Some Remarks on the Global Transforms of Noetherian Rings

Kazunori FUJITA and Shiroh ITOH (Received September 20, 1976)

In his paper [4], Matijevic generalized the Krull-Akizuki theorem on the intermediate rings between a noetherian domain of Krull dimension one and its quotient field to the case of general noetherian rings, using the notion of the global transform of a noetherian ring. The aim of this paper is to give some interesting properties of the global transforms of noetherian rings. For a noetherian ring A, the global transform A^g is the set $\{x \in Q(A); x \in A \text{ or } \dim(A/(A:x))=0\}$, where Q(A) is the total quotient ring of A. Now A^g coincides with the \mathscr{C} divisorial envelope of A in Q(A), where \mathscr{C} is the Serre subcategory of Mod(A) consisting of all A-modules M such that $\text{Supp}(M) \subseteq \text{Max}(A)$ (for \mathscr{C} -divisorial envelope, see [2]). On the other hand, a \mathscr{C} -divisorial module M is characterized by $\operatorname{Ext}_{4}^{1}(N, M) = 0$ for every object N in \mathscr{C} . In other words, the relation between A^g and A depends deeply on the set {depth(A_m); $m \in Max(A)$ }. Among our results in this paper, we shall show that the canonical homomorphism $A \rightarrow A^{g}$ is a flat epimorphism for any noetherian normal domain A, and also that the global transform of A^{g} is A^{g} itself if A is reduced. Finally we give an example which shows that the Corollary to the Theorem in [4] is not true if we drop the assumption of reducedness of A.

Throughout this paper, all rings are commutative with unit. We use the following notations: for a ring A,

Max(A) = the set of all maximal ideals in A,

z(A) = the set of all zero divisor of A,

 $(A: x) = \{a \in A; ax \in A\}$, where x is any element of Q(A).

PROPOSITION 1. Let A be a noetherian ring. Then the following statements hold;

a) If dim $(A) \le 1$, then $A^g = Q(A)$.

b) $S^{-1}(A^g) \subseteq (S^{-1}A)^g$ holds for any multiplicatively closed subset S of A.

c) Suppose that $ht(\mathfrak{p}) \leq 1$ for any associated prime ideal \mathfrak{p} in A. Let S be a multiplicatively closed subset of A such that $Max(S^{-1}A) \subseteq ({}^{a}i)^{-1}(Max(A))$, where ${}^{a}i$ is the morphism of $Spec(S^{-1}A)$ to Spec(A) defined by the canonical homomorphism i of A to $S^{-1}A$. Then $S^{-1}(A^{g}) = (S^{-1}A)^{g}$. In particular, $(A^{g})_{\mathfrak{m}} = (A_{\mathfrak{m}})^{g}$ for any maximal ideal \mathfrak{m} in A.

PROOF. a) Let a/s be any element of Q(A), where $a \in A$, $s \in A - z(A)$. We may assume that s is a non-unit. Hence $\dim(A/sA)=0$; this implies that a/s is an element of A^g because $(A:a/s) \subseteq sA$.

b) This follows easily from the relation $S^{-1}Q(A) \subseteq Q(S^{-1}A)$.

c) We have $S^{-1}Q(A) = Q(S^{-1}A)$ by the remark (2) given after the proof. Let x/s be any element of $(S^{-1}A)^g$, where $x \in Q(A)$, $s \in S$. We may assume that $(A:x) \cong A$. Let $(A:x) = \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_m$ be a primary decomposition of (A:x). Then $(S^{-1}A:x/s) = S^{-1}\mathfrak{q}_1 \cap \cdots \cap S^{-1}\mathfrak{q}_m$. Since x/s is an element of $(S^{-1}A)^g$, we may assume that $S^{-1}\sqrt{\mathfrak{q}_1}, \ldots, S^{-1}\sqrt{\mathfrak{q}_r}$ are maximal in $S^{-1}A$ and that $S^{-1}\mathfrak{q}_{r+1} = \cdots = S^{-1}\mathfrak{q}_m = S^{-1}A$. By our assumption, $\sqrt{\mathfrak{q}_i}$ is maximal in A for $i \leq r$. Let t be an element of $S \cap \mathfrak{q}_{r+1} \cap \cdots \cap \mathfrak{q}_m$. Then $\mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_r \subseteq (A:tx)$. Therefore $tx \in A^g$. Thus x/s = tx/ts is an element of $S^{-1}(A^g)$.

REMARK. (1) If A is a Hilbert ring, then the multiplicatively closed subset $\{1, s, s^2, ...\}$ of A satisfies the assumption of c).

(2) Let A be a noetherian ring. Then it is easy to see that $S^{-1}Q(A) = Q(S^{-1}A)$ holds for any multiplicatively closed subset S of A if and only if $ht(p) \le 1$ for any associated prime ideal p in A.

Assume that A is a local ring and Q(A) is A-injective. Then A^g is the \mathscr{C} divisorial envelope of A, where \mathscr{C} is the Serre subcategory of Mod (A) consisting of all A-modules M such that $\operatorname{Supp}(M) \subseteq \operatorname{Max}(A)$. Therefore $A^g = A$ if and only if $\operatorname{Ext}_A^q(N, A) = 0$ for every object N in \mathscr{C} , i.e., depth (A)=1. In general, we have the following:

PROPOSITION 2. Let A be a noetherian ring. Then the following statements are equivalent:

- a) $A^g = A$.
- b) depth $(A_m) \neq 1$ for any maximal ideal m in A.

PROOF. Suppose that $A^{g} \supseteq A$. Let a/b be an element of $A^{g} - A$, where $a \in A$, $b \in A - z(A)$. Since dim(A/(bA:a)) = 0, $\mathfrak{m} = ((bA:a): c) = (bA:ac)$ is maximal in A for some $c \in A$. Then we have depth $(A_{\mathfrak{m}}) = 1$. Conversely suppose that depth $(A_{\mathfrak{m}}) = 1$ for some maximal ideal \mathfrak{m} in A. Then $\mathfrak{m} = (bA:a)$ for some $b \in A - z(A)$ and $a \in A$; hence $a/b \in A^{g} - A$. Therefore $A^{g} \supseteq A$.

COROLLARY. Let A be a noetherian normal domain. Then the following statements hold:

- a) $A^{g} = A$ if and only if there exists no height one maximal ideal in A.
- b) The canonical homomorphism $A \rightarrow A^g$ is a flat epimorphism.
- c) If the class group of A is a torsion group, then A^{g} is a localization of A.

PROOF. a) This follows immediately from Prop. 2.

b) Let m be any maximal ideal in A. If ht(m)=1, then $(A^{\theta})_{\mathfrak{m}}=(A_{\mathfrak{m}})^{\theta}=Q(A)$. If $ht(\mathfrak{m})\geq 2$, then $(A^{\theta})_{\mathfrak{m}}=(A_{\mathfrak{m}})^{\theta}=A_{\mathfrak{m}}$ by Prop. 2. Therefore $A_{\mathfrak{m}}\rightarrow(A^{\theta})_{\mathfrak{m}}$ is a flat epimorphism; hence so is $A\rightarrow A^{\theta}$.

c) This follows from Cor. 4.4 in [3].

REMARK. Let $A = k[X^2, XY, Y^2, X^3, X^2Y, XY^2, Y^3]$ be a subring of the polynomial ring k[X, Y], where k is a field. We see easily that $A \rightarrow A^g = k[X, Y]$ is neither an epimorphism nor a flat homomorphism from Prop. 1.7 in [3] and Prop. 2 in [5].

PROPOSITION 3. Let $A \subseteq B$ be noetherian rings. Then the following statements hold:

a) Suppose $Q(A) \subseteq Q(B)$. If B is integral over A, then $A^g \subseteq B^g$.

b) Suppose $B \subseteq Q(A)$. If the going down theorem holds for $A \subseteq B$, then $A^g \subseteq B^g$.

c) Suppose $B \subseteq A^g$. If every maximal ideal in B contracts to a maximal ideal in A, then $B^g \subseteq A^g$.

PROOF. a) Let x be any element of A^g . Since we have $(A:x) \supseteq a$ for some ideal a in A such that dim(A/a)=0, $(B:x)\supseteq(A:x)B\supseteq aB$. Hence x is an element of B^g because dim(B/aB)=0 by our assumption.

b) Let m be a maximal ideal in A and let n be a prime ideal in B such that $m = n \cap B$. We see easily that $ht(n) \le ht(m)$ holds by our assumption $B \subseteq Q(A)$. Since the going down theorem holds for $A \subseteq B$, $ht(n) \ge ht(m)$. Therefore ht(n) = ht(m); this implies that n is maximal in B. Hence b) can be proved similarly as a).

c) Let x be any element of B^{g} ; then $(B:x) \supseteq n_1 \cdots n_r$ for some maximal ideals n_1, \ldots, n_r in B. Set $m_i = n_i \cap A$. By our assumption, m_i is maximal in A. Let x_1, \ldots, x_n generate m_1, \ldots, m_r . Since $x_i x$ is an element of $B \subseteq A^{g}$, $(A: x_i x) \supseteq \prod_{j=1}^{r(i)} m_{ij}$ for some maximal ideals $m_{i1}, \ldots, i_{r(i)}$ in A. Then we see that $(A:x) \supseteq m_1 \cdots m_r \cdot \prod_{ij} m_{ij}$. Therefore $x \in A^{g}$. Thus $B^{g} \subseteq A^{g}$.

REMARK. (1) Even if $A \subseteq B \subseteq Q(A)$, the relation $A^g \subseteq B^g$ does not always hold. In fact, let $A = k[X^2, XY, Y^2, X^3, X^2Y, XY^2, Y^3]$ and let B = A[X/Y], where k is a field and X, Y are indeterminates. Let $m = (X^2, XY, Y^2, X^3, X^2Y, XY^2, Y^3)A$ and let $n = (X/Y, X^2, XY, Y^2, X^3, X^2Y, XY^2, Y^3)B$. For any positive integer $n, (B_n: Y) \not = (X/Y)^n$. Hence Y is not contained in $(B_n)^g$. Therefore $(A_m)^g \not = (B_n)^g$.

(2) Let A be a noetherian domain. If A is a universally catenarian and if A has no height one maximal ideal, then A^g is integral over A. In fact, $ht(\mathfrak{P} \cap A) = 1$ for any height one prime ideal \mathfrak{P} in \overline{A} , where \overline{A} is the derived normal ring of A; hence $A^g \subseteq \bigcap_{\mathfrak{P} \in H_{1}(\overline{A})} A \subseteq \bigcap_{\mathfrak{P} \in H_{1}(\overline{A})} \overline{\mathfrak{P}} A \subseteq \mathcal{A}^g = \overline{\mathfrak{P}}$. Therefore A^g is integral over A.

PROPOSITION 4. Let A be a noetherian ring. Then the following statements hold:

a) If \mathfrak{M} is a maximal ideal in A^{g} such that $\mathfrak{M} \not\equiv z(A^{g})$, then $\mathfrak{M} \cap A$ is maximal in A.

b) If A is reduced, we have $(A^g)^g = A^g$.

PROOF. Since $\mathfrak{m} = \mathfrak{M} \cap A \not\subseteq z(A)$ by our assumption, \mathfrak{m} contains a non zero divisor x. From the Theorem in [4] it follows that A^{g}/xA^{g} is a finite A/xA-module. Therefore \mathfrak{m} is maximal in A.

b) If every maximal ideal in A^g is not an element of Ass (A^g) , then $(A^g)^g = A^g$ holds by the assertion c) of Prop. 3. (Note that A^g is noetherian by the Corollary in [4]). Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_r$ be the height zero maximal ideals in A^g and let $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ be the minimal prime ideals which are not maximal. By the Chinese Remainder Theorem, we have $A^g \simeq A^g/\mathfrak{m}_1 \times \cdots \times A^g/\mathfrak{m}_r \times A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$. Set $\mathfrak{q}_i = \mathfrak{p}_i \cap A$ for $i = 1, \ldots, t$. We see easily that $A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t = (A/\mathfrak{q}_1 \cap \cdots \cap \mathfrak{p}_t)^g$. Since $A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$ has not a height zero maximal ideal, $(A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t)^g$ $= A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t$. Therefore $(A^g)^g \simeq (A^g/\mathfrak{m}_1)^g \times \cdots \times (A^g/\mathfrak{m}_r)^g \times (A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t)^g$ $\simeq A^g/\mathfrak{m}_1 \times \cdots \times A^g/\mathfrak{m}_r \times A^g/\mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_t \simeq A^g$. Thus $(A^g)^g = A^g$.

PROPOSITION 5. Let A be a noetherian ring. Suppose that $depth(A_m) \ge 1$ for any maximal ideal m in A. Then the following statements hold:

a) $A^{g} \simeq \lim_{A \to \infty} \operatorname{Hom}_{A}(\mathfrak{a}, A)$, where \mathfrak{a} runs over all ideals such that $\dim(A/\mathfrak{a}) = 0$.

b) $(A(X))^g \simeq A^g \otimes_A A(X)$.

PROOF. a) Let a be an ideal in A such that dim (A/a)=0. Since a contains a non zero divisor, $a^{-1} \simeq \operatorname{Hom}_A(a, A)$ holds. Therefore $A^g = \bigcup a^{-1} \simeq \operatorname{lim}_A(a, A)$, where a runs over all ideals in A such that dim (A/a)=0.

b) Every maximal ideal in A(X) is of the form $\mathfrak{m}A(X)$ for some maximal ideal \mathfrak{m} in A. Therefore $(A(X))^g \simeq \lim_{X \to A(X)} \operatorname{Hom}_{A(X)}(\mathfrak{a}A(X), A(X))$, where \mathfrak{a} runs over all ideals in A such that $\dim(A/\mathfrak{a})=0$. Since A(X) is flat over A, $\operatorname{Hom}_{A(X)}(\mathfrak{a}A(X), A(X))\simeq \operatorname{Hom}_A(\mathfrak{a}, A) \otimes_A A(X)$ by Prop. 11 in [1], Chap. I, §2. Thus $(A(X))^g \simeq A^g \otimes_A A(X)$.

The following proposition is a generalization of the Corollary in [4].

PROPOSITION 6. Let A be a reduced ring. If Q(A) and A/xA for any non zero divisor x are noetherian, then A is noetherian.

PROOF. Since Q(A) is noetherian, the number of minimal prime ideals in A is finite. Let $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ be the minimal prime ideals in A. Set $B = A/\mathfrak{p}_1 \times \cdots \times A/\mathfrak{p}_n$. Since A is reduced, A is contained in B. Let $\mathfrak{a}/\mathfrak{p}_1$ be any non zero ideal in A/\mathfrak{p}_i and let x be an element of $\mathfrak{a} - \mathfrak{p}_1 \cup \cdots \cup \mathfrak{p}_n$. By our assumption, A/xA

is noetherian. Therefore a is finitely generated. Hence A/p_i is noetherian and so is B. Thus by Eakin-Nagata's theorem, A is noetherian.

REMARK. The following example A shows that the reducedness of A in the above Prop. 6 is essential. Let k be a field and let X, Y be indeterminates. We put $B_0 = k[X, Y]$, $B = k[X, Y, Y/X, Y/X^2, ...]$, $B_1 = k[X, Y, 1/X]$, $A_0 = B_0/Y^2B_0$, $A = B/(Y^2B_1 \cap B)$ and $A_1 = B_1/Y^2B_1$. Let us denote X and Y mod Y^2B_0 by x and y respectively. Since $Q(A_0) = k[x, y]_{yk[x,y]} = Q(A_1)$, we have $Q(A) = k[x, y]_{yk[x,y]}$; hence Q(A) is noetherian. We have $(A_0)^g = Q(A_0)$ by the assertion a) of Prop. 1. Therefore A/xA is noetherian for any non zero divisor x in A by the Theorem in [4]. Set $n = XB/(Y^2B_1 \cap B)$ and set $j: A \to A_n$ the canonical homomorphism. As is easily seen, j(y) is not zero in $(A_1)_n$. Since $n^nA_n \in j(y)$ for any $n, n^nA_n \neq \{0\}$. This implies that A is not noetherian.

Appendix

Matijevic has proved that A^g is noetherian if A is a reduced noetherian ring, and he has given a noetherian ring A such that A^g is not noetherian. We here give another example which is simpler than Matijevic's. To show this, we introduce the notion of the global transform of an arbitrary ring as follows: Let A be a ring; then the global transform of A is the set $A^g = \{x \in Q(A); \text{ length } (A/(A:x)) < \infty\}$. It is easy to see that A^g is a subring of Q(A). The following proposition is corresponding one to Prop. 2 in the non-noetherian case. This can be proved by the same arguments as in the proof of Prop. 2.

PROPOSITION. Let A be a ring. Then the following statements are equivalent:

b) A has no maximal ideal of the form (uA:a), where $u \in A - z(A)$ and $a \in A$.

Now we give our desired example. Let k be a field, and let X, Y and Z be indeterminates. We put $C = k[X, Y, Z, 1/X]/(YZ, Z^2)$. Let x, y and z be the images of X, Y and Z in C respectively. Moreover we put A = k[x, y, z/x], $B = k[x, y, z/x, z/x^2, ...]$, m = (x, y, z/x)A and $n = (x, y, z/x, z/x^2, ...)B$. Since $B/xB \simeq k[Y]$, x, y is a $B_m = B_n$ -regular sequence. On the other hand y, x is not a B_m -regular sequence. Therefore B_m is not noetherian. $(A_m)^g \supseteq B_m$ holds by the fact that $\sqrt{(A: z/x^i)} = m$ for any positive integer t. By the same proof as those of a) and c) of Prop. 3 we see that $(A_m)^g = (B_m)^g$ because B_m is integral over A_m . Every regular element of n is of the form $f = x^n v(x) + yc + (z/x^r)d$, where $v(x) \in k[x]$ such that $v(0) \neq 0$ and $c, d \in B$. Since $z/x^m = (z/x^{n+m})(x^n v(x) + yc) + (z/x^r)d)(1/v(x))$ holds for every positive integer m in B_m , $B_m/(fB_m) \simeq (k[X, x])$

a) $A^g = A$.

 $Y]/(F)|_{(X,Y)}$ for some element F of k[X, Y]. Therefore nB_m is not of the form $(uB_m: a)$, where $u \in B_m - z(B_m)$ and $a \in B_m$; this implies that $(B_m)^g = B_m$ by the above Prop.. Hence $(A_m)^g = B_m$. Thus $(A_m)^g$ is not noetherian.

References

- [1] N. Bourbaki, Algébre commutative, chap. I, II, Hermann, Paris 1961.
- [2] S. Itoh, Divisorial objects in abelian categories, Hiroshima Math. J., to appear.
- [3] D. Lazard, Autour de la platitude, Bull. Soc. Math. France. 97 (1969), 81-128.
- [4] J. R. Matijevic, Maximal ideal transforms of noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49–52.
- [5] F. Richmann, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794-799.

Department of Mathematics, Faculty of Science, Hiroshima University