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Abstract. We show that direct sums in /( and /oo sense of Banach spaces

that satisfy the Daugavet Equation ( 1 ) also satisfy it. We also show that most

uniform algebras satisfy ( 1 ) for weakly compact operators.

Introduction

In his 1963 paper [D], Daugavet observed that for each linear compact oper-

ator T: C[0, 1] -r* C[0, 1] one has

(1) U/+21 = 1 + 11711.

This was extended later to weakly compact operators. We will say that a Ba-

nach space X satisfies the Daugavet Equation (DE for short) for some class

of operators if for every operator T : X —» X from this class ( 1 ) holds. The

general history of the subject is given in [A]. This paper got me interested in

the problem. Before [A] the only known spaces satisfying (DE) for weakly com-

pact operators were atomless Lx (p) and C(K) spaces. The main motivation

of [A] was to extend this class. We solve the problem asked in [A] that finite lx

and /oo sums of spaces with (DE) for weakly compact operators satisfy (DE)

for weakly compact operators, thus recovering and extending results from [A].

Actually the result holds when weakly compact operators are replaced by any

operator ideal. Next we greatly extend the class of spaces satisfying (DE) for

weakly compact operators by showing that "most" uniform algebras satisfy (DE)

for weakly compact operators. This result has many interesting consequences,

e.g., there are spaces satisfying (DE) for weakly compact operators that contain

1-complemented, infinite-dimensional, reflexive subspaces. Clearly no infinite-

dimensional, reflexive subspace can satisfy (DE) for weakly compact operators.

We extend it a bit by showing that no space with the Radon-Nikodym property

(cf. [DU]) can have (DE) for one-dimensional operators.
Our notation and terminology is standard. All unexplained results and no-

tions can be found in [W].

Results

Exposed points. We start with the following observation.
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Proposition 1. If X is a Banach space that satisfies the Daugavet Equation for

one-dimensional operators, then Bx, the closed unit ball of X, does not have a

strongly exposed point.

Proof. Suppose that xo e Bx is a strongly exposed point. Then there exists

a functional x* e X* with x*(xq) — 1 - ||x*|| such that if ||x„|| < 1 and

x*(x„) -» 1 then x„ —> xo. Let us consider an operator T(x) = x*(x)h for

h e kexx*. We have ||7 + T\\ = I + \\T\\ = I + \\h\\. Thus there exists a
sequence (xn)%Ll in Bx suchthat \\xn + x*(xn)h\\ —> l + ||/i||. This implies

that |x*(x,¡)| -» 1. We can assume x*(x„) —> 1 so xn —► xq . This gives

11x0 +A|| = 1 + ||A|| = ||x0|| + ||A|| for every A e kerx*, so X s (kerx* ©Ax0)i .
But then for P(x) = x*(x)xo we have ||7-P|| = 1, so X does not satisfy (DE)

for one-dimensional operators.

Corollary 1. If X has the Radon-Nikodym property, then X does not satisfy

(DE) for one-dimensional operators.

Proof. By Phelps's Theorem (see [DU, VII, Theorem 3]), spaces with the Radon-

Nikodym property have strongly exposed points.

As a particular example let us mention that Hx(D) does not satisfy (DE).

Corollary 2. Every Banach space can be renormed to fail (DE).

Proof. It is enough to introduce a strongly exposed point to the unit sphere

in the new norm. For xo e X with ||xo|| > 1 the new ball can be given as

coñv{x0, Bx}.

Additivity. The following theorem expresses a certain stability property of spaces

satisfying (DE). It also solves the main problem left open in [A].

Theorem 1. If (Xj)"=l  satisfy (DE) for weakly compact operators where n -

1,2,... or n = oo, then (£/_] xj)i and (£/=! ■*/)«) satisfy (DE) for weakly
compact operators.

Proof. Let us consider the case (£?=i Xj)^ first. If T: (Yl"=\ Xj)oc —*

Œ"j=x ^0)oo is an operator, then we can identify T with the sequence of oper-

ators (Tj)nj={ where T¡: (¿Z"J=xXj) ̂  x> and clearly ||r|| = sup,-(||r,||). If T

is weakly compact, then 7} 's also are. To fix our attention let us assume that

||r|| < ||Till + g and denote (Y!]=2 Xj)°° hy Y . Let us fix (xi ,x2)eX\®Y
such that ||xi|| = ||x~2|| = 1 and ||7i(xi, X2)|| > ||7i|| -e . This is easily seen to

be possible (cf. [A, Corollary to Lemma 5]). We define an operator S: Xx —> X\

by the formula
5(x,) = r1(x1,o) + xr(x,)r1(o,x2)

where x* e X* is such that x*(xx) = 1 = ||x¡"||. Clearly S is weakly compact.

We have

ttr,n>||sj|>||ii||-e.
Indeed

||5||=   sup  ||r1(x1,0) + xr(x,)r1(0,x2)||
ll^lll<l

< sup       \\Tx(xx,kx2)\\
|jciB<i. W<1

< sup IIT^Cjc! , JC2)|| = llalli
\\x¡\\<\,   \\Xl\\<\
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and

\\S(xx)\\ = \\Tx(xx, 0) + 7,(0, x„)|| = \\Tx(xx, x2)|| = ||r,|| -«.

Let us now consider the operator 7 + S: Xx -» X\. Since A"i satisfies (DE)
for weakly compact operators, we can find x, e Xx such that ||xi || = 1 and

1 + ||S|| < \\xx + S(xx)\\ + £ . Now we have

||7 + T\\ > ||(7 + T)(xx, Xx*(xx)x2)\\ > ||x, + r,(x,, x,(*i)S2)||

= p, + Tx(xx , 0) + x*x(xx)Tx(x2)\\ = \\xx +5(x,)||

> l + ||S||-£> í + |]r,||-2e= 1 + 117-11-3«.

Since e was arbitrary and obviously ||7 + T\\ < I + \\T\\, we get the claim.

The argument for the case (£/«i xj)i iS basically the dual version of the

above. Given T: (¿Z"=xXj)i -» (E£*i-*/)i> we write it as (r,)?=1 where

Ti- X, -> (¿Z"=xxj)\ • We have ||r|| = supf(||7;||). To fix the notation let

us assume that ||r|| < ||7i|| + £. We write 7"i(xi) = (a(xx), ß(xx)) where

a: Xx -► Xx and ß: X} -► Y where Y = (Yl"j^2Xj)i ■ Let us fix xx e Xx

such that ||xi|| - 1 and \\Tx(xx)\\ = ||a(x,)|| + \\ß(xx)\\ > ||r,|| -e. Let us fix
x*2 e Y* such that ||x2*|| = 1 and ||0(3ci)|| = x2*(yS(x"i)). We put x\ = ß*(x*)
and we define S: Xx -^ Xx by the formula 5(xi) = a(xx) + x*(xx)v where

v = a(xi)/||a(xi)||. If T is weakly compact, then S is also. For xi € Xx we

have

||5(x,)|| < ||a(x,)|| + \x*x(xx)\ < \\a(xx)\\ + \\ß(xx)\\ < \\T(xx)\\

and

||5(x,)|| = \\a(xx) +x*(x,H = ||a(x,) + |l>ff(^i)i| • v||

^H^xOII + PixOii^iir^xOll^lirni-e.

So ||Till - e < \\S\\ < \\Tx\\. Since Xx satisfies (DE) for weakly compact opera-
tors, there exists z e Xx such that ||z|| = 1 and such that

1 + ||5|| = ||7 + S\\ < \\z + S(z)\\ + e = \\z + a(z) + x¡(z)v\\ + e.

Now we have

||(7+ T)(z, 0)|| = \\z + a(z)\\ + \\ß(z)\\ > \\z + a(z)\\ + \x*2(ß(z))\

> \\z + a(z)\\ + \x*x(z)\ = \\z + a(z)\\ + ||x*(zH

> \\z + a(z) + x*x(z)v\\ = \\z + S(z)\\

> l + ||5||-e> l + ||r1||-2e= l + ||7-||-3e.

Remark. Observe that the only way the above argument uses weak compactness

of an operator T is to use the fact that weakly compact operators form an

operator ideal. Thus if we consider the Daugavet Equation with respect to any

other operator ideal (like compact operators or Dunford-Pettis operators) the

additivity property expressed in the above theorem will also hold.

Uniform algebras. Now we consider (DE) for uniform algebras. Our general

reference here is [G]. Suppose we have a uniform algebra, i.e., closed, separating

points subalgebra A c C(X) with 1 G A and X a compact space. A nonempty

subset K c X is called a peak set if there exists f e A such that f\K = 1 and

|/(x)| < 1 for x e X\K. A generalised peak set is an intersection of peak sets.
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Proposition 2. Let K c X be a generalised peak set. For (p e A* let p^, be any

norm-preserving extension of (¡> to a functional on C(X) (i.e., a measure). We

put Rk(4>) = (ß<i>\K)\A (i-€-> we restrict the measure p^ to the closed set K and

treat the restricted measure as a functional on A). Then RK is a well-defined,
norm 1 projection in A*.

Proof. It is basically a restatement of the Glicksberg Theorem on peak sets (see

[G, II. 12.7]) that says if p e A1- then p\K e A1-. From this follows that if

Px and p2 are any two extensions of 0 then px - p2 e A± , so (px\K)\A =

(p2\K)\A . Thus Rk is well defined. The rest is obvious.

Since for each f e A the function |/| attains its maximum at some gener-

alised peak point (i.e., one point generalised peak set) (cf. [G, 11.12.10]), without

loss of generality, we can assume that generalised peak points are dense in X,

i.e., that we consider A as an algebra on its Shilov boundary.

Proposition 3. Let A c C(X) be a uniform algebra such that generalised peak

points are dense in X and X has no isolated points. Let U c X be a nonempty

open set and let T: A —> A be a weakly compact operator. For every e > 0 there

exists a peak set K cU such that \\Rk T*\\ < e .

Proof. Let (Uk)kxLl be a sequence of disjoint, open subsets of U . Since gener-

alised peak points are dense in X, each Uk contains a generalised peak point so

(see [G, II. 12.2]) there are peak sets Fk c Uk for R =1 ', 2,... . Let us define

an operator P: A* -* (£~ , RFk(A*))x by the formula P(<f>) = ££°=1 RFk(<¡>).

since Y,T=i \\RFk(<t>)\\ < \\4>\\ we see that \\P\\ < 1 . The operator PT*: A* ->
Œfcti R-Fk(A*))x is weakly compact, so from the lemma below we infer that for

given e > 0 there exists a k such that \\Rfk T*\\ < e .

Lemma. Let (T„)^, be a sequence of Banach spaces and let V c (E^li Yn)x

be a weakly compact set. Then for any £ > 0 there exists an n such that

\\Pn(v)\\ < £ for every v e V, where Pn is the natural coordinate projection

from (Y^=x Y„)x onto the nth coordinate space.

Proof of the lemma. This is a standard and well-known "gliding hump" argu-

ment. If the conclusion fails for some £ > 0, then V contains a subsequence

equivalent to the unit vector basis in /[ (cf. [W, III.C.10]).

Theorem 2. Let A c C(X) be a uniform algebra such that generalised peak

points are dense in X and X has no isolated points. If T: A —> A is a weakly

compact operator then ||7 + T\\ = 1 + ||r||, i.e., A satisfies (DE) for weakly

compact operators.

Proof. Fix a small £ > 0 and a function f e A, \\f\\ = 1 such that ||r/|| >

||r|| -£ . There exists an open set U c X such that \Tf(x) - \\T\\ \ < e for x e
U (possibly we need to multiply the original / by a scalar of absolute value 1).

Let us fix a peak set K c U such that ||7î^r*|| < e (use Proposition 3) and find

a function A peaking on K . Using Mazur's Theorem (see [W, II.A.4]) and weak

compactness of the operator T we can find functions 4V = Y.'jIn aini f°r

(Nk) a strictly increasing sequence of integers and 53^^ a, = 1 = E/=aJ IqjI

such that the sequences (T(x¥ic))ka=l and (T(f •x¥k))f=l are norm convergent.

For any <¡> e A* we have

lim <p(TÇ¥k)) = lim [T(<p)]C¥k) = Ä*7"i»(l)
k—»OO K—»CO
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and

lim <p(T(f-Vk))= lim[T'(<p)](f.'¥k) = RKr (</>)(/).
k—*oo k—»oo

From this we infer that for some integer A and for all k > A we have

\\TÇVk)\\ < £ and \\T(f • 4V)|| < £. Let us look at functions (1 - V*)*^ ■ We
would like to have || 1 - 4V || < 1 + e for some k > N. If this does not happen,

observe all functions ( 1-4V) are zero on K and that for every open set V d K

and any ö > 0 there is an integer k such that 11 -4V(x)| < 1+Ö for x e X\V .
Using this we can inductively find (for any M) integers kx, k2, ... ,ktt such

that sets {x e X:

we see that

1 - 4V.(x)| > 1 + fi/2} are disjoint. From this observation

1
M

7=1

M

M Eo-^V
j=i

<  1 +£

if M > 4/e . (This is a standard argument cf. [W, III.D. 14].) If we put 4* =
_X_ ,^M   u/
M 1T*J we have

111-4*1100 <l + £, ||T(4')||0O<l+£, ||r(/-4')||0O<l+£.

Observe that lim^oo ||(1 - 4*)/+ 4V||cc < 1 so we can find an integer k such

that for <D = 4V we have ||(1 - 4*)/ + <D|| < 1 + £ and || T®\\ < e . For x e K
we have

||(7 + T)((l - 40/ + *)|| > |(1 - V(x))f(x) + <P(x) + 7((1 - *)/ + <»(x)|

> |1 + T(f)(x)\ - (||7'(4//)|| + ||r<D||)

>l + im|-3e.
So we infer that ||7 + T|| = 1 + ||7||.

Let us discuss what uniform algebras satisfy the assumptions of Theorem 2.

Clearly all C(X) spaces for X without isolated points do. When we consider

an algebra A on its Shilov boundary then the generalised peak points are dense.

Thus the assumption about the density is not a real restriction. Also observe

that if the Shilov boundary of an algebra A has an isolated point then the

characteristic function of this isolated point is an idempotent in A. Thus we

have

Corollary 3. If a uniform algebra A contains no nontrivial idempotents then it

satisfies (DE) for weakly compact operators.

Note that the assumptions of this corollary are satisfied by any (not one-
dimensional) closed subalgebra with 1 of H^V) where V is an open, con-

nected subset of W . Thus spaces like 77oo(F) and A(V), where F is a ball

in Wn or a polydisc in W1, satisfy (DE) for weakly compact operators.

Since if X* satisfies (DE) for weakly compact operators then X also does,

we infer that Lx/Hx satisfies (DE) for weakly compact operators (note that

(Lx/Hx)* = TToo). Also for p an atomless measure, we have Lx(p)* = Loc(p) =

C(X) for X without isolated points, so we infer (the well-known fact) that

Lx(p) for atomless p satisfy (DE) for weakly compact operators. For more

general operators on Lx(p) the Daugavet Equation is proved in [PP]. For the

history of this result the interested reader may consult the bibliography given

in [A].
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Now let X be a complex Banach space, at least one-dimensional. Let us

denote by K the closed unit ball in X* equipped with o(X*, X)-topology.

By P(X) we denote the smallest closed subalgebra of C(K) containing 1 and

all functions x(x*) = x*(x) for x e X. Clearly P(X) is separable if X is.
It is a known result of Milne (cf. [M] or [W, III.1.4]) that X is isometric to

1-complemented subspace of P(X). Let X be the Shilov boundary of P(X)

and let us consider P(X) as a subalgebra of C(X). We want to show that X

contains no isolated points. But it is clear that if a functional x* e X*, x* ^ 0,

belongs to X, then also all functionals e"x* belong to X. Since the o(X*, X)-

topology restricted to W • x* c X* is equivalent to the usual topology, we see

that no point of X is isolated. (Note that 0 e K cannot be a peak point.) Thus

the theorem yields that for any Banach space X the algebra P(X) satisfies

(DE) for weakly compact operators. So in particular, we have

Corollary 4. Every separable Banach space X, X ^ {0} is isometric to a one

complemented subspace of a separable Banach space satisfying (DE) for weakly

compact operators.
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