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Abstract. We investigate the ground states of infinite quantum lattice systems. 
It  is shown in particular that a positive energy operator is associated with these 
states. 

1. Introduction 

In  a series of recent papers 1 a new approach has been developped for 
the study of the equilibrium states of infinite systems in statistical 
mechanics 2. Classical and quantum lattice systems, and classical con- 
tinuous systems of particles with hard cores have been considered; their 
equilibrium states at  temperature T # 0 have been investigated. The 
present note describes the zero temperature states, i.e. the ground states, 
of the same systems. 

Many of the results which we shah present have proofs similar to and 
simpler than already published proofs for the case T # 0. We shall omit 
these proofs, and present therefore a list of theorems mostly without 
proofs. I t  will be remarked however that  our results about the ground 
state are not special cases of results for T # 0, and that  some of them 
have in fact no obvious counterpart at T # 0. 

2. Infinite Volume Limit for the Ground State 

I t  will be convenient to work with quantum lattice systems, but the 
results obtained in this section extend to classical lattice gases and 
classical continuous systems of particles with hard cores (see Footnote 1). 

We let W be a complex Hflbcrt space with finite dimension and W~ 
a copy of 5¢# at each point x of the "lattice" Z~: For finite A C Z ~, let 

® g= 
xEA 

1 See ROBINSOI~ and RVELLE [8], GALI~VOTTI and I~m~CLE [2], Rvvz~v. [10], 
LA~ORD and ROBINSON [5], ROBI~SO~¢ [7], G~LLAVOTTZ and M_U~CLE [3], LA~- 
FORD and RoBr~soN [6]. A general treatment is also given in a forthcoming book [11 ]. 

Some of the ideas involved appear already in RVE~E [9] and FIS]~_~R [1]. 
23* 
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and let 9.1A be the  algebra of all bounded operators  on ~ (A). I f  A ~ A '  = 0 
we identify 92A with a subalgebra  of 92AkflA' b y  A -+ A ® 1, and let 92.1 
be the  norm complet ion of the  union of all 9AA. I f  a ~ ZL there  is a na tura l  
i somorphism d / F ~ - + ~ + ~ ,  hence a na tu ra l  i somorphism ~ ( A )  
-+ ~ ( A  + a);  there  is thus  a na tu ra l  i somorphism 92A-~ 92A+, for each 
A and an an tomorph i sm ~, of the  C*-algebra 9/ extending all of these. 
The  Ta give a represen ta t ion  of Z" in au t  92. 

We define now an interact ion q} as ~ funct ion of finite subsets of Z" 
such t h a t  

(a) ~ (0 )  = o, 
(b) ~ (X) is a self-adjoint e lement  of 92x, 
(c) ~ ( x  + a) = ~oq~(X), 
(d) II¢lt = 2:  iI¢(X)i! < + ~ .  

x~o N(X) 
With  respect  to the  norm given b y  (d) the interact ions fo rm a real Banaeh  
space ~3. The  Hami l ton ian  Hn(q~ ) corresponding to the  finite region 
A C Z" is defined b y  

HA@) = Z ~ ( X ) "  
X C A  

We let H°A (q~) be the  lowest eigenvalne of HA (q~) and  

E A(~) ~--- N(A) -~ H ° @ ) .  

I t  is readi ly  seen t h a t  EA(.) is concave on ~3 and, if ~5, T C ~3, 

lEA@) -- EA(T)I  =< [I¢ -- ~'II- (1) 

Theorem 1. I[ A -+ c~ in the sense o] V~,x H o v e  a, the ]oltowing limit 
exists/or every q5 E ~D 

lim E A (q~) = E (qS). 
A-+oo 

The proof m a y  be obta ined  by  s tandard  a rguments  (see [2] or [11]). 
Remark. I f  we define 

Pa(~b) =- N(A)  -1 log Tr~v(A) exp [-- H A ( C ) ] ,  

P (q~) = lira PA(¢ ) ,  
.4--+oo 

then  
Jim [- TP(T -~ q))] = E(¢). 
T-+O 

This follows f rom the  cont inui ty  of T P A ( T  -1 q~) in ~ uniformly in T, A. 
Before s ta t ing fur ther  results, we introduce a number  of definitions. 

8 We say that A tends to infinity in the sense of VA~r Hove (and we write 
A -+ e¢) if, ~or every finite XC Z v, N(A) -1Nx(A) tends to zero; here Nz(A ) is the 
number of points x E Z ~ such that x + X ([ A, (x + X) ~ A ~ 0. 
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For each ri  E ~3 we let Vv be the subset of the dual ~3" o f ~  constituted 
by those elements ~ such that ,  for all ~ ( ~3, 

E ( ¢ +  ~ )  < E(¢)  + ~ (T) .  (2) 

The set V+ is convex and weakly closed in ~3". Since fiE(ri0) = E(/~ ri) 
for fl > 0, (2) implies tha t  for all kg 

E (T) =< a (~) (3) 

hence V+C V0. From (1) and (3) we get ][~U < 1, therefore (by Alaoglu- 
Bourbaki) V+ is weakly compact. Let  D C ~3 be the set of those ri such 
tha t  V+ is reduced to a point a °, i.e. such tha t  the graph of E (.) has 
a unique tangent plane at  (riO, E (ri)). I t  is known tha t  D is a Baire set a 
and therefore dense in ~3. 

Let  I be the set of translationally invariant states on 9,1, i.e. of those 
states a such that ,  for all a E g~, A E 9/ 

a(~a A) = a ( A ) .  

Given a state a on 91, for each finite X C Z" there is a uniquely defined 
density matr ix  a (X) such tha t  

a(A)= Tr~(x )a (X)A  if A EO.Ix. 

The family @ (X)) determines o. To each ¢ E ~3 we associate A+ E 01 by 

~(x) 
A+= Z ~¢(x) 

X~O 

then [IA~II g Ilrill. To every a E I there corresponds an element co~ of ~ *  

(Dff(r i)  = ff(A~p) = Z £ ~ ( X )  -1  Tr~e(x)a(X) r i (X) . (4) 
X~0 

Let aoA be the orthogonal projection corresponding to the eigenvalue 
H°A(ri) of HA@ ), divided by  the multiplicity of this eigenvalue 5. The 
"expectat ion value in the ground state of HA(ri)" for a (finite) region 
X C Z" is defined by  a matr ix  a~ (X) in ~ f  (X) such tha t  

ff~l(X)={Tr~(AX)l:r~..lif XcA 
if X ~ A .  

Averaging over lattice translations we define also 

~(X) = Ar(A)-~ ~,~= ~_~ (X). 

Notice that ,  if ~ E ~3, 

N (X) -1 Try (x )  8A ¢ (X) }/I(X) = 2V (A) -1 Trg(A)a~AHA (~[*). 
X30 

a I.e. D contains a countable intersection of dense open sets in ~.  
s Alternatively, one could define a~ as the projection on any oigenvector of 

HA (q5) corresponding to the eigenvalue H~l(qS); this would not change the results 
described below. 
28& 
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Using also 
N ( A )  EA(~  + ~ )  ~ T r ~ e ( A )  o~AHA(q) + ~J) 

= N(A)  EA(fiS) + Try(A) ~,~HA(~) 
we find 

EA(¢  + T )  ~_~ EA(~  ) + ~ N ( X )  -1 T r y ( x )  5~(X) ~ ( X )  . 
x~o 

Theorem 2. (a) I /  q5 E D, then the/ollowing limit exists 

lim ~ (X) = (i +(X) 

and the a ¢ (X) are the density matrices associated with a state (l ~ E I and 
CO (~¢ ~ O~ ~. 

(b) _For all q~ E 
E ( ¢ )  = inf ~(Av) 

g e l  

and i/q~ E D, then E (~ )  = ae(A¢). 
(c) The mapping co : I -~ ~*  defined by (4) is an a/fine homeomorphism 

o / I  onto Vo 8. I n  particular, i/q5 E D, then cr ~ is an extremal point o / I  
(Z~.ergodic state). 

The proofs of (a) and  (b) follow f rom s tandard  a rgumen t sL  To prove  
(c), notice first tha t ,  since co is affme and (weakly) continuous,  col is 
convex and  compact .  B y  (b), coI  C V0. Fur thermore ,  (b) shows t h a t  every  
closed half-space in ~ *  (with the  weak  topology) which contains all 
coa ¢ (with ~ E D) contains also Vo, hence col ~ V 0. Therefore col -- V 0. 
Since co is continuous,  and  injcctive by  (4), co is a homeomorph i sm s. 

I t  is possible in a number  of cases to de termine  explici t ly the  ground 
s ta te  corresponding to  an in teract ion ~ .  B y  looking a t  examples  of 
continuous one-dimensional  sys tems of particles with ha rd  cores, the 
reader  will convince himself t h a t  E ( ~ )  is not  in general a piecewise 
analyt ic  funct ion of the  chemical  potential .  

Remarks. (a) Le t  ~5 E ~3, f rom any  sequence (An) tending to  infinity, 
one can ex t rac t  a subscquence (Ae) such t h a t  

l im -¢ (X) = a (X)  ¢~-~-oo OAo: 

where the  ~ (X) are the  densi ty  matr ices  associated with  a s ta te  ~ C co-x V~. 

" This result may be derived from the analysis given in [6]. Conversely, it 
implies that if e E ~*  satisfies g(.) _~ P(.), then ~ E wI, 

See for instance [11]. Notice in fact that, once we know that E(~) ~ ~(A~v) 
for all ~ E I, ~ E ~3, it suffices to prove (b) for ~ ~ D (because D is dense in ~3 and 
IIall = 1). Assuming q~ ~ D, (b) follows thus from 

a°(Ao) = lira ~ '  N(X) -1Tr.~g(A)d~(X) ~P(X) 
A --> c~ X 3 0  

= lim N(A)-~Tr~o(A)a~tlA(~a) = lim lg(A)-~H~A(~) = E(~) .  
A-->¢o A--~ oo 

This proof shows in fact that I is the closed convex hull of {~ro : ~ ~ D}. 
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(b) Let  ~v be a T = 1 equilibrium state corresponding to ¢ [i.e. 
0 ¢ E l  and p ( ~ b +  ~ )  ~ p ( ~ )  - @~(A~) for all T E~3]. H ~b CD, then 

lim @ T-x* ----- (7 ~ . 

T-->O 

(c) Let  g o  be the space of finite range interactions, i.e. of those ¢ ~ 
such tha t  ~b (X) = 0 except for finitely m a n y  X ~ 0. Let  also ~1 be any 
Banach space such tha t  ~5 0 C ~3 1C ~ ,  the norm H'H1 of ~1 is larger than  
the norm ]I'H of ~3 and go  is dense in ~1. Then, D ~ ~B 1 is a Baire set 
in ~ i  and Theorem 2 remains true with ~ ,  ~3" replaced by ~1, ~5" and 
D by  D A ~1. 

3. Time Evolution 

I n  this section we use in an essential manner  the quantum nature of 
our lattice system, and the results obtained have no interesting counter- 
par t  for classical systems. 

Following Remark  (c) of Section 2, we introduce a Banach space ~1 
with 

]I th = X II¢(X)Hexp(N(X)- 1). 
Xp0 

The following result then holds. 
Theorem 3 L I] ¢ 6 ~3x, 91 has a one-parameter group o/automorphisms 

f : R -+ aut  9/such that, i / A  E 91, 

f t A =  lim eitHA(O) Ae--itHA(O) 
A.---> oo 

uni/ormly on compact t-intervals; here A tends to infinity in the sense that 
it eventually contains any finite subset el Z ~. I /  A C 91x, X finite, the/unc- 
tion t -+ f~A extends to a/unction A (z) analytic in the strip 

{~: ]Im~l < (2 lith) -~} 
with values in 91; ]or ]z I < (2 J]¢I]l) -~ we have the convergent expansion 

o = o " 5 {  , ,  E Jl} 
We can now formulate our main result 
Theorem 4. Let ¢ E ~ and a 6 ~o-1 V¢. 
(a) The state c; is invariant under time evolution i.e.,/or all A E 91, t E R,  

a( f tA)  = or(A) . 

(b) The Gel'/and-Segal con, truction applied to cr yields a Hilbert space 
fP, a representation z~ o/ 91 in ~O, a normalized vector Q E-9 cyclic with 
respect to z~ (91) and a strongly continuous one-parameter group t -~ U (t) o/ 

This is a slightly strengthened version (see [11]) of a ~eorem due to RoBr~so~ 
[7], see Mso [4], [12]. 
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unitary operators in ~ such that for all A E ~1, 

~(A)  = (~ ,  ~ (A )  ~0) , 

U (t) ~(A)  U ( -  t) = z ( f ,  A) , 

~ ( t )  ~ = ~ .  

Let Q be the unbounded self-ad]oint operator such that 

U (t) = e ~Q 

then the spectrum o/Q is contained in {q : q ~ 0}. 
We prove only the last s tatement  and we assume first tha t  ¢ C D so 

tha t  a = a ¢. Let  A, B E OAx. In  view of Theorem 2 (a) and Theorem 3 
we have, uniformly on compact intervals of t when A -* co in the sense 
of VA~" HovE, 

~ (B* . ~ A )  

= lira N(A)  -1 ~ Tr~(A)a~xB*ei~HA(+)~Ae-I~RA(~) 
A->co x :x  + X c A  

= lira N(A) -~ Z Tr~e(A)e~v ,B*exp[ i t (HA(¢) -H°(q~) )]z~  A" 
A-+co x : x  + X C A  

Therefore, if ~ is a smooth function with compact support,  

(u(B) £2, ~o(Q) z(A)  fP) 

= lira N(A)  -x ~,  Tr~e(A)~A~T~B * ~0[HA(~5 ) -- H ° ( # ) ] T ~ A .  
A--~co ~:~ + X C A  

In  particular, if the support  of ~0 is contained in {q:q  < 0}, then 
~0 (Q) -- 0, proving tha t  the spectrum of Q is contained in {q : q >-- 0). The 
extension of this result to all fi5 C ~31 and a C co-1 Vo can be obtained by 
a technique described in [6]. 

Remark. I n  view of Theorem 4, the ground state expectation values 
have a number of properties in common with the vacuum expectation 
values in relativistic quantum field theory. In  particular, the function 
] (~  . . . . .  ~ )  defined by  

f(t~, 4 - t~ . . . . .  4 - 4-~) = ~(Ao ~t~A~ . • • 5 ,  A~) 

is the boundary value of a function 2~(~x, . . . ,  ~n) analytic in 

/ - /  {¢,: Im¢~ > 0}. 
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