leq u$. Then

$$
f(\alpha u+\beta v) \leq f(u)=\left(\alpha^{s}+\beta^{s}\right) f(u) \leq \alpha^{s} f(u)+\beta^{s} f(v)
$$

$2^{0}$. Let $\alpha u+\beta v>u$. This yields $\beta v>(1-\alpha) u$ and so $\beta>0$.
Since $\alpha \leq \alpha^{s}$ for $\alpha \in[0,1]$, we get $\alpha-\alpha^{s+1} \leq \alpha^{s}-\alpha^{s+1}$ and then
$\alpha /(1-\alpha) \leq \alpha^{s} /\left(1-\alpha^{s}\right)=\left(1-\beta^{2}\right) / \beta^{s}$,
i.e.,

$$
\begin{equation*}
\alpha \beta /(1-\alpha) \leq \beta^{1-s}-\beta . \tag{5}
\end{equation*}
$$

We have also

$$
\alpha u+\beta v \leq(\alpha+\beta) v \leq\left(\alpha^{s}+\beta^{s}\right) v=v,
$$

and, in view of (5),

$$
\alpha u+\beta v \leq \alpha \beta v /(1-\alpha)+\beta v \leq\left(\beta^{1-s}-\beta\right) v+\beta v=\beta^{1-s} v,
$$

whence

$$
\begin{equation*}
(\alpha u+\beta v)^{s /(1-s)} \leq \beta^{s} v^{s /(1-s)} . \tag{6}
\end{equation*}
$$

Applying (6) and the monotonicity of $p$, we get

$$
\begin{aligned}
f(\alpha u+\beta v) & =(\alpha u+\beta v)^{s /(1-s)} p(\alpha u+\beta v) \\
& \leq \beta^{s} v^{s(1-s} p(\alpha u+\beta v) \leq \beta^{s} v^{s(1-s)} p(v) \\
& =\beta^{s} f(v) \leq \alpha^{s} f(u)+\beta^{s} f(v),
\end{aligned}
$$

which finishes the proof.
Remark 3. For $0<s<1$ functions in $K_{s}^{1}$ need not be continuous on ( $0, \infty$ ).
Example 2. Let $0<s<1$ and $k>1$. Define, for $u \in \boldsymbol{R}_{+}$,

$$
f(u)= \begin{cases}u^{s /(1-s)} & \text { if } 0 \leq u \leq 1, \\ k u^{s / 1-s)} & \text { if } u>1 .\end{cases}
$$

The function $f$ is non-negative, discontinuous at $u=1$ and belongs to $K_{s}^{1}$ but not to $K_{s}^{2}$.

Proof. It was proved in Theorem 5 that $f \in K_{s}^{1}$. Now, we will prove that $f \notin K_{s}^{2}$.
Take an arbitrary $a>1$ and put $u=1$. Consider all $v>1$ such that $\alpha u+\beta v=$ $\alpha+\beta v=a$, where $\alpha, \beta \geq 0$ and $\alpha+\beta=1$. In the case when $f \in K_{s}^{2}$ it must be
$k a^{s /(1-s)} \leq \alpha^{s}+k(1-\alpha)^{s}[(a-\alpha) /(1-\alpha)]^{s /(1-s)}$
for all $a>1$ and all $0 \leq \alpha \leq 1$.
Define the functions

$$
f_{\alpha}(a)=\alpha^{s}+k(1-\alpha)^{s}[(a-\alpha) /(1-\alpha)]^{s /(1-s)}-k a^{s /(1-s)} .
$$

These functions are continuous on the interval $(\alpha, \infty)$ and

$$
g(\alpha)=f_{\alpha}(1)=\alpha^{s}+k(1-\alpha)^{s}-k
$$

The function $g$ is continuous on $[0,1]$ and $g(1)=1-k<0$. Therefore, there is a number $\alpha_{0}, 0<\alpha_{0}<1$, such that $g\left(\alpha_{0}\right)=f_{\alpha_{0}}(1)<0$. The continuity of $f_{\alpha_{0}}$ yields that $f_{\alpha_{0}}(a)<0$ for a certain $a>1$, i.e. inequality (7) does not hold, which means that $f \notin K_{s}^{2}$.

Theorem 6. Let $f \in K_{s_{1}}^{1}$ and $g \in K_{s_{2}}^{1}$, where $0<s_{1}, s_{2} \leq 1$.
(a) If $f$ is a non-decreasing function and $g$ is non-negative function such that $f(0) \leq 0=g(0)$ then the composition $f \circ g$ of $f$ with $g$ belongs to $K_{s}^{1}$, where $s=s_{1} s_{2}$.
(b) Assume that $0<s_{1}, s_{2}<1$. If $f$ and $g$ are non-negative functions such that either $f(0)=0$ and $g\left(0^{+}\right)=g(0)$ or $g(0)=0$ and $f\left(0^{+}\right)=f(0)$ then the product fg of $f$ and $g$ belongs to $K_{s}^{1}$, where $s=\min \left(s_{1}, s_{2}\right)$.

Proof. (a) Let $u, v \in R_{+}$and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$, where $s=s_{1} s_{2}$. Since $\alpha^{s_{i}}+\beta^{s_{i}} \leq \alpha^{s_{1} s_{2}}+\beta^{s_{1} s_{2}}=1$ for $i=1,2$, therefore, according to Theorem 3(a) and the assumptions, we have

$$
\begin{aligned}
f \circ g(\alpha u+\beta v) & =f(g(\alpha u+\beta v)) \leq f\left(\alpha^{s_{2}} g(u)+\beta^{s_{2}} g(v)\right) \\
& \leq \alpha^{s_{1} s_{2}} f(g(u))+\beta^{s_{1} s_{2}} f(g(v))=a^{s} f \circ g(u)+\beta^{s} f \circ g(v),
\end{aligned}
$$

which means that $f \circ g \in K_{s}^{1}$.
(b) According to Theorem $1(a)$, both functions $f$ and $g$ are non-decreasing on ( $0, \infty$ ). Therefore

$$
(f(u)-f(v))(g(v)-g(u)) \leq 0
$$

or, equivalently,

$$
\begin{equation*}
f(u) g(v)+f(v) g(u) \leq f(u) g(u)+f(v) g(v) \tag{8}
\end{equation*}
$$

for all $v \geq u>0$. If $v>u=0$ then inequality (8) is still true because $f, g$ are non-negative and either $f(0)=0$ and $g\left(0^{+}\right)=g(0)$ or $g(0)=0$ and $f\left(0^{+}\right)=f(0)$. Now let $u, v \in R_{+}$and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$, where $s=\min \left(s_{1}, s_{2}\right)$. Then $\alpha^{s_{i}}+\beta^{s_{i}} \leq \alpha^{s}+\beta^{s}=1$ for $i=1,2$ and by Theorem 3(a) and inequality (8) we have

$$
\begin{aligned}
f(\alpha u & +\beta v) g(\alpha u+\beta v) \\
& \leq\left(\alpha^{s_{1}} f(u)+\beta^{s_{1}} f(v)\right)\left(\alpha^{s_{2}} g(u)+\beta^{s_{2}} g(v)\right) \\
& =\alpha^{s_{1}+s_{2}} f(u) g(u)+\alpha^{s_{1}} \beta^{s_{2}} f(u) g(v)+\alpha^{s_{2}} \beta^{s_{1}} f(v) g(u)+\beta^{s_{1}+s_{2}} f(v) g(v) \\
& \leq \alpha^{2 s} f(u) g(u)+\alpha^{s} \beta^{s}(f(u) g(v)+f(v) g(u))+\beta^{2 s} f(v) g(v) \\
& \leq \alpha^{2 s} f(u) g(u)+\alpha^{s} \beta^{s}(f(u) g(u)+f(v) g(v))+\beta^{2 s} f(v) g(v) \\
& =\alpha^{s} f(u) g(u)+\beta^{s} f(v) g(v),
\end{aligned}
$$

which means that $f g \in K_{s}^{1}$.

Remark 4. From the above proof it is also easy to see that, if $f$ is a non-decreasing function in $K_{s}^{2}$ and $g$ is a non-negative convex function on [0, $\infty$ ), then the composition $f \circ g$ of $f$ with $g$ belongs to $K_{s}^{2}$.

Remark 5. Convex functions on [ $0, \infty$ ) need not be monotonic. However, if $f$ and $g$ are non-negative, convex and either both are non-decreasing or both are non-increasing on $[0, \infty)$ then the product $f g$ is also a convex function.

Corollary 1. If $\Phi$ is a convex $\varphi$-function and $g$ is a $\varphi$-function from $K_{s}^{1}$ then the composition $\Phi \circ g$ belongs to $K_{s}^{1}$. In particular, the $\varphi$-function $h(u)=\Phi\left(u^{s}\right)$ belongs to $K_{s}^{1}$.

Corollary 2. If $\Phi$ is a convex $\varphi$-function and $f$ is $a \varphi$-function from $K_{s}^{2}$ then the composition $f \circ \Phi$ belongs to $K_{s}^{2}$. In particular, the $\varphi$-function $h(u)=\Phi\left(u^{s}\right)$ belongs to $K_{s}^{2}$.

Example 3. Let $0<s<1$. Then there exists a $\varphi$-function $f$ in the class $K_{s}^{2}$ which is neither of the form $\Phi\left(u^{s}\right)$ nor $\Phi(u)^{s}$ with a convex function $\Phi$.

Define

$$
f(u)= \begin{cases}u & \text { for } 0 \leq u \leq 1 \\ u^{s} & \text { for } u>1\end{cases}
$$

We will prove that $f \in K_{s}^{2}$. Assume that $u, v \in R_{+}, \alpha, \beta \geq 0$ and $\alpha+\beta=1$. We have obviously that for $u, v \geq 1$ as well as for $u, v \in[0,1]$ inequality (1) holds. Let us consider the remaining cases.
$1^{0} .0 \leq u \leq 1, v \geq 1$ and $\alpha u+\beta v \leq 1$. Then, since $\alpha \leq 1$ and $\beta v \leq 1$,

$$
f(\alpha u+\beta v)=\alpha u+\beta v \leq \alpha^{s} u+\beta^{s} v^{s}=\alpha^{s} f(u)+\beta^{s} f(v)
$$

$2^{0} .0 \leq u \leq 1, v \geq 1$ and $\alpha u+\beta v>1$. We need to prove the inequality

$$
\begin{equation*}
(\alpha u+\beta v)^{s} \leq \alpha^{s} u+\beta^{s} v^{s} \tag{9}
\end{equation*}
$$

Fix an arbitrary $a>1$ and assume that $\alpha u+\beta v=a$. Inequality (9) is then equivalent to

$$
\begin{equation*}
a^{s} \leq \alpha^{s} u+(a-\alpha u)^{s} \quad \forall u \in[0,1] \tag{10}
\end{equation*}
$$

Define on the interval $[0,1]$ the function

$$
h(u)=\alpha^{s} u+(a-\alpha u)^{s}-a^{s}
$$

We want to prove that $h(u) \geq 0$ for all $u \in[0,1]$.
Since $h^{\prime \prime}(u)=\alpha^{2} s(s-1)(a-\alpha u)^{s-2} \leq 0$ therefore $h$ has no local minimum on the interval $[0,1]$. Thus

$$
\begin{aligned}
\inf \{h(u): u \in[0,1]\} & =\min \{h(0), h(1)\} \\
& =\min \left\{0, \alpha^{s}+(a-\alpha)^{s}-a^{s}\right\}=0
\end{aligned}
$$

and so $h(u) \geq 0$ for all $u \in[0,1]$, which finishes the proof of the fact that $f \in K_{s}^{2}$.
Now, for

$$
\Phi(u)= \begin{cases}u^{1 / s} & \text { for } 0 \leq u \leq 1 \\ u & \text { for } u>1\end{cases}
$$

we have that $f(u)=\Phi\left(u^{s}\right)=\Phi(u)^{s}$ and $\Phi$ is non-convex $\varphi$-function.

THEOREM 7. If $0<s<1$ and $f \in K_{s}^{1}$ is a $\varphi$-function then there exists a convex $\varphi$-function $\Phi$ such that

$$
f\left(2^{-1 / s} u\right) \leq \Phi\left(u^{s}\right) \leq f(u)
$$

for all $u \geq 0$.

Proof. By the $s$-convexity of the function $f$ and by $f(0)=0$, we obtain $f(\alpha u) \leq \alpha^{s} f(u)$ for all $u \geq 0$ and all $\alpha \in[0,1]$.

Assume now that $v>u \geq 0$. Then $f\left(u^{1 / s}\right) \leq f\left((u / v)^{1 / s} v^{1 / s}\right) \leq(u / v) f\left(v^{1 / s}\right)$, i.e.,

$$
\begin{equation*}
f\left(u^{1 / s}\right) / u \leq f\left(v^{1 / s}\right) / v \tag{11}
\end{equation*}
$$

Inequality (11) means that the function $f\left(u^{1 / s}\right) / u$ is a non-decreasing function on ( $0, \infty$ ). Define

$$
\Phi(u)= \begin{cases}0 & \text { for } u=0 \\ \int_{0}^{u} f\left(t^{1 / s}\right) / t d t & \text { for } u>0\end{cases}
$$

Then $\Phi$ is a convex $\varphi$-function and

$$
\begin{aligned}
& \Phi\left(u^{s}\right)=\int_{0}^{u^{s}} f\left(t^{1 / s}\right) / t d t \leq\left(f\left(\left(u^{s}\right)^{1 / s}\right) / u^{s}\right) u^{s}=f(u), \\
& \Phi\left(u^{s}\right) \geq \int_{u^{s} / 2}^{u^{s}} f\left(t^{1 / s}\right) / t d t \geq\left(f\left(\left(u^{s} / 2\right)^{1 / s}\right) 2 u^{-s}\right) u^{s} / 2=f\left(2^{-1 / s} u\right)
\end{aligned}
$$

Therefore,

$$
f\left(2^{-1 / s} u\right) \leq \Phi\left(u^{s}\right) \leq f(u)
$$

for all $u \geq 0$, which means that the function $\Psi$ defined by $\Psi(u)=\Phi\left(u^{s}\right)$ is equivalent to $f$ (this kind of equivalence is taken from the theory of Orlicz spaces - cf. [3], [5]), and the proof is complete.

## REFERENCES

[1] Breckner, W. W., Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 23 (1978), 13-20.
[2] Matuszewska, W. and Orlicz, W., A note on the theory of s-normed spaces of $\varphi$-integrable functions. Studia Math. 21 (1961), 107-115.
[3] Musielak, J., Orlicz spaces and modular spaces. [Lecture Notes in Math. Vol. 1034]. SpringerVerlag, Berlin, 1983.
[4] Orlicz, W., A note on modular spaces. I. Buil. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 9 (1961), 157-162.
[5] Rolewicz, S., Metric linear spaces, 2nd Ed. PWN, Warszawa, 1984.
Institute of Mathematics, A. Mickiewicz University, Matejki 48/49, PL-60-769 Poznan, Poland.

Department of Mathematics, Luleå University, S-951 87 Luleà, Sweden.


[^0]:    AMS (1991) subject classification: 26A51.

