
SOME REMARKS ON S. WEINGRAM: ON THE TRIANGULATION
OF A SEMISIMPLICIAL COMPLEX [8]

RUDOLF FTSCH

In this note we use the terminology and notation of [8].

1. Intention

Weingram’s paper is concerned with a proof of the following theorem [8,
Theorem 1.1].

TEOIE 1. Let X be a semisimplicial complex and X its geometric realiza-
tion (in the sense of [6] or [7]). Then there is a functor D from the category of
semisimplicial complexes and semisimplicial maps to that of ordered simplicial
complexes and weak order-preserving maps, a transformation offunctors k D --) 1,
and, for each X, a map t DX] -- XI such that

(i) t is a homeomorphism (and therefore a triangulation of IX I);
(ii) t defines a subdivision of the CW complex IX I; and
(iii) k (X) is homotopic to t by a homotopy F such that for each cell e of
DX I, F maps e X I into the smallest cell[xl of lXI which contains t (I el).

The statement of this theorem is correct, also the idea of the proof given at
the end of 1 in Weingram’s paper. But in the details there are several mis-
takes which shall be corrected in the following.

2. On the barycentric subdivision functor

Weingram needs the following

TEOIEM 2. For any semisimplicial complex X, there is a homeomorphism
Sd X -- IX[ identifying Sd X with a subdivision of the CW-complex

[XI [8, Proposition 2.5].

In order to prove this theorem, Weingram wants--analogous to M. G. Bar-
ratt Ill--to subdivide XI by a modified star-subdivision process. To do so,
he has to choose in each face of a topological simplex which is the source of the
realization of the characteristic map of a simplex of X an interior point--called
pseudo-barycenter--and to subdivide these topological simplices by starring.
Having done this Weingram states without proof that there is a "consistent
subdivision of IX I". However in general thisis impossible, as it is shown by
the counterexample described at the end of [4]. Nevertheless the statement of
theorem 2 is correct, proofs can be found in [2] and [4], which also contain
proposition 2.6 of [8].
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But it is impossible to choose the homeomorphisms Sd X -- XI in a
natural way, that means such that for each semisimplicial map f X --. X’ the
following diagram commutes"

Ixi ,,, ,Ix’l

Since many people assert something other, this fact shall be shown here by the
following trivial counterexample" Assume that there are homeomorphisms

t" iSd2(2) 12--!Z(2)l and t’’lSd2(1)l---lZ(1)
such that the diagram

1(2) ,,,,o Iz(1)

commutes for i 0 and i 1. Let b be the inner vertex of Sd (2) nd b’
the inner vertex of Sd (1) [; then

Sd s (b) b’ Sd st (b)
and

,(b) -’ (t’ (b’)) t - (*’ (b’)).

The intersection on the right of the last formula contains only boundary points
of Z (2) I, but since shall be a homeomorphism (b) must be a interior point
of ]2 (2) I, thus we have a contradiction; cf. Figure 1.

3. On regulated semisimplicial complexes
The definitions of a "regulated simplex" and a "regulated semisimplicial

complex" given in 3 of [8] seem to be convenient. We repeat (using other
words)"

DEFINITION. Let x be a simplex of the semisimplicial complex X and let
2: (n) -- X be its characteristic map. x is regulated if the restriction of on

2 (n) do* (Z (n 1 ) is injective. X is regulated if each nondegenerate sim-
plex of X is regulated.

For proving lemma 3.3, Corollary 3.4 and Proposition 3.6 of [8] it does not

Though Weingram says nothing about naturality one finds in the Mathematical
Reviews, vol. 38 (1969), $6579, the assertion that Weingram proved the existence of
natural homeomorphisms

In the definition of Sd 2(n) in [8] there is a misprint: the word "nonincreasing"
[8, Definition 2.1, 3rd line] is to be replaced by "nondecreasing".
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suffice to assume that the simplex under consideration is regulated as Wein-
gram does; one needs that the semisimplicial subcomplex which is generated
by this simplex also is regulated. Moreover the conclusions in [8] for proving
Lemma 3.3 do not lead really to a proof. Thus we give here a formulation and
a proof of this lemma
LEMMA 1. Let X be a semisimplicial complex and x a nondegenerate n-simplex

of X such that the subcomplex {x} * of X which is generated by x is regulated;
further let 2: (n X denote the semisimplicial characteristic map of x. Then
there is an integer p and a face operator F such that 1 is injective on all open
cells outside of the p-dimensional face F*/x of/’. On this face, there is a face
F’*Aq such that the restriction of j] to F*A is q’[.D*, where D is the identity
operator or a suitable degeneracy operator, Fx a nondegenerate simplex of X and

’ its characteristic map.

Proof. Since x is regulated, is injective on 2: (n) d (2: (n 1)). If
do x is nondegenerated, then it also is regulated by the assumption on {x} * and
therefore q must be injective on 2: (n) (d0)* (2: (n 2) ). This conclusion
can be continued such that we obtain either

(i)
(ii)

is injective on all simplices of 2: (n)--then is nothing to prove--or
there is an integer p’ such that (d")*x is degenerated.

In this case let i5 denote the smallest integer with this property

p" =n-- and F" =d
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It follows that is injective on (n) F* ( (p)); therefore ql also is in-
jective on A F*Av. Further there is a unique degeneracy operator D and
a unique nondegenerate simplex y e X such that

Fx Dy
Now choose any face operator F" such that F"D is the identity operator and
define

F’ F"F
Then one has

F* ’ * ’ .D*],I’F* ]" .D

where q’ is the characteristic map of F’x y.

4. The effect of one degeneration map
One essential step in Weingram’s proof of Theorem 1 is the following [8,

Lemma 3.5].

LEMMA 2. Let r C A be proper faces, let D * (r . be a degeneration
Amap, let L be the quotient of A by the identifications of D* and let q --) L be

the quotient map. Then there is a homeomorphism h A ----> L such that

In order to prove this Weingram first defines a continuous map p by the fol-
lowing procedure. Let ’ be the face of A opposite a. Each point P of A has
a representation

P (1- t)Q+ tO’,

where Q e a, Q’ e a’, e I. In this representation of a point P, the real number
e I is always uniquely determined, the point Q iff 1 and Q’ iff 0. Then

p is defined by

p(P) p if1/2_< t_< 1

t(Q+Q’) + (1- 2t)D*Q if0_ t_< 1/2.
Then clearly

(i) p(P) p(P’) iff(P) q(P’),
(ii) image p is a compact subset of An,
(iii) p(P) PforallPer.

These conditions imply that image p is homeomorphic to L by means of a
homeomorphism h’ image p --. L such that

In order to proceed Weingram asserts without proof the image p also is a con-
vex subset of An. But in general this does not happen. We consider the fol-
lowing counter-example" n 3, a dA, r (d)*51 and D So.

In the boundary of A we look at the trapezium
,,

Q,T {P (1 t)Q + tQ’]O <_ <_ 1/2, Q e god2 A ’}
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FGURE 2

Clearly p (r) is a subset of the boundary of image p, but it also is a part of a
ruled surface. Figure 2 shows that image p cannot be convex.

(The double lines in Figure 2 indicate the boundary of T, p (T) is hatched,
the crossed line segment joins points of image p, but its interior points do not
belong to image p).

Nevertheless the statement of Lemma 2 is true. In order to show this it
suffices to prove the following

ASSERTION. There is a homeomorphism h" An image p such that

Proof. For each triple (Q, Q’, t) such that Q , Q’ ’, I, let w (Q, Q’, t)
denote the subset of A which is given by

w(Q, Q’,t) {P (1- )Q + Q’ <_ <_ 1}.
Then

(iv) w (Q, Q’, 1/2) c image p

(v) image p n w (Q, Q’, 0) is connected for all Q e a, Q’ e ’.

Now, let H denote the convex hull of image p.

A" and

(vi) Hn r.

For each (Q, Q’) e X ’ let

h.Q, w (Q, Q’, 0) n H --, w (Q, Q’, 0) n image p

be the homeomorphism which maps its domain linearly onto its range.
pecially we have

H is also a compact subset of

(vii) hQ., identity for all Q e r.
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Then it is possible to define homeomorphism h H --* image p by

h.P h,,P ifPedomainh,,;

from (vi) and (vii) it follows that h. is single-valued. Further we have

hQ Q forallQer.

Now, let h A -- H be any homeomorphism which is constructed by radial
contraction to the barycenter of ’. Each such homeomorphism maps any
point of r onto itself.
Then we obtain the desired h" by

h" h, o h.
After these corrections one can use Weingram’s method to prove Theorem 1.

5. Simplicial approximation
As a corollary of Theorem 1 Weingram formulates a "simplicial approxima-

tion theorem" which shall lead to a semisimplicial approximation map. To
prove this he refers to the ordinary simplicial approximation theorem. But the
latter only leads to simplicial maps between unordered simplicial complexes,
and Weingram says nothing how to get a semisimplicial map, that means an
order-preserving simplicial map between ordered simplicial complexes. Thus
one also has to refer to the following
LEMM 3. Let K, L be (unordered) simplicial complexes and f K -- L a

simplicial map. Then K and L can be ordered such that f is a weak order-pre-
serving map.

Proof. We take any ordering

_
for L. Now we construct an ordering for

K, that means a partial ordering for K, the set of vertices of K, such that each
subset of K which spans a simplex of K is totally ordered.

To this end, for each u e L, we take any total ordering

_
of the set vertices

of K which are mapped on u under f. Then, for v, w e K, we define

, < if f(,) _< f(w)
and either

f (v f (w or f (v f(w u and v_w.

FOURE 3

SdX=-Sd Y: ) <
FOURE 4
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Clearly this gives an ordering for K and f becomes a weak-order-preserving
map.
Lemma 3 is almost trivial; one could think its mentioning is superfluous.

But there is one point which should be insisted. Let X, Y be semissimplicial
complexes and f IX! -- [Y[ a continuous map. Then the approximation
theorem leads to subdivisions X’ and Y’ of X, resp. Y, and a semisimplicial
map

f’ X’ -’--> Y’.
The proof shows that one can assume X’ as ordered simplicial complex, how-
ever the ordering of X’ depends not on X but only on f, resp. f’. In the con-
text of Weingram’s paper this doesn’t matter, since here the subdivision proc
esses start with a kind of subdivision which does not preserve something about
the original ordering. We make this clear by means of the following example.
We consider the one-dimensional semisimplicial complexes X, Y which are

described by Figure 3. X and Y are simplicially, but not semisimplicially
isomorphic, they differ in their orderings. But Sd X and Sd Y also are semi-
simplicially isomorphic (see Figure 4). Thus already from Sd X one gets no
information about the ordering of X and therefore it is not of importance which
ordering one has on a certain further subdivision X’ of X. But there are other
subdivision processes (cf. [3] which preserve the original ordering in a certain
sense and then it might be of interest to construct semisimplicial approxima-
tions with respect to given orderings. In this case Weingram’s method does
not work immediately. Perhaps one has to construct approximations similar
to the ideas of Kan in [5].
Added in Proof. Meanwhile the content of [8] has been taken over

nearly unchanged in the book of Albert T. Lundell and Stephen Weingram:
The Topology of CW Complexes (Van Nostrand Reinhold Company, New
York-Cincinnati-Toronto-London-Melbourne, 1969).
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