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Introduction

A tree T is a connected graphwithout loops. In this note we further assume that a tree: (i) has a distinguished

edge ω called the root, (ii) is locally finite (that is, no vertex is connected with infinitely many others) and (iii)

has no leaves. By leaf wemean a vertex x which is the endpoint of a unique edge α, α ≠ ω. We denote by V(T)

the vertex set and by E(T) the edge set of the tree T.

Trees have become a subject of interest because, due to their relatively simple structure, they can be used

as a toy model for complicated situations arising in the study of problems of real as well as complex analysis.

This point of view has been adopted in a variety of ways and it has been proven fruitful, for example in the

study of theDirichlet space of analytic functions in the unit disc, see for example [4] [3]. Herewe are interested

in the tree as an object per se. In particular, in analogy with the Potential Theory in the Euclidean space, we

investigate the interplay between the capacity of the boundary of a tree and the Dirichlet problem.

The paper is organized as follows. In Section 1 we introduce a Nonlinear Potential Theory on T which

allows us to define objects like equilibrium potentials and the capacity c(E) of a subset E of the boundary ∂T.

As in the continuous case, irregular points are points where the equilibrium potential fails to attain the value

1 [Definition 1.3]. In Section 3 we show that in fact such points can be identified by a Wiener’s like series of

capacities [Theorem 3.1]. Furthermore, we show that the classical probabilistic solution of the Dirichlet prob-

lemwith continuous boundary data actually converges to the given data, except at irregular points [Theorem

3.5]. As a corollary we get the corresponding Kellogg’s Theorem, i.e. the set of irregular points for the Dirich-

let problem on a tree has capacity zero. Section 4 is devoted to the study of uniqueness of the solution of the

Dirichlet problem. Here the results are more rudimentary for general trees [Example 1]. We introduce Sobolev

spaces on a tree and discuss some results about their boundary values.

1 Preliminaries

Our approach on tree capacities is in the framework of an abstract Potential Theory that can be found for

example in [1].We give a brief exposition of the theory in the particular case of trees here. First let us introduce
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a piece of notation. A geodesic {αi} is a (finite or infinite) sequence of edges such that for every αj ∈ {αi},

{α0, . . . , αj} is the shortestwalk between α0 and αj. Notice that for every edge α there exists a unique geodesic

{α0 = ω, α1, . . . , αN = α} =: [ω, α] which starts at the root and ends at α. Here N is the level of α, which we

denote by |α|. A rooted treehas also anatural partial order attached. For twoedges α, β, α ≥ β if [ω, α] ⊇ [ω, β].

Hence it makes sense to define successor sets S(α) = {β ∈ E(T) : β ≥ α} and predecessor sets P(α) = {β ∈

E(T) : β ≤ α}, as well as the set of sons of α, s(α) := {β ∈ E(T) : β ≥ α, |β| = α + 1} and the (unique) parent of

α denoted p(α) ∈ E(T)which satisfies α ∈ s(p(α)). We call Tα the subtree of T rooted at α which has as edges

the set S(α). The boundary ∂T of a tree T is defined as the set of infinite geodesics with starting point ω, and

has a topology generated by the basis {∂Tα}α∈E(T) where ∂Tα is the set of infinite geodesics passing through

α. It turns out that this space ismetrizable and T∪∂T is a compactification of T with the edge countingmetric.

Note that the order relation extends naturally to an order on the set E(T) ∪ V(T) ∪ ∂T.

Let g be a real valued function defined on the vertices of T. Given a point ζ = {xj}
∞
j=1 ∈ ∂T, we define the

radial limit of g at ζ as

lim
x→ζ

g(x) = lim
j→∞

g(xj).

The Fatou’s set of g is

F(g) = {ζ ∈ ∂T : there exists lim
x→ζ

g(x) ∈ R ∪ {±∞}}.

The boundary value of g is the map g* : ∂T → R ∪ {±∞} which on Fatou’s points ζ ∈ F(g) is defined by

g*(ζ ) := lim
x→ζ

g(x).

From now on we simply write g in place of g* for the extension of g to the boundary since no confusion can

arise.

In order to define a capacity of a set E ⊆ ∂T we need the notion of the potential of a function.

Definition 1.1. Suppose that f : E(T) → R. We define its potential If : V(T) → R,

If (x) =
∑

α<x

f (α).

The potential extends to a function from V(T) ∪ ∂T to R ∪ {±∞},

If (ζ ) =
∑

α<ζ

f (α), for ζ ∈ F(If ).

It is clear that if f is a nonnegative function then If is defined on the all boundary, possibly taking value +∞,

while in general its Fatou’s set is non trivial.

Let p ∈ (1, +∞) be a fixed exponent and p′ its Hölder conjugate, 1/p + 1/p′ = 1.

Definition 1.2. Suppose that E ⊆ ∂T is a Borel set. We define the p−capacity of E,

cp(E) := inf{‖f‖p
ℓp
: f : E(T) → [0, ∞), If ≥ 1 on E},

where ‖f‖p
ℓp
:=

∑
α∈E(T) |f (α)|

p.

Some remarks are in order. It is customary to say that a property holds p−capacity almost everywhere or cp
almost everywhere if the set on which it does not hold has p−capacity zero. With this terminology one can

prove [1, Theorem 2.3.10] that given a Borel set E ⊆ ∂T there exists a unique function f E : E(T) → [0, +∞),

such that If = 1, cp−a.e. on E and ‖f E‖p
ℓp

= cp(E). This function is called the p−equilibrium function for the

set E.

Definition 1.3. A point ζ ∈ E such that If E(ζ ) = ̸ 1 is called irregular for the set E.
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There exists a useful equivalent definition of capacities in terms of measures. We call charge a signed finite

Borel measure on ∂T. The co-potential of a charge µ is defined by

I*µ(α) = µ(∂Tα), α ∈ E(T).

For brevity we shall write M instead of I*µ when the implied charge is clear from the context. The p-energy

of a charge is just

Ep(µ) = ‖M‖p
′

p′ .

Wedefine also themutual energy of a charge µ and a function f on edges admitting boundary values µ−almost

everywhere to be

E(µ, f ) =

∫

∂T

Ifdµ.

If the mutual energy is finite, we can switch sums and integrals and write E(µ, f ) =
∑

β∈E(T) f (β)M(β). For

functions on edges we use the footnote notation fp : α 7→ f (α)p
′−1, where powers of negative quantities have

to be intended as follows: as := sgn(a)|a|s, for each a ∈ R, s > 0. Hence, if Ep(µ) < ∞, we can switch sums

and integrals and get

E(µ,Mp) =
∑

β∈E(T)

sgnM(β)|M(β)|p
′−1M(β) =

∑

β∈E(T)

|M(β)|p
′

= Ep(µ). (1)

The following is what is usually called the dual definition of capacity.

Theorem 1. [1, Theorem 2.5.3] Suppose that E ⊆ ∂T Borel. Then

cp(E) = sup{µ(E)p : µ ≥ 0, supp(µ) ⊆ E, Ep(µ) ≤ 1}.

Moreover, there exists a unique positive charge µE supported in E, called the p−equilibrium measure of E, such

that

µE(E) = cp(E) = Ep(µ
E),

and I*µE = f E.

2 On p-harmonic functions on trees

If g : V(T) → R is a function of the vertices, we define its gradient on the edges to be the difference operator,

∇g(α) = g(e(α)) − g(b(α)),

where b(α), e(α) denote the beginning and the end vertex of α, with respect to the order relation. It is imme-

diate to see that the following fundamental theorem of calculus holds.

Proposition 2.1. Take two functions f : E(T) → R, g : V(T) → R. Then, g = If + g(o) on V(T) if and only if

f = ∇g on E(T), where o = b(ω).

Proof. Let g = If + g(o) on V(T). Then, for every α ∈ E(T) we have

∇g(α) = g(e(α)) − g(b(α)) =
∑

β≤α

f (β) −
∑

β�α

f (β) = f (α).

Vice versa, let f = ∇g on E(T). Then If (o) = 0 = g(o) − g(o) and for every x ∈ V(T) \ {o}, let α ∈ E(T) be the

unique edge such that x = e(α). Then we have

If (x) = If (e(α)) =
∑

β≤α

∇g(β) =
∑

β≤α

g(e(β)) − g(b(β)) = g(x) − g(o).
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We say that a function f : E(T) → R is forward additive if, for every α ∈ E(T),

f (α) =
∑

β∈s(α)

f (β). (2)

It is immediate that the potential of a charge defines a forward additive function. Next proposition char-

acterizes forward additive functions that can be obtained as potentials of charges.

Proposition 2.2. A forward additive function f : E(T) → R satisfies

lim
k

∑

|α|=k

|f (α)| < ∞, (3)

if and only if there exists a (unique) charge µ on ∂T such that f = I*µ.

Proof. Note that the limit in condition (3) is in fact a supremum. For f forward additive we have
∑

|α|=k+1

|f (α)| =
∑

|α|=k

∑

β∈s(α)

|f (β)| ≥
∑

|α|=k

|f (α)|,

from which it follows

sup
k

∑

|α|=k

|f (α)| = lim
k→∞

∑

|α|=k

|f (α)|.

For each α write ζ (α) for an arbitrary point in ∂Tα. For each k ∈ N, define a Borel measure,

µk =
∑

|α|=k

f (α)δζ (α).

The total variation of the measure µk is given by

‖µk‖ =
∑

|α|=k

|f (α)δζ (α)(∂T)| =
∑

|α|=k

|f (α)|,

from (3) it follows that the family of measures µk is uniformly bounded, so that it has a weak*-limit point µ

which is positive. For each edge α we have

I*µ(α) = µ(∂Tα) =

∫

∂T

χ
∂Tα

dµ = lim
k

∫

∂T

χ
∂Tα

dµk = lim
k
µk(∂Tα) = f (α).

For the uniqueness part, if f = I*ν for some other charge ν, then ν(∂Tα) = µ(∂Tα) for each α ∈ E(T) and hence

µ ≡ ν.

Vice versa, let µ be a charge on ∂T and consider the forward additive function f = I*µ. Then
∑

|α|=k

|f (α)| =
∑

|α|=k

|µ+(∂Tα) − µ
−(∂Tα)| ≤

∑

|α|=k

|µ|(∂Tα) = ‖µ‖ < ∞.

Observe that if f ≥ 0 then condition (3) is automatically satisfied.

Given g : V(T) → R, its p-Laplacian at the vertex x is given by

∆pg(x) :=
∑

y∼x

(
g(y) − g(x)

)p−1
.

We say that g is p-harmonic if ∆pg ≡ 0 on V(T) \ {o}. As usual, we simply call Laplacian the linear operator

∆ := ∆2 and we say that g is harmonic if ∆g ≡ 0. Observe that harmonicity coincides with the mean value

property

∆g ≡ 0 ⇐⇒ g(x) =

∑
y∼x g(y)

#{y ∈ V(T) : y ∼ x}
, for all x ∈ V(T) \ {o}.

For more details on p−harmonic functions on trees and their boundary behaviour see for example [7].
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Proposition 2.3. A function f : E(T) → R is forward additive if and only if Ifp is a p-harmonic function on

V(T).

Proof. Let x ∈ V(T) \ {o} and α ∈ E(T) such that x = e(α). Since (p′ − 1)(p − 1) = 1, we have

∆p Ifp(x) =
(
Ifp(b(α)) − Ifp(e(α))

)p−1
+

∑

β∈s(α)

(
Ifp(e(β)) − Ifp(b(β))

)p−1

= −fp(α)
p−1 +

∑

β∈s(α)

fp(β)
p−1 = −f (α) +

∑

β∈s(α)

f (β).

It follows that ∆p Ifp ≡ 0 if and only if (2) holds.

Putting together the last two Propositions we get the following.

Corollary 2.4. A p-harmonic function g satisfies

sup
k

∑

|α|=k

|∇g(α)|p−1 < ∞, (4)

if and only if there exists a charge µ such that g = IMp.

Proof. A function g satisfies (4) if and only if f := (∇g)p′ satisfies (3) and by Proposition 2.3 g = Ifp is p-

harmonic if and only if f is forward additive. By Proposition 2.2 we have the claim.

3 The Dirichlet problem

There is an extensive literature on the discrete Dirichlet problem and its variations on graphs, see for example

[11], [10] and [9]. In the particular case of trees we derive more precise results about the exceptional set.

3.1 Wiener’s test

For any edge α in a tree T, we denote by cα,p the p-capacity referred to the tree Tα. Given a set E ⊆ ∂T, we

define Eα := E ∩ ∂Tα. The following Theorem can be seen as the analogous for trees of the classical Wiener

test for irregular points (see [8, Theorem 7.1]).

Theorem 3.1. A boundary point ζ is irregular for a set E ⊆ ∂T of positive capacity if and only if

∑

α<ζ

cα,p(Eα)
p′/p < ∞. (5)

In the proof we shall need the following rescaling property of equilibrium measures on trees (see [5]).

Lemma 3.2. Let µ, µα be the p-equilibrium measures for the sets E and Eα in the boundary of the trees T and

Tα, respectively. Then the following relation holds

µ|∂Tα =
(
1 − IMp(b(α))

)p/p′
µα .

Moreover, for every α ∈ E(T), µ solves the following equation:

M(α)
(
1 − IMp(b(α))

)
=
∑

β≥α

M(β)p
′

.
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Proof of Theorem 3.1. Let µ be the equilibrium measure for E, and M its co-potential. Set ε := 1 − IMp(ζ ) ≥ 0

to be the deficit of regularity of the point ζ ∈ E. Let {αj} = P(ζ ), and set tn =
∑

j≥n Mp(αj). Clearly tn is

monotonically decreasing to zero, being the tail of the converging sum IMp(ζ ). By Lemma 3.2,

cn := cαn ,p(Eαn )
p′/p =

M(αn)
p′/p

1 − IMp(b(αn))
=
Mp(αn)

ε + tn
=
tn − tn+1
ε + tn

.

Now, the sum
∑

n cn converges if and only if
∏

n(1 − cn) > 0. The partial product can be explicitly calculated

thanks to its telescopic structure,

N∏

n=0

(1 − cn) =
N∏

n=0

ε + tn+1
ε + tn

=
ε + tN+1
ε + t0

.

Since t0 = µ(∂T)p/p
′

> 0, it follows that
∏∞

n=0(1 − cn) > 0 if and only if ε > 0, that is, if and only if the point ζ

is irregular.

Observe that the Wiener condition (5) can be re-written purely in terms of capacities on the all boundary, in

the following sense.

Corollary 3.3. A boundary point ζ is irregular for a set E ⊆ ∂T of positive capacity if and only if

∑

α<ζ

cp(Eα)
p′/p

1 − |α|cp(Eα)p
′/p

< ∞.

Proof. Let T be any rooted tree, E ⊆ ∂T and consider a tent Tα, with |α| = n. If µ is the equilibriummeasure for

Eα = E∩∂Tα ⊆ ∂T, then the associated co-potentialM is supported on E(Tα)∪P(b(α)), since the equilibrium

functionMpmustminimize the p-norm.By forwardadditivity,Mmust be constant on P(α), i.e.M(β) = M(ω) =

cp(Eα) for β ≤ α. By the rescaling properties we know that

M(α) = cp,α(Eα)
(
1 − IMp(b(α))

)p/p′
,

and since IMp(b(α)) = ncp(Eα)
p′−1, we obtain

cp(Eα) = Ep(µ)

= ncp(Eα)
p′ + Ep,α(µ)

= ncp(Eα)
p′ +

(
1 − ncp(Eα)

p′/p
)p

cp,α(Eα),

from which follows

cα,p(Eα) =
cp(Eα)

(
1 − ncp(Eα)p

′/p
)p/p′ .

Substituting this expression in the Wiener condition (5) we get the result.

3.2 A probabilistic interpretation of capacity

The connection between random walks on graphs and electrical networks is nothing new, see for example

[10]. Here we give an interpretation of the capacity of the boundary of a tree, which will be helpful in the

solution of the Dirichlet problem. As usual we work on a general rooted and locally finite tree T without

leaves.

Consider the simple random walk (Zn) on the vertices of T which stops when it hits the root vertex b(ω).

In this context we consider o = b(ω) part of the extended boundary ∂T = ∂T ∪ {o} of T. Then there exists a

∂T− valued random variable Z∞ such that Zn converges to Z∞ , Px-almost surely for every x ∈ T, where Px is

the probability measure of the random walk starting at x ∈ T. We can now associate to any vertex x ∈ T the

harmonic measure λx(E) := Px(Z∞ ∈ E), where E is a Borel subset of ∂T.
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Proposition 3.4. Let T be any tree. Then the 2−capacity of ∂T equals the probability that a simple random

walk starting at e(ω) will escape to the boundary before hitting the root vertex o. Formally,

λe(ω)(∂T) = c2(∂T).

Proof. Suppose that we have a finite tree of depth N > 0. We can naturally identify ∂T with the vertices of T

withmaximal degree. Thenby theMarkov property the function h(x) =: λx(∂T) is harmonic in T◦ := V(T)\∂T,

h(ζ ) = 1 if ζ ∈ ∂T and h(o) = 0, since the same is true for the equilibrium function If ∂T of the boundary of

∂T by the maximum principle If ∂T = h and the result follows for finite trees.

For a general tree T not necessarily finite , let Tn be the truncation of T up to level n. Then from the finite

case we have that c2(∂Tn) = Pe(ω)(supi |Zi| ≥ n). By monotonicity of measures the last quantity converges to

Pe(ω)(Z∞ ∈ ∂T), as n → +∞. It remains to show that c2(∂Tn) → c2(∂T), as n → ∞. By definition of capacity

we get that c2(∂Tn) ≥ c2(∂T), since the equilibrium function f ∂Tn is an admissible function for ∂T (extend it

to be zero on edges of level greater than N.)

To prove the other inequality we use the dual expression for capacity. Suppose that µn is a measure on

∂Tn such that E2(µn) =
∑

|α|≤n Mn(α)
2 ≤ 1 and µ2n(∂Tn) = cTn (∂Tn). Consider now the corresponding charges

on ∂T

µ̃n :=
∑

|α|=n

µn(α)δζα ,

where ζα is any point in ∂Tα and δζα is the corresponding Dirac mass. Since µ̃n(∂T) ≤ 1 we can find a weak*-

limit point µ of the sequence {µ̃n}. We have that

∑

|β|≤m

M(β)2 = lim
n

∑

|β|≤m

Mn(β)
2

= lim
n

∑

|x|≤m

M̃n(β)
2

≤ lim
n

∑

|β|≤n

Mn(β)
2

≤ 1.

Therefore, letting m → ∞ we get that E2(µ) ≤ 1, and hence by the dual definition of capacity,

c2(∂T) ≥ µ(∂T)
2 = lim

n
µ̃n(∂T)

2 = lim
n
c2(∂Tn).

Write p(x, y) for the transition probability P(Zn+1 = y| Zn = x). Given a function φ defined on ∂T we define its

harmonic extension (or its Poisson integral) to be the function P(φ) : V(T) → R given by

P(φ)(x) :=

∫

∂T

φ dλx .

The harmonicity of P(φ) follows by the Markov property, since

λx =
∑

y∼x

p(x, y)λy =
1

deg(x) + 1

∑

y∼x

λy .

Theorem 3.5. For any given φ ∈ C(∂T), the Poisson integral of φ satisfies




∆P(φ) = 0 in V(T) \ {b(ω)}

lim
x→ζ

P(φ)(x) = φ(x), if ζ is a regular point of ∂T .
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Proof. Pick α ∈ E(T) and let ζ = {xj}
∞
j=0 ∈ ∂Tα. Write {αj}

∞
j=1 = P(ζ ), so that xj = e(αj). For n ≥ |α| we have

0 ≤ 1 − λxn (∂Tα) ≤ Pxn (Zn hits b(α) before hitting ∂Tα)

=

n∏

j=|α|

Pxj (Zn hits xj−1 before hitting ∂Tαj )

=

n∏

j=|α|

(
1 − cαj (∂Tαj )

)
.

By the Wiener condition (5) we have that the right hand side vanishes as n → +∞ if and only if ζ is a regular

point for ∂T. Hence, for any regular point ζ ∈ ∂Tα we have limn→∞ λxn (∂Tα) = 1, from which it follows that

for any regular point ζ in the boundary

lim inf
n→∞

λxn (∂Tα) ≥ δζ (∂Tα).

Any open set E ⊆ ∂T can be written as a disjoint union of tents {∂Tαk}. Let ζ be a regular point of ∂T. Then,

lim inf
n

λxn (E) = lim inf
n

∑

k

λxn (∂Tαk ) ≥
∑

k

lim inf
n

λxn (∂Tαk ) ≥
∑

k

δζ (∂Tαk ) = δζ (E).

It follows that λxn
w*

−→ δζ , as n → ∞. Therefore, for any φ ∈ C(∂T),

P(φ)(x) =

∫

∂T

φ dλx −→ φ(ζ ), as x → ζ .

Corollary 3.6 (Kellog’s Theorem for Trees). The set of irregular points for the Dirichlet problem has capacity

zero. Which is,

c
(
{ζ ∈ ∂T : there exists φ ∈ C(∂T), lim

x→ζ
P(φ)(x) = ̸ φ(ζ )}

)
= 0.

4 Uniqueness results

We give a first uniqueness result for the class of spherically symmetric trees, which are trees where the degree

is constant on levels. Clearly homogeneous trees belong to this class.

We define the Lebesgue measure on ∂T to be the measure λ which is equidistributed among sons of any

edge and is normalized with λ(∂T) = 1. Namely, for each β ∈ E(T), we have

λ(∂Tβ) = λ(∂Tp(β))/ deg
(
e(p(β))

)
= 1/

∏

α<β

deg(e(α)).

It is clear that on spherically symmetric trees I*λ is constant on levels. In what follows, we write λ(k) in place

of λ(∂Tβ)when |β| = k. One can check that the equilibriummeasure of a spherically symmetric tree is a scalar

multiple of the Lebesgue measure.

Proposition 4.1. Suppose T is a spherically symmetric tree, with c2(∂T) > 0 and let µ be a charge on ∂T.

Denote by M its potential. If IM = 0 Lebesgue almost everywhere on the boundary, then µ ≡ 0.

Proof. For a fixed α ∈ E(T), let s(α) = {αj}
deg(α)
j=1 and define the measures λαj on ∂T in the following way

I*λαj (γ) =





deg(α)I*λ(γ) if γ ≥ αj

0 if γ ≥ αi , i ≠ j

I*λ(γ), otherwise.
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It is clear that λαj is absolutely continuous with respect to λ. Integrating on the tent rooted in α, using the

fact that λ(∂Tβ) depends only on the level of β, for each j we get

0 =

∫

∂Tα

IMdλαj

=

∫

∂Tα

∑

β∈E(T)

M(β)χ∂Tβ (ζ )dλ
aj (ζ )

=
∑

β∈E(T)

M(β)λαj (∂Tα ∩ ∂Tβ)

= λ(∂Tα)
∑

β<α

M(β) + deg(α)
∑

β≥αj

λ(∂Tβ)M(β)

=
1

2|α|

∑

β<α

M(β) + deg(α)
∞∑

k=|αj|

λ(∂Tβ)
∑

β≥αj ,
|β|=k

M(β)

=
1

2|α|

∑

β<α

M(β) + deg(α)M(αj)
∞∑

k=|α|+1

λ(k).

Note that the last quantity is finite because the capacity of the boundary is positive. Being the same true

for each j,Mmust be constant on s(α). It follows that µ = M(ω)λ, i.e. the measure µ is a scalar multiple of the

Lebesgue measure. Hence,

0 =

∫

∂T

IMdµ =
∑

β∈E(T)

M(β)2,

which gives M ≡ 0 on E(T) which is the thesis.

The same is not true for a general tree. In fact, there exists a subdyadic tree T, with no irregular boundary

points and a charge µ on ∂T such that IM = 0 everywhere except at a point, but µ = ̸ 0, as shown in the next

example.

Example 1. The following diagram represents an infinite subdyadic tree and the copotentialM of a charge µ

on its boundary, where the number r over an edge indicates how many times the edge is repeated. Also, the

label T(a) means that the vertex is the root vertex of a dyadic tree which carries a total measure of a on the

boundary, and the measure M is divided equally at each edge.
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0

1

2

3

n

T(−1/2n+2)

T(−1/16)

T(−1/8)

T(−1/4)

M = 1/2

M = 3/4

M = 7/8

M = 1 − 1/2n

M = −1/2n+1, r = (n − 1)2n+1

M = −1/16, r = 32

M = −1/8, r = 8

M = −1/4, r = 0

If ζ0 is the leftmost point of the boundary it is clear that IM(ζ0) = +∞. If ζ ∈ ∂T \{ζ0} let n = max{ζ ∩ ζ0},

where the intersection of boundary points is intended as the intersection of the corresponding geodesics.

Then,

IM(ζ ) =
n∑

i=1

(
1 − 2−i

)
−
(n − 1)2n+1

2n+1
−

1

2n+1

∞∑

i=0

2−i

= n −
n∑

i=1

2−i − (n − 1) − 2−n = 0.

By applying Wiener’s test we see that ζ0 is a regular point of the boundary, while all other points are

clearly regular by symmetry.

4.1 Energy conditions

The situation is different if we work with measure with finite energy.

Proposition 4.2. Let µ, ν be charges on ∂T, with Ep(µ), Ep(ν) < ∞. Denote by M and V their potentials, re-

spectively. If IMp = IVp both µ-a.e. ad ν-a.e., then µ ≡ ν.

Proof. Integrating both the potentials IMp and IVp with respect to both the measures, we can get any of the

following

Ep(µ) = Ep(ν,Mp) = Ep(µ, Vp) = Ep(ν).

Recalling that we write as = sgn(a)|a|s, with some algebra we get

0 = Ep(µ) + Ep(ν) − Ep(ν,Mp) − Ep(µ, Vp)

=
∑

β∈E(T)

|M(β)|p
′

+ |V(β)|p
′

− Vp(β)M(β) −Mp(β)V(β)

=
∑

β∈E(T)

(M − V)(Mp − Vp)(β).



30 | Nikolaos Chalmoukis and Matteo Levi

It is clear that as − bs has the same sign as a − b for every a, b ∈ R, s > 0. It follows that the general term of

the above series is positive, from which M ≡ V on E(T).

It is clear from the dual definition of capacity that if a property holds cp-a.e. then it also holds µ-a.e. with

respect to any charge µ of finite energy. Hence, the above result can be restated in the following slightly less

general but more natural form.

Corollary 4.3. Given charges µ, ν on ∂T, with Ep(µ), Ep(ν) < ∞, if IMp = IVp, cp-a.e., then µ ≡ ν.

As a consequence, we have a partial converse of the properties of equilibrium measures given in Theorem 1.

Corollary 4.4. Let µ be a Borel measure on ∂T such that Ep(µ) < ∞ and IMp = 1 cp-a.e. on E = supp(µ). Then

µ is the p-equilibrium measure for E.

These uniqueness results can be reinterpreted in terms of functions in place of measures. The following

Sobolev space naturally arises from the space of charges of finite energy,

W1,p(T) := {g : V(T) → R : ∇g ∈ ℓ
p}.

In fact, given a charge µ on ∂T, Ep(µ) = ‖Mp‖
p
p = ‖∇IMp‖

p
p, so that the following Proposition is self

evident.

Proposition 4.5. Let µ be a charge on ∂T. Then Ep(µ) < ∞ if and only if IMp ∈ W1,p(T).

In terms of functions, Corollary 4.3 reads as follows.

Theorem 4.6. Let g, h be p-harmonic functions in W1,p(T) satisfying (4). If g = h, cp−almost everywhere on

∂T, then g ≡ h on V(T).

Proof. Glue together Corollary 2.4, Proposition 4.5 and Corollary 4.3.

If the tree T is spherically symmetric, by Proposition 4.1 we know that in the linear case p = 2 we don’t need

the energy condition g, h ∈ W1,2(T) in the statement.

4.2 Boundary values

The uniqueness results we presented above apply to functions admitting boundary values cp−almost every-

where.Apriori it is not obviouswhich functions enjoy this property.Hereweprove that in fact all the functions

in the Sobolev spaces for which we have uniqueness results indeed admit boundary values cp−almost every-

where. Other results of this kind can be found in [7]. To prove the existence of boundary values we follow

an approach exploiting Carleson measures, which was already presented in [2] for the linear case p = 2. We

include here the argument adapted for general Sobolev spaces for completeness.

We say that µ is a measure on T := V(T) ∪ ∂T if µ
∣∣
V(T)

is a function on vertices and µ
∣∣
∂T

is a measure on

the boundary. Observe that if µ
∣∣
V(T)

= I*(µ|∂T) then it defines a measure which is not finite.

Definition 4.7. We say that a Borel measure µ on T is a Carleson measure forW1,p if there exists a constant

C(µ) > 0 such that for all g ∈ W1,p ∫

T

|g(ζ )|pdµ(ζ ) ≤ C(µ)‖g‖p1,p . (6)

Thesemeasures have beenwidely studied and characterized (even in the weighted case), see for example [6],

[4] and [3]. In [6] it is shown that condition (6) can be reformulated purely in terms of the measure µ. In fact,
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it is shown that it is equivalent to

∑

β≥α



∫

Tβ

dµ




p

≤ C(µ)

∫

Tα

dµ, (7)

Denote by ‖µ‖CM the best possible constant in (7), which for µ fully supported on ∂T reduces to

‖µ‖CM = sup
α∈E(T)

Ep,α(µ)

M(α)
.

Observe that if µ is the equilibriummeasure for some set E ⊆ ∂T, by Lemma 3.2 it follows that, for every edge

α, Ep,α(µ)/M(α) ≤ 1, with equality for α = ω. Hence, ‖µ‖CM = 1 and cp(E) = µ(E)/‖µ‖CM. On the other hand,

for any µ supported in E ⊆ ∂T we have the bound Ep(µ) ≤ ‖µ‖CMµ(E), from which

µ(E)

‖µ‖p−1CM

≤
µ(E)p

Ep(µ)p−1
≤ cp(E),

where the last inequality follows from the fact that the measure µ/Ep(µ)
p−1 is admissible. We have derived

the following expression of p-capacity in terms of Carleson measures ofW1,p spaces

cp(E) = sup

{
µ(E)
‖µ‖CM

: supp(µ) ⊆ E

}
. (8)

The following proposition shows that the Fatou’s set of aW1,p function differs from the boundary of the

tree at most for a set of null capacity. The argument is taken by [2], where the result is proved for p = 2.

Proposition 4.8. Functions in W1,p have boundary values cp-a.e. on ∂T

Proof. For g ∈ W1,p (that without loss of generality we normalize to g(o) = 0), define the sequence of func-

tions g*n := I
(
|∇g|χ

|α|≤n

)
. It is clear that g*n is pointwise non-decreasing and it extends to the boundary by

continuity, being eventually constant. By monotonicity we have that the function g*(ζ ) = limn g*n(ζ ) is well

defined for every ζ ∈ V(T) ∪ ∂T. Moreover, we have the uniform bound ‖g*‖1,p ≤ ‖g‖1,p. Now, let µ be a

Carleson measure forW1,p. By Fatou’s Lemma we have

∫

∂T

g*(ζ )pdµ(ζ ) ≤ lim inf
n

∫

∂T

g*n(ζ )
pdµ(ζ )

= lim inf
n

∑

|α|=n

∫

∂Tα

g*n(ζ )
pdµ(ζ )

=
∑

|α|=n

g(e(α))pM(α)

≤ C(µ)‖g‖1,p .

This implies that g* ∈ L∞(dµ), and since g* is a bound for the radial variation of g along geodesics, by Domi-

nated Convergence Theorem we deduce that g admits radial limit µ-a.e. on ∂T for every Carleson measure µ.

In particular, the equilibrium measure µE of the set E = ∂T \ F(g) is a Carleson measure since ‖µE‖CM = 1,

from which follows that the radial limit exists cp-a.e.
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