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Some remarks on the eigenvalue spectrum of a large symmetric 
Wigner random-sign matrix 
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Received June 13. 1990 

The replica method is used to calculate the averaged eigenvalue spectrum as N --, co, of the ensemble of Wigner random- 
sign real symmetric N x N matrices. Results are presented for the cases where the individual matrix elements have a mean 
value of zero and also where the mean value of the individual matrix elements has a finite nonzero value. It is shown that 
the replica method provides a straightforward framework within which i t  is possible to verify the Wigner conjecture that 
any reasonably well-behaved distribution of matrix elements must lead to the well-known semicircular averaged eigenvalue 
spectrum of the Gaussian orthogonal ensemble of random matrices. Some numerical simulations of the averaged eigenvalue 
spectrum of these random-sign matrices are presented and they lend support to the prediction that i f  the individual rnatrix 
elements have sufficiently large a mean value, then a single eigenvalue will split off from the main senlicircular band of 
eigenvalues. 

On a utilisC la rn6thode de replication pour calculer le spectre des moyennes des valeurs propres, lorsque N --, co, de 
I'ensemble des matrices N x N de Wigner symktriques, rCelles et h signe alkatoire. Des resultats sont presentts pour les cas 
oil les 6ltments de matrice individuels ont une valeur lnoyenne nulle et aussi ob la valeur moyenne des ClCments de matrice 
individuels est finie et non nulle. On montre que la mCthode de replication fournit directement un cadre dans lequel i l  est 
possible de verifier la conjecture de Wigner, selon laquelle toute distribution h comportement norrnal d'CICnlents de matrice 
doit conduire au spectre se~nicirculaire bien connu de moyenne de valeurs propres de I'ensernblc orthogonal gaussien de 
matrices alkatoires. Quelques siniulations numkriques du spectre des moyennes de valeurs propres de ces matrices h signc 
alCatoire sont prtsentkes; ces simulations confirment la prediction que si les ClCments de matrice individuels ont une valeur 
moyenne suflisamn~ent grande, une valeur propre s'tcartera de la bande semicirculaire principale de valeurs propres. 

[Traduit par la rcvue) 
Can. J. Phys. 68, 1304 (1990) 

1. Introduction 
Recent years have seen a revival of interest in problerns asso- 

ciated with random matrices in physics. The importance of the 
study of random-matrix ensembles in the investigation of the 
highly excited states of large nuclei was recognised by Dyson 
( 1 )  who realised that in such cornplex systems it would be 
more profitable to study the statistical properties of such spec- 
tra rather than attempt detailed ab  irlitio calculations. In such 
problems one has only global information on the symmetry of 
the Hamiltonian, which because of the large number of parti- 
cles involved, could be represented as a large matrix. In the 
absence of other informations, one then constructs a statistical 
ensemble of such matrices (just as one constructs an ensemble 
in statistical mechanics), subject to the requirement that each 
member of the ensemble obeys some physically useful sym- 
metry requirement. One such useful ensemble is the Gaussian 
orthogonal ensemble (GOE) in which the requirement that the 
ensemble of N x N real symmetric matrices be invariant under 
orthogonal transformations leads to a description of a typical 
member of the ensemble as a real symmetric N x N matrix 
in which each element is a normally distributed random vari- 
able. It was shown by Wigner (2) that the ensemble averaged 
eigenvalue density p(h) (for which p(h) d h  gives the average 
number of eigenvalues between h and h + dh)  is a semicircle 
whose radius as N + GO is proportional to the standard devia- 
tion associated with a rnatrix element of an individual member 
of the ensemble. A useful compendium of early results and pa- 
pers in this area is to be found in the reprint collection edited 
by Porter (3) and in the book by Mehta (4), which latter has 
become a standard text on important calculations and ideas in 

'Present address: Department of Physics, University of Leicester, 
Leicester, U.K. 
Pnnted in Canada 1 lmprin~c au Canada 

random-matrix physics. A tnore recent and exhaustive review 
of work in this area is provided by Brody et (11. (5). 

Use of randorn-matrix ensembles has now found a firm place 
in areas outside nuclear physics. They have been used in con- 
densed matter physics by Kosterlitz et ul. (6) to describe prob- 
lems associated with certain models of spin glasses and more 
recently in the description of atomic and inolecular spectra (7, 
8). Some recent and fascinating work by Bohigas and Gian- 
noni (9) has shown that the eigenvalue spectra of the quantum 
counterparts of nonintegrable classically chaotic systems show 
many of the features associated with the GOE described ear- 
lier. 

The earliest calculations of the averaged eigenvalue den- 
sity (aed) for the G O E  when N + cm are to be found in 
the texts by Porter (3) and Mehta (4). These generally rely 
either on elaborate moment expansions or on the properties of 
Herrnite polynomials and oscillator wave functions that arise 
naturally from the many integrations against a Gaussian weight 
that occur in the GOE. However, a radically different method 
was presented by Edwards and Jones (EJ) (10) for calculating 
the aed, and this permitted an extensions of previous work to 
consideration of a G O E  in which each matrix element had a 
nonzero mean. The methods used by these latter authors rely 
on the so-called replica method,:first used by Edwards (1 1) in 
the study of polymer physics. The method of EJ (10) predicted 
that under certain circumstances, a single isolated eigenvalue 
would appear outside the Wigner semicircular band of eigen- 
values; this result was, following some controversy, confirmed 
by Jones et al. (12) who used completely different methods 
based on techniques used to describe impurity modes in a dis- 
ordered lattice. The work on ensembles with mean zero was 
extended to Hermitian matrices by Edwards and Warner (13). 

Not all the published work on random matrices has been 
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JONES A N D  DHESI 1305 

directed at the GOE. Wigner (14) addressed the problem of 
calculating the aed of an ensemble of large symmetric ran- 
dom matrices that were either bordered (having certain inte- 
gers down the diagonal and random numbers equal to plus 
or minus some constant v down the super- and subdiagonals) 
or that had zeros on the diagonal and entries that (subject to 
the symmetry requirement) were either +v or -11 in the off- 
diagonal elements. In each case, moment calculations again 
showed that when the size of the matrix N + m, the aed 
again became a semicircle as in the GOE of matrices. In a 
short article, Wigner (2) then conjectured that a semicircular 
distribution of eigenvalues would be the limiting distribution 
obtained as N + m for an ensemble of symmetric matrices in 
which the probability density function of any diagonal element 
is reasonably well behaved and in which the second moment of 
all such off-diagonal elements should have the same constant 

ensemble with both zero and finite means and for the COE 
with finite means. Such simulation on ensembles with finite 
means are new and would appear to support the analytical 
predictions of an isolated eigenvalue and lay to rest some of 
the controversy which has surrounded these predictions (15). 

2. The technique 
Consider a real symmetric N x N matrix J with eigenvalues 

- - 

{Ji). The density v(h) of such eigenvalues is given by the 
expression 

and v(h) has been chosen as normalized to unity. 
If we use the result that 

value. 
In this paper we apply the replica method used by EJ (10) to det(I - h -  1) = n (A- J i )  

- - - 

an ensemble of large real symmetric matrices with zeros down i 

the diagonal and with off-diagonal elements chosen to have the and understand h to have the usual  infinitesimal imaginary part 
Same magnitude but random signs. We show first how easily - j ~ ,  then [2 , l ]  may be written i n  the form 
the replica formalism reproduces the semicircular aed and then 
extend the calculation to describe the case where each element 1 a 

12.21 v(h) = - Im - In det ( I  h - J )  
has a finite nonzero mean. In this case also we are able to show N n  a h  - - - - 

that under suitable circumstances a single eigenvalue splits 
off from the main semicircular band and that the magnitude The method developed by EJ (10) is to use the result that 
of this eigenvalue is the same as that predicted by EJ (10) 
for the corresponding problem in the GOE. We then use the 12.31 In x = 
replica method to give a simple demonstration, based on the 
central limit theorem, that any reasonable probability density to write 12.2j as 
function of individual matrix elements must lead to a Wigner 
semicircular eigenvalue density and that the isolated eigenvalue 2 a .  1 

N K  a h  , 1 4 0  r z  - predicted for both the GOE and the random-sign matrix should 12.41 -- I m  - llm - [det-l"(' - !)I1 - 
again be a feature of any large symmetric matrix with the same 
finite mean value for individual elements. Finally, we present The determinant can be parametrized as a multiple Fresnel 
some numerical simulations of the aed for the random sign integral of the form 

We now substitute 12.51 into [2.4] and assume that this latter results holds for integer values of n and may then be continued 
to t1 = 0. We thus obtain the basic result that 

The integration is now over the N n  variables {xy) where the indices i and a range from I to N and from 1 to n ,  respectively; 
the limit n + 0 is to be taken at the end of the calculations. The averaged density of eigenvalues p(h) of an ensemble of real 
symmetric matrices, from which a typical matrix eIement J,, has a probability density function (pdf) p(J,,) is then obtained by 
caculating 

3. The random-sign symmetric matrix 
We consider an N x N real symn~etric matrix with zero down the diagonal, but whose off-diagonal elements Jij have the 

values + J I ~  and -J/@ with equal probability 112, and J is a constant of order unity. We see that each element has a mean 
value ( J , )  = 0 and that the variance of each eIement is J'/N. This model (previously considered by Wigner (14)) is formally 
described by the pdf 
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1306 CAN. J. PHYS. VOL. 68. 1990 

We substitute [3.1 1 into 12.61 and [2.7] and perform the integrals over the {Ji,); the result is 

The product of the cosines is rewritten as 

3.31 5.0. (5 F x : x , ? )  e x p  (1.1. [cos (5 T x I . x , ? ) ] }  

and the argument of the exponential is expanded in powers of J to give 

2 

3 . 4  n cos ($ = exp (-; (T  .r:xF) + o ( i 4 )  + . .  . 
i<j J a  1.1 

If we now write 

then 13.21 can be written as 

Some discussion is needed to justify the use of the approximation in 13.41 and to decide which terms in 13.51 it is appropriate 
that we retain. Since we shall eventually be taking the limits N  + CXI and n  + 0, it is important that we retain terms in the 
exponent that are of dominant order in both N  and n: it is easily seen that we must retain the terms with the highest power of 
N  and of the lowest power in n. Thus, in 13.51 we must keep terms that are of order Nn in the exponent. It is easily seen that 
whereas the term of order J' that has been retained in [3.4] contains a contribution whose size is of order Nn, the terms of 
order J4 and higher powers are of smaller order in N  and so may be neglected in the limit N  + CXI. Analysis of the terms that 
remain in [3.5] is rather subtle. This latter equation is very similar to equation [3.3] of ref. 10 and may be treated in the same 
way; it was argued in ref. 10 that the term in the exponent of 13.51 with a # P has zero mean but a square that is of order n. 
A careful diagramatic analysis by Edwards and Warner (13) has confirmed that indeed in the limit N  + CXI and n  -4 0 the term 
with a # p gives a contribution of order nl (rather than O(nN))  and so may be neglected. Thus retaining terms in the exponent 
of 13.51 that are of order nN,  we may write 13.51 as 

2 
[3.6] p(h) = -- Im n drp exp [ - i h x  (XI.)' - 7 x c (xp)' 

N n  
;,a i,a J 2 a [ i  ] ' I - 1 }  

In this form we easily see that the replica label a can be removed and the integral replaced by 

which then gives 

2 a 1 
[3.7] p(h) = - - Im - lim - ( [$I Nrl 1 "  - l } 

N n  ah tt-+ n  

where 
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JONES AND DHESI 

This can be evaluated by using a polar coordinate R  in the space of the { x i ) ,  with R  defined by R' = El x,?. We define QN as 
the usual solid angle in N  dimensions and so have 

For large N ,  the integral is straightforwardly performed by steepest descents: The integrand has saddle points at R  = R* where 

The contour of integration may be deformed to pass through one of these saddle points but not both: the details for a similar 
integral are given in ref. 10 and will not be reproduced again here. We now see that our basic "replica" identity [2.3] can be 
used in [3.7] to yield a term in In J  when the limit i z  -+ 0 is taken. J  is calculated by using its asymptotic value when N  -+ oo 
by substituting [3.10] into [3.9]. The final result is very simple, and after carrying out the derivative with respect to h in [3.7] 
we find that 

where we have chosen the saddle point yielding a positive density, p(h). Thus, using [3.10] and taking the limit N  -+ co we find 
that 

p(h) = 0 for 1x1 > 2J 

This is the Wigner semicircle law for the aed of the random-sign ensemble of matrices. It was first derived by Wigner (14)  
for this problem, using moment calculations. The result is identical to that which obtains for the GOE of symmetric matrices 
in which each off-diagonal element is normally distributed with mean zero and variance J ' / N .  We shall see in Sect. 5 that the 
replication method used here easily allows us to infer that [3.12] must be the aed of any reasonable matrix ensemble in which 
individual matrix elements have mean zero. 

4. The random-sign symmetric matrix when each element has a finite nonzero mean 
We consider now an N  x N  real symmetric matrix with zeros down the diagonal but whose off-diagonal elements JiJ take the 

values p and q(< p )  with equal probability. Anticipating the eventual thermodynamic limit N  -+ oo, we write 

with both J  and Mo constants of order unity. 
This system has matrix elements described by a pdf 

From this we see that each element of the matrix has a mean (J,) equal to 01 + q) /2  whose value is M o / N .  The variance 
( J Z )  - (J,])' is ( p  - q)'/4 and has a value J ' / N .  Substituting [4.1] into [2.7] yields the result that 

where 
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1308 CAN. J .  PHYS. VOL. 68, 1990 

Since we once more wish to retain terms of order nN in an exponent in [4.2], we re-exponentiate the cosine term of [4.3] and 
carry out the expansion as in [3.3] and [3.4]; after retaining terms in the exponent that are of order nN exactly as before we 
find that 

[4.41 p(h) = n d , x ~  exp [ - i~ z (x;)'] exp [: z [ c x;] '1 
i.a i.a a 

x exp [ -  c [C (x~)']'] - I }  

This integral is identical to that of [4.2] in ref. 10 and cannot be performed by the straightforward methods of Sect. 3; instead 
we must use the auxiliary field (or Hubbard-Stratanovich) identity twice over as in ref. 10. Since [4.4] is identical to [4.2] of ref. 
10 the lengthy calculation from this point proceeds exactly as in this latter paper and we shall not reproduce the details here that 
are given in full in ref. 10. The result of a saddle-point integration is that when lMol > J, the spectrum of eigenvalues consists 
of the Wigner semicircle for -2J < h < +2J together with a single isolated eigenvalue situated at h = Mo + ( J 2 / ~ 0 )  outside 
the main semicircular band of eigenvalues. For lMol < J we simply have the semicircular band of eigenvalues. The presence 
of an isolated eigenvalue outside the semicircle band was confirmed for the GOE by Jones et al. (12) who demonstrated once 
again the presence of such an eigenvalue and pointed out the strong analogy between this and the eigenvalue associated with 
the localized vibrational state that a single impurity atom may have in an otherwise perfect crystal lattice (see also Kosterlitz et 
01. (6)). 

To summarize, we have found for our random-sign matrix ensemble with finite means that the aed is given by 

where J' = NO> - q)'/4 and Mo = NO, + q)/2 

5. Some comments on arbitrary matrix ensembles: the Wigner conjectures within the replica framework 
Our formulation of the calculation of the aed of a random-matrix ensemble using the "replica" method based on [2.3] yields 

a ready demonstration of the Wigner conjecture (2) that if reasonable conditions are placed on the pdf (Ju) of matrix elements, 
then provided that each element has mean zero and all matrix elements have the same variance J 2 / N ,  the resulting aed must be 
the Wigner semicircle [3.12] when N --+ co. An extension of this argument will show that if the pdf is such that each element 
has mean Mo/N the aed must be the semicircle together with the isolated eigenvalue predicted by EJ in ref. 10 and demonstrated 
in [4.5] for the random-sign ensemble with finite mean. Let us, like Wigner (2), assume that the matrix element Jij is a random 
variable with mean zero and variance a'(- J2/N);  further we assume that for all m > 2 the mth moment of p(Jij) is bounded by 
some number b,,, that may depend on m, but that is independent of i and j. The average implied in [2.6] and [2.7] has the form 

where the angular brackets denote an average over each independent element of the symmetric matrix J. This quantity [5.1] is 
- - 

nothing other than the characteristic function for a weighted sum of o(N') random variables each with mean zero. We may then 
use a form of the central limit theorem. (see, for example, Whittle (16) equation 8.5.10) to deduce that for large N 

It should be noted that we have ignored the diagonal elements Jii of which there are N compared with the off-diagonal elements 
of which there are N(N - 1)/2 independent terms (see the discussion following [3.3] in ref. 10). Equation [5.2] represents the 
results of canying out the averaging in [2.7] and we see immediately that the integral that gives the averaged eigenvalue spectrum 
is identical to [3.5] and hence the rest of the calculation follows exactly as in Sect. 3 and yields the Wigner semicircle, [3.12], 
for any reasonably behaved pdf p(Jij), satisfying the conditions given earlier and for which each .Iij has mean zero and variance 
J ~ / N .  

The extension of this argument to the case where each matrix element has mean Mo/N and variance J 2 / N  and the pdf satisfies 
the same conditions as before, is straightforward within the replica method. The average that is implied in [2.6] and [2.7] is now 
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JONES A N D  DHESl 1309 

Once again, the term in angular brackets on the right-hand side of [5.3] is the characteristic function for a weighted sum of 
o(N') random variables, I,, - (J,), each with mean zero and variance J'/N. Application of the central limit theorem once more 
as N + m shows that 

Equation [5.4] once more represents the result of canying 
out the averaging in [2.7] and we can immediately see that 
the integral that gives the averaged eigenvalue spectrum is 
identical to [4.4] and hence the rest of the calculation follows 
exactly that outlined in Sect. 4 and which is given in full 
in ref. 10. The resulting averaged eigenvalue spectrum will be 
that given in [4.5] with an isolated eigenvalue lying outside the 
band at h = Mo + J ' / M ~  (when IMol > J )  for any reasonable 
pdf of the J; that has mean Mo/N and variance J'/N. 

Thus, within the framework of the replica method we have 
given a simple demonstration of the results of the Wigner 
conjecture and their extension to the case of random-matrix 
ensembles with finite means. 

6. Numerical simulations of certain averaged 
eigenvalue spectra 

In this section we compare the predictions made earlier in 
this paper with the results of numerical simulations of the aed 
of ensembles of 50 x 50 and 100 x 100 matrices. 

We have chosen to perform simulations first on the random- 
sign symmetric matrix ensemble described in Sect. 3. For con- 
venience we have chosen the scaled variance J' of each off- 
diagonal element to have the value J' = 112 and we have 
drawn the value of each such element from the random-sign 
pdf given by [3.1] in which the mean of each element is zero. 
We have diagonalized 250 such real symmetric square matrices 
of size 100 x 100 and 500 such matrices of size 50 x 50. From 

FIG. 1. The histogram shows the aed for J' = 0.5 ,  Mo = 0 calcu- 
lated from 500 samples when N = 50 for the random sign ensemble. 
The continuous curve is the corresponding Wigner semicircle. 

the eigenvalues thus generated it is easy to construct an aver- 1 I 
I 

A 
aged spectrum for both the 50 x 50 matrices and the 100 x 100 - 2 , 5  - 2  - 1 , s  -1 - 8 . 5  8 8 , 5  1 1 . 5  2  2 , 5  
matrices. Figure 1 shows the aed produced by averaging the 
spectra of 500 of the 50x50  matrices and Fig. 2 shows the tor- FIG 2. The histogram shows the aed for J' = 0.5 ,  M" = 0, calcu- 
responding result for 250 matrices of size on each lated from 250 samples when N = 100 for the random sign ensemble. 

such histogram we have shown the theoretical Wigner semi- The continuous curve 1s the corresponding Wigner semicircle. 

circular aed that should obtain as N + m. With our choice of 
5' = 0.5, the edges of this Wigner semicircular band of eigen- 
values should occur at h = fa. It is clear from these figures 
that the Wigner semicircle provides a very good description 
of the aed for both N = 50 and N = 100 although a small 
tail in the numerical aed is apparent just outside the Wigner 
band edges. Since we have included only those eigenvalues 
between h = f 2.5, we have checked by calculating the area 
under the histogram that indeed we have included in excess of 
the 99% available eigenvalues between these two limits. For 
comparison we show in Fig. 3 the corresponding aed obtained 
from 250 simulations of 100 x 100 matrices drawn from a 
GOE with J' = 0 .5  and indeed we see that for all practical 
purposes there is no discernible difference between the aed 
produced by the GOE and the random-sign ensemble, in ac- 

cord with the predictions of 13,121, Sect. 5, and of the Wigner 
conjecture. 

We have also performed simulations on the random-sign 
ensemble described in Sect. 4 by the pfd [4.1] in which each 
element of the random-sign matrix has a finite (scaled) mean 
Mo = 1.7 (where we use the notation of Sect. 4). It is shown 
in Sect. 4 that when lMol > J ,  the spectrum for large N 
should consist of the Wigner semicircle together with an iso- 
lated eigenvalue at = Mo + J ' /M~ of weight 1/N com- 
pared with that of the Wigner semicircle. For 5' = 0.5  and 
Mo = 1.7 we have & % 1.99. In Fig. 4 we show the aed pro- 
duced for such a random-sign ensemble with 500 samples of a 
50 x 50 matrix with Mo chosen for convenience to be 1.7 and 
5' = 0.5. Figure 5 shows the corresponding results for 250 
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FIG. 3. The histogram shows the aed for J' = 0.5,  Mo = 0, calcu- 
lated from 250 samples when N = 100 for the GOE. The continuous 
curve is the corresponding Wigner semicircle. 

FIG. 4. The histogram shows the aed for J' = 0.5,  Mo = 1.7, cal- 
culated from 500 samples when N = 50  for the random sign ensem- 
ble. The continuous curve is the corresponding Wigner semicircle. 

FIG. 5. The histogram shows the aed for J' = 0.5 ,  Mo = 1.7, 
calculated from 250 samples when N = 100 for the random sign 
ensemble. The continuous curve is the corresponding Wigner semi- 
circle. 

samples of a 100 x 100 matrix with Mo = 1.7 and J 2  = 0.5. 
In each case we have also displayed the Wigner semicircle. 
We see the presence in each case not only of a band of states 
that closely fits the Wigner semicircle but also of a very nar- 
row band of states quite detached from the main semicircle. In 
each case this narrow band of isolated states has a maximum 
of the histogram in the bin lying just below the value h = 2. 
We also notice that this isolated band of states has a noticeably 
lower maximum in the case N = 100 than in the case N = 50. 
Further, by calculating the area under the histogram represent- 
ing the main (semicirclelike) band of states, we find that when 

FIG. 6. The histogram shows the aed for J 2  = 0.5, Mo = 1.7, cal- 
culated from 500 samples when N = 50 for the GOE. The continuous 
curve is the corresponding Wigner semicircle. 

FIG. 7. The histogram shows the aed for J' = 0.5,  Mo = 1.7, 
calculated from 250 samples when N = 100 for the GOE. The con- 
tinuous curve is the corresponding Wigner semicircle. 

N = 50, exactly 2% of the eigenvalues lie in the isolated band 
and when N = 100 we find 1% of the eigenvalues lie in the 
isolated band exactly as is predicted by [4.5]. For comparison 
we show in Fig. 6 and 7 the numerical results obtained for the 
GOE when N = 50 and N = 100, respectively, with Mo = 1.7 
and J 2  = 0.5. Again these results are indistinguishable from 
those produced by the random-sign ensemble. The percentage 
of eigenvalues associated with the isolated bands are again 2 
and 1 % for N = 50 and N = 100, respectively. Although 
numerical simulations of the GOE with mean zero have been 
previously published by Porter and Rosenzweig (17) numerical 
results for ensembles with finite means have note previously 
been presented. It seems clear that the small isolated band of 
eigen;alues really is associated with what would be a single 
eigenvalue (giving a delta-function contribution to the aed) in 
the case where N + oo and it lends weight to the work of EJ 
(10) and the arguments of Sect. 5 of this paper for ensembles 
with finite means. A previous calculation (15), now known to 
be in error, had suggested that adding a finite mean Mo/N to 
each element of a matrix belonging to the GOE would simply 
produce a semicircular band of states shifted by an amount Mo 
form the main Wigner semicircle. 

7. Conclusions 
In this paper we have shown how the replica method devel- 

oped by EJ (10) in the context of a GOE of random matrices 
can be used to describe the aed of the Wigner random-sign en- 
semble. We have shown explicitly that as N + oo, the aed of 
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this ensemble is the Wigner semicircle, and in the case where 
each matrix element has a finite mean we have demonstrated 
the presence of an isolated eigenvalue that for suitable values 
of the mean will be outside the Wigner semicircle exactly as 
for the GOE with finite mean. 

We have shown how within this replica framework, it is easy 
to reproduce the Wigner conjectures that would, for any rea- 
sonable ensemble with mean zero, lead to an aed that is again 
a band whose width is proportional to the standard deviation 
of an individual matrix element. Further we have demonstrated 
that if the ensemble has a finite mean, then an isolated eigen- 
value may split off from the main band as was shown for the 
GOE in ref. 10. 

We have presented numerical simulations of the random- 
sign ensemble with mean zero and with a finite mean and also 
of the GOE with finite mean; these simulations are in accord 
with our predictions. 

Clearly investigations of the shape of the aed for large finite 
N is a difficult and subtle problem germane to the properties of 
any large symmetric, but finite, random matrix likely to occur 
in describing a real physical problem. We hope to address this 
in a future publication. 

Acknowledgements 
The authors are pleased to acknowledge helpful discussions 

with Dr. J. Gunson and Dr. G. P. McCauley. One of the authors 
(GSD) wishes to acknowledge the support of a Science and 
Engineering Research Council studentship help whilst this 
work was carried out. 

1. F. J. DYSON. J. Math. Phys. 3, 140 (1962). 
2. E. P. WIGNER. Ann. Math. (Leipzig), 67, 226 (1958). 
3. C. E. PORTER (Editor). Statistical theories of spectra: Fluctuations. 

Academic Press Inc., New York. 1965. 
4. M. MEHTA. Random matrices and the statistical theory of energy 

levels. Academic Press Inc., New York. 1967. 
5. T. A. BRODY, J. FLORES, J. B. FRENCH, P. A. MELLO, A. PANDEY, 

and S. S. M. WONG. Rev. Mod. Phys. 53, 385 (1981). 
6. J. M. KOSTERLIZ, D. J. THOULESS, and R. C. JONES. Phys. Rev. 

Lett. 36, 1217 (1976). 
7. H. S. CAMARDA and P. D. GEORGOPULAS. Phys. Rev. Lett. 50, 492 

(1983). 
8. S. MUKAMEL, J. SUE, and A. PANDEY. Chem. Phys. Lett. 105, 134 

(1984). 
9. 0. BOHIGAS and M. J. GIANNONI. Lect. Notes Phys. 209, (1983). 

10. S. F. EDWARDS and R. C. JONES. J. Phys A: Math. Gen. 9, 1595 
(1976). 

1 1. S. F. EDWARDS. Proc. 4th Int. Conf. Amorphous Mater. Edited by 
R. W. Douglas and B. Ellis. Wiley & Sons, New York. 1970. 

12. R. C. JONES, J. M. KOSTERLITZ, and D. J. THOUI.ESS. J. Phys. A: 
Math. Gen. 11, L45 (1978). 

13. S. F. EDWARDS and M. WARNER. J. Phys A: Math. Gen. 13, 381 
(1980). 

14. E. P. WIGNER. Ann. Math. (Leipzig), 62, 548 (1955). 
15. V. K. B. KOTA and V. PO~BHARE. J. Phys. A: Math. Gen. 10, L183 

(1977). 
16. P. WHIT~I.E. Probability. Penguin Educational London. 1970. pp. 

167-173. 
17. C. E. PORTER and N. ROSENZWEIG. Ann. Acad. Sci. Fenn. Ser. A6, 

3 (1960). 

C
an

. J
. P

hy
s.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.n

rc
re

se
ar

ch
pr

es
s.

co
m

 b
y 

C
hi

na
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

on
 0

6/
04

/1
3

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 

View publication statsView publication stats

https://www.researchgate.net/publication/237365446

