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SOME REMARKS ON THE MECHANICAL THEORY OF FLUID MIXTURES*

By MORTON E. GURTIN (Carnegie-Mellon University)

1. Introduction. In a recent paper [1], Miiller established a general thermodynamical
theory of fluid mixtures based on Truesdell's equations of balance (see, e.g., [2, Sees. 159,
215, 243]) and the Coleman-Noll [3] interpretation of the Clausius-Duhem inequality.
Miiller's theory, which was the first of its type to allow density gradients to enter the
constitutive relations, is in complete agreement with classical thermochemistry, in
contrast to previous theories in which such a dependence was not allowed.

Here I show that the corresponding inviscid, purely mechanical theory has the
following interesting property: the linearized equations of the theory are hyperbolic, but
in the nonlinear theory if the constituent stresses depend on the density gradients, the
equations in general are not hyperbolic. Thus, roughly speaking, infinitesmal disturbances
in concentration travel with finite speed, but finite disturbances generally do not. In
fact, I prove that acceleration waves of arbitrary amplitude and direction are possible
only when the stresses are independent of the density gradients.1 (See also [6].)

A theory similar to the one studied here was developed by Green and Adkins [4];
however, in their theory density gradients were omitted from the outset.2

2. Basic equations. We consider a mixture of N constituents (a = 1, • • •, AO; in
the absence of chemical reactions the balance laws for mass and linear momentum take
the form (see, e.g., [2, Sees. 159, 215]):

p„' + div (pav0) = 0,
(l)3

PaVa + Pa (grad vjv0 = div Ta + la + ba .

Here pa is the mass density of constituent a, va is the velocity of a, T„ is the stress
tensor for a, la is the momentum supply for a, and b„ is the body force on a. The total
momentum supplied to the mixture must vanish; thus we add the requirement that
(see, e.g., [2, Eq. (215.5)]):

Z 1„ = o. (2)
The total mass density p, the concentration ca of a, the velocity v of the mixture, and

* Received June 20, 1971.
1 Bowen informs me that in his theory of fluid mixtures the stress is independent of the density

gradients when the diffusion velocities vanish. Thus acceleration waves can exist in that theory when
the region ahead of the wave is not undergoing diffusion. This, of course, does not contradict the results
given here.

* See also Bowen and Doria [7], who study the effects of diffusion on acceleration waves in gases.
In their theory density gradients are not present in the constitutive equations.

» Here and in what follows a prime denotes the spatial time derivative, grad and div denote the
spatial gradient and spatial divergence, and A denotes the spatial Laplacian.
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the diffusion velocity ua of a are defined by

P = E Pa > C« = pJp, V = E , U„ = V„ — V. (3)
We consider fluid mixtures defined by constitutive relations of the form (cf. [1,

Eq. (4.2)]):

T„ = T„(p, grad p, u), 1„ = la(p, grad p, u), (4)

where

P = (Pi , ' • * , Pn), grad p = (grad pi , • • • , grad pN), u = (Uj , • • • , uA).

Further, since the constituents are fluids, we assume that Ta and la are isotropic functions.
3. Wave propagation in the linearized theory. Let ply • • •, pN be given constant

values of the constituent densities, and suppose that the following quantities are small:
|p« — Pol > \p a I > |grad pa| , |vj , |ys'l , |grad v„| . Then ''to within second-order terms"
the constitutive relations (4) reduce to

Ta ~~pal, pa ^' Aap(pp pp),

(5)
= - Z) {Cat grad pfl + Da^if},

f

where Aat , Caf , and Da0 are constants and

E = E Daf = 0. (6)
a «

The derivation of (5) and (6) makes use of (2) and the assumed isotropy of the material.
Further, to the same degree of approximation the field equations (1) have the form

p0' + pa div va = 0, p„v„' = -grad pa + 1„ + ba , (7)

while

V = E c«v, , c. = pa/p, P = E Pa • (8)

Eqs. (5) and (7), supplemented by (3)4 , (6) and (8), constitute the basic field equations
of the linearized theory.

By (7)i and (8), p' + p div v = 0, and this result, (3)4 , (7)l , and (8)2 imply

p« div u, = -p„' + ca/. (9)

If we take the time derivative of (7)i and the divergence of (7)2 , we conclude, with the
aid of (5),., and (9), that (cf. [4, Eq. (6.4)])

p'.' = p- E L.t Apf — E ^ (pi - c,p') - div b, , (10)
$ e Pf

where

L„ = - [Aat + Caf}. (11)
Pa

If ||Lap|| is symmetric4 and positive definite, then (10) is hyperbolic and hence admits

4 Gurtin [5, Corollary 5.1] has shown that the symmetry of |]La^|| is a consequence of the second law.
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discontinuous solutions of all orders. Moreover, if aa is the amplitude and U the speed
of propagation of such a disturbance, then

E = — U2aa . (12)
0 Pa

We shall show in the next section that, in contrast to the linear theory, discontinuous
solutions are in general not possible in the nonlinear theory.

It is of interest to note that, by (5)3 and (11), 1„ is independent of grad p (in the
linear theory) if and only if

Lap = — Aaf . (13)
Pa

It may be possible to determine Aaff without using the results of wave propagation
experiments. If this is done, and if the propagation speeds are measured, then (12) can
be used to determine whether or not (13) holds, and hence whether or not 1„ depends
on grad p.

4. Wave propagation in the nonlinear theory. Consider the system of partial
differential equations (1), (4) for p„ and v„ . If T„ depends on grad p, then the term
div Ta will involve grad2 p; thus this system of equations will in general be nonhyperbolic.
This is in contrast to the linear theory in which the equations are hyperbolic. Of course,
as is clear from (5)i,2 , the stress in the linear theory is independent of grad p.

From the discussion given in the preceding paragraph one would expect that accelera-
tion waves of arbitrary amplitude and direction are not possible when T„ depends on
grad p. We now show that this conjecture is correct. An acceleration wave for the mixture
is defined exactly as for a single body. Thus across such a wave [2, Sec. 190]:

p and u are continuous,
grad p suffers a jump discontinuity.

In addition, if n denotes the direction of propagation, we also have the dynamical condi-
tion of compatibility [2, Eq. (205.5)]:

[T„]n = 0, (14)

where [T«] denotes the jump in Ta across the wave. We define the amplitude of the
wave (at a given point) to be the array {p, u, (grad p)~, (grad p) + }, where pa and u„
denote the values of the density and diffusion velocity of a at the wave, while (grad pa)~
and (grad pa)* denote the values of the density gradient for a immediately behind and
just in front of the wave. By (4), and (14),

Ta(p, (grad p)~, u)n = T„(p, (grad p)+, u)n,

and this relation implies the following

Theorem: If (at a given point in the mixture) an acceleration wave of arbitrary ampli-
tude and direction is possible, then the stress for each constituent must be independent of
the density gradient; i.e., (4)t must reduce to

Ta = T„(p, u).

I conjecture that the presence of grad p leads to "structured waves" whose thickness
is of the order of |grad p| .
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