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ANtract. We use techniques which generalize the Lee-Yang circle theorem to 
investigate the distribution of zeroes of the partition function for various classes of classical 
lattice systems. 

O. Introduction 

The Lee-Yang circle theorem [12] remains one of the very few 
effective tools which are at our disposal in the rigorous theory of phase 
transitions. An important conceptual clarification of this theorem, as 
well as an extension to quantum systems were given by Asano [2-]. This 
work was continued by Suzuki-Fisher [19]. A generalization of the Lee- 
Yang theorem to noncircular regions by the present author [17,] also 
benefitted from Asano's ideas. Here some more facts concerning the 
position of zeroes of the partition function Z for lattice systems are 
presented. In particular, results due to Heilmann-Lieb [11-], Heil- 
mann [t0,], and Runnels-Hubbard [18] are recovered. Although there 
is as yet no general method for locating the zeroes of Z, the techniques 
known so far permit to say something in a fairly large number of cases. 

The grand partition function Z for a lattice gas is a polynomial in 
one complex variable z (the activity). To locate the zeroes of Z(z) it is 
convenient, as Lee and Yang already remarked, to work with a polynomial 
P in n variables such that 

Z(z) = . . . . .  z )  

and to prove that P(z 1 . . . . .  z,) =I = 0 when the z i are away from certain 
regions of the complex plane. P(z 1 . . . . .  z,) is the grand partition function 
for a system having a different activity z i at each lattice site, it is a 
polynomial of first degree in each argument separately. 

Let A be a finite lattice subset and P the partition function for A 
with some given interaction between sites. The arguments of P are the z x 
with x ~ A and 

P =  Z e-~V~X) ~ zx 
XcA xaX  
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where U(X) is the energy corresponding to the occupation of the subset 
X of A. Suppose that A' and A" are two lattice subsets and P', P" the 
corresponding partition functions with energy functions U' and U". 
It will be convenient to denote by z' x the arguments of P' and by z~ the 
arguments of P". We consider the partition function P for A/w A" with 
energy U' + U": 

P =  ~ e-~V'(Xc~A'I-~"(XnA") 1~ Zx" 
X c A r u A  " x~X 

Asano remarked that P can be obtained from P' and P" by the following 
rules. 

(a) Take the product P'P". 
(b) I f  x 6  A' nA"  replace z' x or z'~ in the product by zx. 
(c) I f  x ~ A' c~A" contract z" and z" to z~: we start from a polynomial 

of first degree separately with respect to z'~ and z~, i.e., of the form 

a+bz'x+cz;; +dz'z'~ 

and contraction means replacing it by 

a + dz~. 

As it turns out the position of the zeroes of a .contracted polynomial 
is related to the position of the zeroes of the original polynomial, and 
therefore knowledge of the position of the zeroes of P' and P" yields some 
information on the zeroes of P. In Section 1 we shall present the relevant 
theorems on polynomials. In Section 2 we shall consider some 
applications. In Section 3 we shall look in more details at the situation 
originally considered by Lee and Yang, where the zeroes of Z(z) lie on 
the circle Iz[ = 1. 

1. General Theorems 

The results in this section are mostly not new, they are collected here 
for convenience. 

1.1. Theorem [17]. Let A', A" be finite sets and P', P" be polynomials 
with complex coefficients. The variables of U are z'~, with x ~ A', and 

2 ' 1-I ' p '  = c x Zx • 
XcA* x~X 

It is assumed that there exist closed subsets M~ of the complex plane such 
that 0 ¢ M~ and P' 4= 0 when 

z'~ q~ M~ for att x e A' . 

Similar assumptions hold for P'. Define 

P =  Z Clc~A'CXc~A" ~ Zx"  
XcA' w A" xEX 
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Then P 4:0 when i [Mx j o t  x ~ A ' \ A "  , 
! 

zx ~ 12 ~ for  x ~ A " \ A ' ,  

t- M~,M~' for  x ~ A'  c~A". 

To prove  this theorem,  one obtains  P f rom P'P"  by successive 
contract ions ,  apply ing  the following fact 

1.2. L e m m a  [17]. Let  M' ,  M "  be closed subsets of  the complex plane, 
not containing O. Suppose that the polynomial 

a + b z '  + c z "  + d z ' z "  

can vanish only when z' ~ M '  or z" ~ M", then 

a + d z  

can vanish only when z ~ - M ' M " .  

By successive appl icat ions  of 1.1 one gets informat ion  abou t  the 
zeroes of the po lynomia l  PA for a " la rge"  A f rom similar knowledge abou t  
po lynomia l s  PA~ with "smal l"  Ai. The  following result yields a start ing 
point.  

1.3. Theorem (GraceZ). Let  Q(z) be a polynomial o f  degree n with 
complex coefficients and P(z  1 . . . . .  z,) the only polynomial which is sym- 
metric in its arguments, o f  degree 1 in each, and such that 

e ( z  . . . . .  z) = Q(z) .  

I f  the roots o f  Q are all contained in a closed circular region M ,  and 
z 1 ¢ M . . . . .  z,  (~ M ,  then P(z  1 . . . . .  z,) 4: O, 

A circular region is the inside or outside of a circle, or a half  plane. 
We locate  first the zeroes of  Q in a trivial case. 

1.4. Lemma.  I f  a is real and [a[ __< 1, then the zeroes of  

have modulus 1. Q(z) = z 2 + 2az  + 1 

F r o m  this the Lee-Yang circle t heo rem follows: 

1.5. Theorem (Lee-Yang [12] 3). Given real numbers axy, for  x, y ~ A 
and x 4: y, such that laxrl <_ 1, 

(a) the polynomial 

XcA \ x ~ X  ] x~X y~A\X 

does not vanish when Iz~[ < 1 for  all x e A or when Iz~l > 1 Jor all x ~ A. 

1 Notation: - M'M" = { - z'z" : z' ~ M' and z" c M"}. 
2 See Polya u. Szeg6 [161 V, Exercise 145. 
3 The conclusions of this theorem hold under more general assumptions, see [2, 19], 

and Section 3 below. 
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(b) the polynomial 

Z(z)= Z zJX  I] I] 
XcA xeX yeA\X 

where IX] is the number of  points in X,  has all its zeroes on the unit circle. 

(a) is proved by applying Theorem 1.1 repeatedly to contract the 
product of all polynomials 

P{x,y}(Zx, zy) = ZxZy + axy(zx + z r) + 1. 

Because of 1.3, 1.4, one can take every set M to be the closed exterior of 
the unit circle. Therefore P 4:0 when tz:,] < 1 for all x e A. When [z~[ > 1 
for all x ~ A, then [z~-l[ < 1 and the symmetry of the polynomial gives 
again P 4= 0. (b) is an obvious consequence of (a). 

We note a result similar to Theorem 1.3 for the polynomials P 
satisfying the conclusions of the Lee-Yang circle theorem. 

1.6. Prolmsition. Let P(zl ,  ..., zn) be a complex polynomial which is 
different from 0 when [zi[ < 1, all i, and when [zil > 1, all i. Let 

Q(z) = P(z . . . .  , z). 

I f  the roots of  Q are all contained in a closed circular region M, and 
7-1 ¢ m . . . .  , z, ¢ M, then P( z l , . . . ,  z,) =i = O. 

This result is essentially contained in [13]. It can be proved by using 
the "double cone theorem" (see [3, 6]) and then performing the analytic 
completion of the union of two polydiscs 19]. 

1.7. Example. Let V ] / ~ -  1 < a < ¢]/ /2 + 1, then the polynomial 

P(zl ,  z2, z3, z4 ; a) = zl z2 z3 z4 

+ a 2 ( z 2  z 3 z 4 -4- z 1 z 3 z 4 -J- z 1 z 2 z 4 + z 1 z 2 z3)  
(1.2) 

~- a 2 (z  1 z 2 -~ z 2 z 3 -~ z 3 z 4 -~- z 4 z l )  -t- a 4 ( z l  z 3 -[- z 2 z4)  

+ aZ(zl + z 2 -iv z 3 -~ z4) --}- 1 

does not vanish when R e z l > 0 ,  Rez2>0,  Reza>0 ,  Rez4>0.  

If a < 1, P is of the type (1.1) and therefore, according to Propo- 
sition 1.6, it suffices to show that the roots of 

Q(z) = z 4 + 4a 2 z 3 + (4a 2 + 2a4)z 2 + 4a 2 z + 1 

are contained in {z : Re z < 0}, but this is clear from the fact that 

Q(z) = [z 2 + (2a 2 + [F22(1 - a2))z + 13 [z 2 + (2a 2 - V'2(1 - a2))z + 13. 

The case a >_ 1 is handled by noticing that 

a-4  z2 z~ P(zl ,  z~ 1, z3, z2 ~) = P(z~, z2, za, z , ;  a -  1). 
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The following fact will prove useful. 

1.8. Proposition. I f  the polynomials 

a,z ~ + a,_ + . . .  + ar z + a o 
n - 1  

and 
n 

have all their roots on the negative real axis, then the polynomial 

a , , b , z ~ + ( n n l ) a , . _ l b , . - ~ z ~ - l + ' " + ( ~ ) a l b l z + a o b o  

has all its roots on the negative real axis. 

This is a direct consequence of a theorem of Szeg6 4 We shall use it 
to locate the zeroes of a polynomial Q of the type appearing in Theo- 
rem 1.3. 

1.9. Proposition. I f  ~ > O, all the roots of the polynomial 

e - ~  ~ -  z k 

k k are real and negative. 

Clearly the polynomial 

k(k 2 1)~)zk 

n ( n -  1) az2( 1 + z)~_ z 
=(1 + z y  2 

2 " 

has all its roots real and negative for small ct > 0. 
Using N times Proposition 1.8 we find that 

~=0 N 2 c~ z k 

has all its roots real and negative for small c(/N > 0. It remains to let 
N--* oo to prove the proposition. 

1.10. Example. The polynomial 

P(zl ,  z2, z3, z4) = 1 + zl + z2 + z3 + z4 + zl z3 + z2 z4 

does not vanish when 
z 1, z2, z3, z 4 • M = {x + iy" y2 >_>= x2 _}_ 2x + 1}. 

4 See Polya and Szeg6 [163, V, Exercise 151. 
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This result is due to Runnels and Hubbard [18] and is obtained by 
noticing that P + 0 if 

Re(½+zl  + z 3 + z l z 3 ) > O  and Re(½+z2+z4+z2z4)>O.  

The idea of this proof is quite different from the earlier considerations 
in this section, and might have other applications. 

2. Applications to Statistical Mechanics 

The use of the Lee-Yang circle theorem for ferromagnetic spin 
systems is welt-known [20, t2], and the application of Theorem 1.t to 
lattice gases has been described in [17, 18]. We indicate here some 
further results. 

2.1. Proposition. Let 2J be the interaction energy between a + and a - 
spin at neighbouri~gt sites in a 2-dimensional Ising model (interaction 0 Jbr 
+ + and - - pairs). For the square lattice the free energy is an analytic 
function of the magnetic field H when 

½ log(]/~ - 1) < 2[~J < ½ log(l//2 + 1). 

For the triangular lattice the free energy is an analytic function of H when 

0 < 211J < ½ log~ 

(notice that the exact critical temperature for H = 0 is known to be given 
by 2/~lJI = log( I f2+ 1) for a square lattice and by 2/?J-½1og3 for a 
triangular lattice). 

Decomposing the square lattice into squares (see Fig. 1), we can 
obtain the Ising partition function by contracting a product of poly- 
nomials of the form (1.2) (we write a =  e -2p J, z=  ePiC). The proposition 
follows then from Theorem 1.1 and Example 1.7. The triangular lattice 
is similarly decomposed into triangles (Fig. 2). In view of Theorems 1.3 
and t.5, we 

Fig. 1 Fig. 2 
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only have to show that the zeroes of 

Q(Z)  = Z 3 -t- 3 2 2 a  2 -1- 3za 2 + 1 

are not in the angular region 

27r 
]argzl < 

= 3 

This is checked immediately, since 

Q(z) = (z + 1)(z 2 + (3a z - 1)z + 1). 

2.2. Theorem (Heilmann [10]). Let Z be a line graph, i.e. Z can be 
decomposed into finite subgraphs Z~ and 

(a) Zi consists of" all line segments joining n~ vertices 
(b) each vertex of Z belongs to only two different Zi. 
Consider a lattice gas with repulsive interactions between nearest 

neighbours on Z. We assume that the interaction energies are the same on 
the bounds of the same subgraph Zi, they may otherwise be different. 
Under these conditions the thermodynamic functions are analytic in the 
activity z for z outside the negative real axis. 

The following proof of Heilmann's theorem is based upon an idea of 
Runnels and Hubbard  [18]. Let P/(z 1 . . . . .  z,) be the grand partition 
function for the subgraph Zi. By Theorem 1.3 and Proposition 1.9, 
Pi(zl . . . . .  z,) + 0 when z~ ~ Mo for all i, where 

M o = {z : Ime~°(z + c) <= 0} 

for some c > 0 and - ~ < 0 < -~-. Therefore, by Theorem t.1, the grand 

partition function for a subgraph of Z consisting of a finite union of 
subgraphs Z i has no zero when argz x = 20 for all vertices x. Taking all 
z x equal we find that the grand partition function vanishes only for z 
real and negative. 

2.3. Remarks. (a) The limit of nearest neighbour exclusion corre- 
sponds to the monomer-dimer problem treated by Heilmann and 
Lieb [11]. 

(b) If a line segment with attractive interaction is inserted between 
every pair of subgraphs Zi which had originally a vertex in common, 
the thermodynamic functions remain analytic in z for R e z > 0 .  This is 
because the zeroes of the grand partition function of the attractive line 
segments have negative real part. This applies for instance to the graph 
of Fig. 3, where the heavy lines correspond to attractive interactions. 
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2.4. Proposition 5. Let  2J  be the interaction energy between a + and 
a - spin at neighbouring sites in the 2-dimensional square Ising model 
(interaction 0 for  + + and - - pairs). I f  H = O, the free energy is an 
analytic function o f  e -2~s for  all complex e - g ~  such that [e-2Ps[ 
< 

With appropriate boundary conditions (all spins + on the boundary), 
the partition function is a polynomial in z =  e -2~J, the coefficient of 
z n being the number of closed polygons of length n on the dual lattice. 
This polynomial can be obtained by contracting the product of poly- 
nomials Px corresponding to the vertices of the dual lattice. Px is a 
polynomial in the variables zi corresponding to the four bounds leading 
to x: 

P(z l  , z2, za, z4) = zl z2 za z4 + zl z2 + z2 z3 + z3 z ,  + z 4 z 1 

+ z i z  3 + z2z4 + 1. 

By Theorem 1.3, Px is different from zero if z 1 ~ M . . . . .  z,  ~ M, where M 
is a closed circular region containing the roots of 

Q ( z ) = z  4 + 6 z  2+ 1, 

i.e. _i(V2_+ 1). Therefore, b~_ Theorem 1.1, the partition function is 
different from 0 when [z[ < (V 2 - 1) 2 6. 

2.5. Remarks. (a) It has been conjectured that the zeroes of the 
partition function in the above proposition lie asymptotically on the 
two circles Iz_ 1[= ]//2. This conjecture (see Fisher [71) is supported by 
numerical evidence (see [1]). Notice that 2.4 follows from Onsager's 
exact solution, but that extensions of the above proof to other lattices are 
possible. 

5 T h e  i d e a  o f  t h i s  p r o p o s i t i o n  is  d u e  to  M i r a c l e - S o l e  [14] .  

6 W e  m a y  a l so  n o t i c e  t h a t  2 P  = (z 1 + 1) (z 2 + 1) (z 3 + 1) (z 4 + 1) + (z 1 - 1) (z 2 - 1) (z 3 - 1) 

• (z 4 - 1) a n d  t h e r e f o r e  P 4 = 0 w h e n  - ~ -  < a r g  [(z~ - 1 ) / ( z /+  1)] < ~ -  for  i = 1, 2, 3, 4. T h i s  

y i e l d s  a s l i g h t  e x t e n s i o n  o f  t h e  r e g i o n  tzl < (]//2 - 1) 2. 



Zeroes of the Partition Function 273 

(b) Consider a 2-dimensional square Ising antiferromagnet. For 
large /3 and sufficiently small ]HI, there exist at least two different 
equilibrium states (see Dobrushin [5] and also [8, 4]). It is now also 
known that the grand partition function is free from zeroes in this region. 
(Brascamp and Kunz, private communication). 

(c) More generally, one would like to know if the zeroes of the grand 
partition function tend to stay on lines which intersect the positive real 
axis at a few points, as suggested by Lee and Yang [20], or if they behave 
in other ways (filling 2-dimensional regions or clustering on the positive 
real axis). One dimensional systems with finite range forces can be 
handled (see for instance [15] and references quoted there) but are of 
limited interest since they do not exhibit phase transitions. 

3. Complements to the Lee-Yang Theorem 

The main purpose of this section is to show that the conclusions of the 
Lee-Yang circle theorem remain valid under small even (many-body) 
perturbations of the interaction. For a precise statement see Proposi- 
tion 3.8. We start with some general results closely related to the work 
of Asano [2] and Suzuki-Fisher [19]. 

We shall use the notation 

] D = { ~ e C : I ~ I <  1}, 0 D = { ~ e C : I ~ ] - -  1}. 

Let P be a complex polynomial in several variables which is of degree 1 
with respect to each, i.e., A is a finite set and 

P(z2= E cx zx 
X c A  

where za = (zx)x~a, z x =  1-[ zx. We introduce the condition 
x ~ X  

(A) I f  z a e ]D IAI and P(za)  = O, then z a e @]I)) tal. 

Let now P* be defined by P*(zA)= ~ C]\xZ x where * denotes 
X c A  

complex conjugation. Notice that 

[p(zA)]* = ~ C]\xZ.A\x  = z . A p t ( z . -  1). (3.1) 
X c A  

For any complex co such that [col = 1, the mapping P--. co p t  is involutory: 
co(coP*)*= P. Having chosen co we introduce the condition 

(B) P = coP*. 

In the applications to statistical mechanics, co = 1 and the c x are 
real so that (B) reduces to 

C X = CA\  X • 
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3.1. Proposition. When I C A, define 

A<X)(zl) = Z cx z~. 
XcI  

I f  P satisfies (A) and 1 4= A, A (x) does not vanish on ]D II1. 

We have A(X)(zx)= P(za) where ~ = z~ for x ~ I and ~x = 0 for x ¢ I. 
When z~ ~E) III we have ZA ~]DIAi, Za 6 (~]D) IAI and the lemma follows, 

3.2. Proposition. Let I, K, {u} be pairwise disjoint, and 

R(zx~ ~.}) = A(zI) + B(zx)z. 

S(zr ~{.}) = C(zK) + D(zK)z. . 
Define 

P(zI~K~.~ ) = A(zl) C(zr) + B(zx) D(zK) z. .  

I f  R and S satisfy (A), then P satisfies (A). 

Let zx~Kul.~e]D I~I+IKI+* and P(zx~K~{.))=0. If R,S  satisfy (A) 
we have 

IB(zi)/A(zx) I <= 1, ID(zK)/C(zK) I <= 1 

with equality only if z I e (3]D) lII, z~: e (~]D) l~I. This is compatible with 

B(zx) D(zr) 
l < l z ; ~ l =  

A(zx) C(zK) 

only if zx .r .~ .  1 ~ (OLD) Izl+lKl+ 1. 

3.3. Proposition. Let I, {u}, {v} be pairwise disjoint and 

R (z x u ~.)u {~1) = A (zx) + B(zx)z. + C(z~)z~ + O(zx)z. z v . 

Define 
P(z~ {.j)= A(zi) + D(z3 z. 

If' R satisfies (A), then P satisfies (A). 

Let zx~{.}e~ IIl+~ and P(zx~{.~)=0. If R satisfies (A), the two roots 
of the equation 

A(z~) + [B(zx) + C(zl)] z + D(zi) z 2 = 0 

are > 1 in absolute value. Therefore 

IO(zi)/A(zx) [ <= 1 

and the inequality is strict unless z x E (3~)) Ixl. This is compatible with 

1 < Iz; 1] = D!zx) 
A(zi) 

only if zx~. ~ ~ (•]D) fII+ 1 
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3.4. Proposition. Let  A = I w {u}: P satisfies (B) /f and only f one 

can write P(zA) = A(zx) + coAt(z1) z , .  (3.2) 

Let a x =  Cx and bx=cx~(,~ for X CI.  (B) is equivalent to cxu( ,  ~ 
-COCA\(X~(,~ ), or to Cx~(u ~ = coC*\x or to bx = coa*\x, or to (3.2). 

3.5. Corollary. If ,  in Proposition 3.?, R and S satisfy (B) with para- 
meters o91, co2 then P satisfies (B) with parameter col co2. I f  in Proposi- 
tion 33,  R satisfies (B) with parameter co, P satisfies (B) with the same 
parameter co. 

3.6. Proposition. Let  P satisfy (B) and write 

P(ZA) = Au(ZA\{u}) + coACu(ZA~{u}) Zu. 

Then (A) is equivalent to. 
(c) For all u ~ A,  A u does not vanish on K) IAI - 1 

The implication (A)=~(c) follows from Proposition 3.1. If (c) holds, 
then f , = - c o A ~ / A ,  is analytic on lD jal-1 and therefore reaches its 
maximum on (c3]D) lal- i. But, for ZA\~, ~ ~ (3]D) law- 1, (3.1) yields 

Au(Z A\iu}) 

Therefore if P ( z a ) =  0 and z a e ]D tat, we have 

1 ___ Ifu(ZA\i.~)i = Iz2~l  >_- 1 

so that z, e c3]D, proving (A). 

3.7. Corollary. The set o f  polynomials satisfying (A), (B) is open in 
the set o f  polynomials satisfying (B). 

t f P  satisfies (A), (B), there exists e > 0 such that iA,(zA\(,~) l > e for all u 
and ZA\(,~E)IAt-~ (by compactness of ]DIAl-I). Therefore (c) remains 
true for polynomials close to P. 

3.8. Proposition. Consider a spin system on the lattice ~ ,  and let ~,  
7 j be two translation invariant interactions. The energy of  a configuration 
cr = (cr~)~ A o f  spins cr~ = +_ 1 in the f inite region A C Z ~ is given by 

ug+,.~,(,~)= y.  Eq'( ........ ~)(o-,,~, .... % ) + , ~ 7 , (  ........ ~ ( %  . . . . .  % ) 2 .  
{x 1 ..... Xk}cA 

We assume that • and 71 satisfy the following conditions 
(a) The only components o f  ~ which do not vanish are ~b( . . . .  ~)(a~, cr~) 

= (p(x2 - x~) x (1 - cr~ a~). Also, ¢p > O, i.e., • is a ferromagnetic pair 
interaction. Furthermore ~ cp(x) < + o% and the lattice ;E v is connected 

x~O 
by the bonds xx - x 2  such that cp(x2- x l ) >  0 (this means that for  any 
x, y ~ Z ~ there is a chain x = xo, x~, . . . ,  x ,  = y such that ~o(x,, - xm- ~) > 0 
for  m =  l . . . .  ,n ) .  
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(b) T has finite range (i.e. there is a finite set A C2U such that 
T(xl ..... xk)(ax . . . . . .  axk) = 0 unless x i - x 1 e A for i = 2 . . . . .  k and 

T(~I ..... ~)(1,.. . ,  1 ) = 0 ,  

7'(~, ..... ~k)(%, .... % )  -- 7~( ........ ~)(- % . . . . .  - % )  

(the last property expresses that the interaction T is even). 
Under these conditions, one can construct V d~fering from L~+~,~, 

by a boundary term (without effect in the thermodynamic limit) and  choose 
e > 0 ( for  given fl > O) so that the zeroes of  the partition function 

~i Y" ~x+ l) e_~V(~ ) ZA(Z) = Z z "~a 
cr 

have absolute value 1 when [21 < ~. 

We want to prove that Z a can be obtained by contraction of a 
product of polynomials Pi satisfying conditions (A) and (B). Given 
x e T ~' let t 

Z Z - -  . . . . . .  . . . . .  % ) -  
k {x, xz,...,xk}Cx+A k 

Then, apart from boundary terms, U~(a) is equal to 

2 B~, x(a). 
x e A  

Let now F be a finite subset of 2U containing A and which is connected 
by bonds x 1 - x a such that q~(x2 - Xl) > 0. If N is the number of points 
of F, let 1 

Av, x(a) = ~ -  ~, (p(x2 - xl) x (1 - a~ a~:) 
{xl, x2}Cx + F 

then, apart from boundary terms Ug(o-) is equal to 

x e A  

where the energy function W is derived from a ferromagnetic pair 
interaction. Up to boundary terms, A U , + ~  is thus equal to 

V=  ~ (Ae, x+2B~,,~)+ W. 
x e A  

The partition function P~ for the region x + F, constructed with the 
energy A , , x + 2 B , e , x  satisfies (B) with co= 1. So does the partition 
function P' constructed with the energy W. By Proposition 3.2 and 
Proposition 3.3, when 2 = 0, Px satisfies (A). By Corollary 3.7 there is thus 

> 0  such that Px satisfies (A) when 121 < e. On the other hand P' is a 
limit of partition functions satisfying (A). Since Za is obtained by contrac- 
tion from the product of P' and the P~, it is (by 3.2 and 3.3) a limit of 
partition functions satisfying (A), and therefore ZA(Z)= 0 implies [zl = 1. 
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