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Abstract. We propose a variational approach to the method of moving planes
which easily applies to quasilinear equations of type (1-1) with f locally Lipschitz
continuous. To do this we use a characterization of Lipschitz continuous func-
tions which allows us to get symmetry results without writing an equation for the
di↵erence between the solution and its reflection.

1. Introduction, notations and statement of the results. In a
famous paper Gidas, Ni and Nirenberg [4] investigated, using the technique
of “moving planes”, properties of symmetry and monotonicity of classical
solutions to elliptic problems. More recently, the method has been substan-
tially simplified by Berestycki and Nirenberg [1] with the aid of a form of
the maximum principle in small domains due to Varadhan and based on the
Alexandrov-Bakelman-Pucci’s inequality. This new approach allows us to
get symmetry results for classical or strong solutions to fully nonlinear ellip-
tic equations in general domains (i.e., without supposing any smoothness of
the boundary). The same tool is applied by the authors to improve also the
so called sliding method to get monotonicity results in general domains.

The aim of this note is to propose a variational approach to the method
of moving planes which is elementary and does not rely on the Alexandrov-
Bakelman-Pucci’s inequality. However we also exploit the idea of Berestycki
and Nirenberg that to conclude the procedure it is enough to know how to
deal with domains of small measure.

The method applies to weak solutions of nonlinear elliptic equations in
divergence form in general domains and is based on comparison principles
for nonlinear operators. This allows us to compare the solution u and its
reflection u� (see notations that follow) without being forced to write an
equation for the di↵erence and hence applies nicely to nonlinear operators
such as (1-1). This is mainly due to the fact that we split the nonlinearity f
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as the sum of a linear term and a monotone function. The same technique
also works for the sliding method to get monotonicity results.

Since the aim of this paper is to give an idea of what ingredients are
needed in our approach, we limit ourselves to the case of the solutions to the
following problem

⇢�divA(x,ru) = f(x, u) , u > 0 in ⌦
u = 0 on @⌦,

(1-1)

where we make the following assumptions on A = (A1, . . . , AN ) and f .
For j = 1 . . . n, Aj is a Caratheodory function of (x, ⌘) 2 ⌦ ⇥ RN , i.e.,

measurable in x and continuous in ⌘, with Aj(x, .) 2 C1(RN \ {0}) and

Aj(x, 0) = 0 (1-2)
|Aj(x, ⌘)|  c1(1 + |⌘|) (1-3)

NX
i,j=1

|@Aj

@⌘i
(x, ⌘)|  c2 (1-4)

NX
i,j=1

@Aj

@⌘i
(x, ⌘)⇠i⇠j � ↵|⇠|2 (1-5)

for x 2 ⌦, ⌘ 2 RN \ {0} and suitable positive constants c1, c2,↵.
f 2 C(⌦⇥ RN ) satisfies
8><
>:
8M > 09⇤i = ⇤i(M) � 0, i = 1, 2 such that for x fixed in ⌦ :

g1(x, s) = f(x, s) + ⇤1s is nondecreasing in s 2 [0,M ]
g2(x, s) = f(x, s)� ⇤2s is nonincreasing in s 2 [0,M ].

(1-6)

Note that the condition (1-6) is equivalent to require that f is locally Lip-
schitz continuous in s uniformly in x. In order to state the result we introduce
some more notations.

Let n be a fixed direction in RN and for � 2 R let T� be the hyperplane

T� = {x 2 RN : x · n = �}, (1-7)

where the dot stands for scalar product in RN . Let us indicate with R� :
RN ! RN the reflection through T�:

R�(x) = x + 2(�� x · n)n. (1-8)
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If v is a C1 (or H1) function RN ! R, we define

v�(x) = v(x�), where x� = R�(x) (1-9)

and we note that v� 2 C1 (or H1) with rv�(x) = R0(rv(x�)). In our
result, ⌦ will be a bounded domain which is convex in the n�direction and
symmetric with respect to T0; for such a domain we put

⌦� = {x 2 ⌦ : x · n < �}, ⌦0� = R�(⌦�) (1-10)

and note that if �b = infx2⌦x · n < �  0 then ⌦� 6= ;, ⌦0� ✓ ⌦ and
⌦ \ T0 = ⌦0 [ ⌦00. The symmetry and monotonicity properties we assume
on A and f are the following:

A(x, ⌘) = A(x� (x · n)n, ⌘) if x 2 ⌦, ⌘ 2 RN (1-11)

A(x,R0(⌘)) = R0(A(x, ⌘)) if x 2 ⌦, ⌘ 2 RN (1-12)

f(x, s) = f(R0(x), s) if x 2 ⌦0, s 2 R (1-13)

f(x, s)  f(x�, s) if � < 0, x 2 ⌦�, s 2 R (1-14)

If, for instance n = (1, 0, . . . , 0), then (1-11)–(1-14) mean that A(x, ⌘) is
independent of x1 with A1 odd in ⌘1 and Aj even in ⌘1 for j > 1, while
f(x, s) is even in x1 and nondecreasing in x1 for x1 < 0.

The result we get is the following:

Theorem 1-1. Let ⌦ be a bounded domain in RN which is convex in a
direction n and symmetric with respect to the hyperplane T0 = {x 2 RN :
x ·n = 0}. Let us suppose that A and f satisfy the hypotheses (1-2)–(1-6) as
well as (1-11)–(1-14). If u 2 H1

0 (⌦)\C(⌦) is a weak solution to the problem
(1-1) (with u = 0 pointwise on @⌦), then u is symmetric with respect to T0;
i.e., u(x) = u(R0(x)) if x 2 ⌦0, and u(x) < u(x�) if x 2 ⌦�,� < 0.

An immediate consequence of Theorem 1-1 is the following

Corollary 1-1. Let ⌦ be a ball and u 2 H1
0 (⌦) \ C(⌦) be a weak solution

to the problem (1-1), where A and f satisfy (1-2)–(1-6) and have the form
A(x, ⌘) = a(|⌘|)⌘, f(x, s) = f1(|x|, s) with f1(r, s) nonincreasing in r. Then
u is radial and radial decreasing.

The method works also for operators with di↵erent growth conditions,
provided the (weak) solutions are more regular. For instance, we can prove
the following result about the operator approximating the p-Laplacian op-
erator which extends to weak solutions of a proposition in [6]:
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Theorem 1-2. Let u 2 C1(⌦) be a weak solution to the problem
(
�div

⇣
(✏+ |ru|2) p�2

2 ru
⌘

= f(x, u) , u > 0 in ⌦

u = 0 on @⌦,
(1-15)

where ✏ > 0, 1 < p < 1. If ⌦, f satisfy the assumptions in Theorem 1-1,
then the conclusions of the Theorem hold.

In a forthcoming paper [3] we apply the technique developed here to study
the symmetry and monotonicity of positive weak solutions of some problems
which involve more general quasilinear operators in divergence form that
can also be degenerate. This class of operators includes the p- Laplacian,
1 < p < 1.

The paper is organized as follows: in Section 2 we state and prove the
comparison theorems needed in the proofs of Theorems 1-1 and 1-2, that
follow in Section 3.

2. Preliminaries. Throughout this section, ⌦ will be a bounded open
set in RN , A : ⌦ ⇥ RN ! RN a function verifying conditions (1-2)–(1-5),
and g : ⌦⇥ R ! R a continuous function.

If u 2 H1(⌦)\L1(⌦) and ⇤ 2 R, we say that u satisfies (in a weak sense)
the inequality

�div A(x,ru) + ⇤u  g(x, u) in ⌦

if for each ' 2 C1
c (⌦),' � 0, we have

Z
⌦
[A(x,ru) ·r'+ ⇤u'] dx 

Z
⌦

g(x, u)' dx. (2-1)

Since u 2 L1(⌦), g is continuous and A satisfies (1-3), the inequality (2-1)
is still true if ' 2 H1

0 (⌦),' � 0.
If u, v 2 H1(⌦), we say that u  v on @⌦ (in the weak sense) if (u�v)+ 2

H1
0 (⌦). Recall that if u, v 2 H1(⌦)\C(⌦) and u  v pointwise on @⌦, then

u  v on @⌦ in the weak sense (see [2], page 172).
Let us recall the following form of the Poincaré inequality (see [5], page

164): Z
⌦
|�|2 dx 

✓
|⌦|
!N

◆ 2
N

Z
⌦
|r�|2 dx 8� 2 H1

0 (⌦) (2-2)

where |.| stands for N-dimensional Lebesgue measure and !N = |B(1, 0)|. In
[4] (2-2) is proved for ⌦ a bounded domain but if ⌦ is a bounded open set
it has at most countably many components so that (2-2) is still true.
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Theorem 2-1 (Weak comparison principle). Let u, v 2 H1(⌦)\L1(⌦) and
let us suppose that for |s|  max{kuk1, kvk1} g(x, s) is nonincreasing in s
and that for ⇤ 2 R, ⌦0 open ✓ ⌦ :

u  v on @⌦0 (2-3)
(
�divA(x,ru) + ⇤u  g(x, u) in ⌦0

�divA(x,rv) + ⇤v � g(x, v) in ⌦0
(2-4)

(1) If ⇤ � 0, then u  v in ⌦0 (whatever ⌦0 ✓ ⌦)

(2) If ⇤ < 0 and |⇤|
⇣

|⌦0|
!N

⌘ 2
N

< ↵ (↵ being defined in 1-5), then u  v

in ⌦0.

Proof. Since Aj(x, .) 2 C(RN )\C1(RN \{0}) and (1-2) and (1-4) hold, we
have that

NX
j=1

[Aj(x, ⌘)�Aj(x, ⇣)][⌘j�⇣j ] =
Z 1

0

NX
i,j=1

@Aj

@⌘i
[⇣+t(⌘�⇣)][⌘i�⇣i][⌘j�⇣j ] dt

so that by (1-5),

NX
j=1

[Aj(x, ⌘)�Aj(x, ⇣)][⌘j � ⇣j ] � ↵|⌘ � ⇣|2. (2-5)

By hypothesis (u � v)+ 2 H1
0 (⌦0), so it can be used as a test function in

(2-1). Since g(x, u)  g(x, v), if u � v we get, with [u � v] = {x 2 ⌦0 :
u(x) � v(x)}:

Z
[u�v]

h NX
j=1

Aj(x,ru)(
@(u� v)
@xj

) + ⇤u(u� v)
i
dx


Z

[u�v]
g(x, u)(u� v) dx 

Z
[u�v]

g(x, v)(u� v) dx


Z

[u�v]

h NX
j=1

Aj(x,rv)
@(u� v)
@xj

+ ⇤v(u� v)
i
dx.

If ⇤ � 0, we get from (2-5)

↵

Z
[u�v]

|r(u� v)|2  ⇤
Z

[u�v]
(v � u)(u� v) dx  0;
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i.e., ↵k(u� v)+k2H1
0 (⌦0)  0, so that (u� v)+ = 0 and u  v in ⌦0.

If ⇤ < 0, we get from (2-5) and (2-2)

↵

Z
⌦0

|r(u� v)+|2dx  |⇤|
Z

⌦0

⇥
(u� v)+

⇤2
dx

 |⇤|
✓

|⌦0|
!N

◆ 2
N

Z
⌦0

|r(u� v)+|2dx

from which we easily conclude. ⇤

Theorem 2-2 (Strong comparison principle). Suppose u, v 2 H1(⌦)\C(⌦)
satisfy for ⇤ � 0

u  v, �divA(x,ru) + ⇤u  �divA(x,rv) + ⇤v in ⌦.

If u(x0) = v(x0) for x0 2 ⌦, then u ⌘ v in the component of ⌦ containing
x0.

Remark. The conclusion is true also if ⇤ < 0 since being u  v, we have

�divA(x,ru)  �divA(x,rv) + ⇤(v � u)  �divA(x,rv)

in this case.

Proof. If ' 2 H1
0 (⌦),' � 0, by hypothesis (u� v)  0 in ⌦ and

0 �
Z

⌦

NX
j=1

[Aj(x,ru)�Aj(x,rv)]
@'

@xj
dx + ⇤

Z
⌦
(u� v)' dx

=
Z

⌦

NX
i,j=1

h Z 1

0

@Aj

@⌘i
(x,rv + t(ru�rv)) dt

i@(u� v)
@xi

@'

@xj
dx

+ ⇤
Z

⌦
(u� v)' dx.

So if we put

aij(x) =
Z 1

0

@Aj

@⌘i
(x,rv(x) + t(ru(x)�rv(x))) dt,

then aij 2 L1(⌦) by (1-4),
PN

i,j=1 aij(x)⇠i⇠j � ↵|⇠|2 by (1-5), and

�
NX

i,j=1

@

@xj

⇥
aij

@(u� v)
@xi

⇤
+ ⇤(u� v)  0 in ⌦
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in the weak sense, with u� v  0 in ⌦.
If u(x0) = v(x0), with x0 2 ⌦, then supB(u� v) = sup⌦(u� v) = 0 for

every ball B around x0 since u and v are continuous in ⌦. The conclusion
of the Theorem then follows from Theorem 8.19 in [5] (Strong maximum
principle for weak solutions of elliptic di↵erential inequalities). ⇤

3. Proof of Theorems 1-1 and 1-2.

Proof of Theorem 1-1. Let us fix ⇤1(M),⇤2(M) so that (1-6) holds with
M = kuk1. With the notations of Section 1, if �b < � < 0, then u� satisfy,
in the weak sense, the equation

�divA(x,ru�) = f(x�, u�) in ⌦�. (3-1)

In fact, by (1-11), (1-12) if x 2 ⌦�, we have that

A(x,ru�(x)) = A(x�,ru�(x)) = A(x�, R0[ru(x�)]) = R0[A(x�,ru(x�)].

If ' 2 C1
c (⌦�) and  (y) = '(y�) for y 2 ⌦0�, then  2 C1

c (⌦0�) ✓ C1
c (⌦),

'(x) =  (x�) =  �(x) if x 2 ⌦� and we get
Z

⌦�

A(x,ru�(x)) .r'(x) dx =
Z

⌦�

R0 A(x�,ru(x�)) .R0r (x�) dx

Z
⌦�

A(x�,ru(x�)) .r (x�)dx =
Z

⌦0
�

A(y,ru(y)) .r (y) dy

=
Z

⌦0
�

f(y, u(y)) (y) dy =
Z

⌦�

f(x�, u�(x))'(x) dx

so that (3-1) holds. Since (1-14) and (1-6) holds we have that in ⌦:
(
�div A(x,ru�)� ⇤2u� � f(x, u�)� ⇤2u� = g2(x, u�)
�div A(x,ru)� ⇤2u = f(x, u)� ⇤2u = g2(x, u)

with g2(x, .) nonincreasing in the range of values of u, u�. If � > �b, � is
close to �b, then |⌦�| is small; more precisely, there exists � such that if

�b < �  � then |⌦�| < � where � = !N

⇣
↵
⇤2

⌘N
2
. Since u� � u on @⌦�

(u� = u on @⌦� \ T�, u� � 0 = u on @⌦� \ @⌦) we get u� � u in ⌦� by
Theorem 2-1 (2).

We note that if � < 0 then for every component C� of ⌦� there exists
x 2 C� \ @⌦ such that x� 2 ⌦ (because ⌦ is convex in the n�direction) so
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that u(x) = 0 < u�(x) and u� 6⌘ u in any component of ⌦�. Moreover, if
u� � u in ⌦�, then

�divA(x,ru) + ⇤1u = f(x, u) + ⇤1u = g1(x, u)  g1(x, u�)
= f(x, u�) + ⇤1u�  f(x�, u�) + ⇤1u� = �divA(x,ru�) + ⇤1u�

because g1(x, .) is nondecreasing. So for � close to �b by Theorem 2-2 we
have u� > u in ⌦�.

Let �0 = sup{µ 2 (�b, 0) : u� > u in ⌦� 8� 2 (�b, µ)}.
By continuity u�0 � u in ⌦�0 and if we show that �0 = 0 the theorem

will be proved because the symmetry hypotheses on ⌦, A and f allow us to
make the same reasoning in the symmetric cap ⌦00.

Suppose �0 < 0. Then by continuity, u�0 � u in ⌦�0 and since �0 < 0, as
before, by Theorem 2-2, we get u�0 > u in ⌦�0 . Since u�0 �u has a positive
minimum in a compact K ✓ ⌦�0 and minK(u� � u) depends continuously
on � as well as the measure |⌦� \ K| we can find a compact K ✓ ⌦�0 and
�00 with �0 < �00 < 0 such that for �0 < � < �00 we have

u� > u in K , |⌦� \ K| < �,

where � is as before. In this way if ⌦K
� = ⌦� \ K we have that for such �

u� � u on @⌦K
� (as before on @⌦K

� \@⌦�, by construction on @⌦K
� \@K ✓ K).

Since |⌦K
� | is small, exactly the same argument as before gives us u� � u

in ⌦K
� (by Theorem 2-1) so that u� � u in ⌦� and finally u� > u in ⌦�

because � < 0 (by Theorem 2-2). This contradicts the definition of �0 and
ends the proof. ⇤

Proof of Theorem 1-2. Here the operator is A(⌘) = (✏+ |⌘|2) p�2
2 ⌘ and

@Aj

@⌘i
(⌘) = �ij(✏+ |⌘|2) p�2

2 + (p� 2)(✏+ |⌘|2) p�4
2 ⌘i⌘j

NX
i,j=1

@Aj

@⌘i
(⌘)⇠i⇠j = (✏+ |⌘|2) p�2

2 |⇠|2 + (p� 2)(✏+ |⌘|2) p�4
2 (⌘.⇠)2.

Hence,

|@Aj

@⌘i
(⌘)| 

(
(p� 1)(✏+ |⌘|2) p�2

2 (p � 2)

(3� p)(✏+ |⌘|2) p�2
2 (1 < p < 2)

(3-2)

NX
i,j

@Aj

@⌘i
(⌘)⇠i⇠j �

(
(✏+ |⌘|2) p�2

2 |⇠|2 (p � 2)

(p� 1)(✏+ |⌘|2) p�2
2 |⇠|2 (1 < p < 2).

(3-3)
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From (3-2) and (3-3) we deduce that

|@Aj

@⌘i
(⌘)|  c (3-4)

NX
i,j=1

@Aj

@⌘i
(⌘)⇠i⇠j � ↵|⇠|2 (3-5)

if ⌘ is a convex combination of ru, rv for any two solutions u and v of
(1-15) which belongs to C1(⌦) This is enough to get the weak and strong
comparison principles for C1(⌦) solutions of (1-15) in the same way as in
the previous section. Then proceeding as in the case of Theorem 1-1 we get
the assertion. ⇤
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