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Abstract. This paper discusses the topological setting of the preceding paper by
Callias. In particular, an alternate way of deriving his results is outlined.

1.

The preceding paper brings a nice proof, along new lines, of the index theorem for
a special class of elliptic operators on IRn.

The purpose of this note is to point out other methods which could have been
used to get at the same result, and at the same time to explain the topological
setting of Callias's formula.

We first recall the analytic conditions guaranteeing that the operators
considered by Callias are Fredholm, hence have finite index. (Sources are
discussed in a remark at the end of this note.) Consider the space

Γ = Γ(lRn;V)

of V-valued smooth functions on 1R", where V is a finite dimensional vector space
over (C. A differential operator on Γ then has the form

\OXI
(1.1)

where the aa(x) are smooth functions from lRn to the endomorphisms of V. It is
assumed that the derivatives of aa decay at GO :

as (1.2)

Then the D in (1.1) induces a Fredholm operator

D:Hm(W;V)-+L2(W;V)
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if and only if the total symbol

σD(x,ξ)= Σ «αWf (1.3)
αrSrn

satisfies the condition:

On large enough spheres

Σ{xf + ξf) = K (1.4)

the symbol σD(x, ξ) is nonsingular.

It follows that D determines a well defined homotopy class of maps

(1.5)

of this "(2n— l)-sphere at oo" into the full linear group of Automorphisms of F,
and a complete solution of the index problem in this setting would be a formula of
the type:

index (D)= J σ*ω, (1.6)
S2n-1

where ω is a well-defined closed (2n— l)-form on AutF, and σg denotes the
pullback of this form to S 2 "" 1 .

Put differently, such a formula implies that the index of D is purely a function
of the homology class of the σD-image of S 2 "" 1 .

Now the group Aut(F) has a potentially nontrivial ω to fit into (1.6), only when
dim^F^n, and then such an ω must be homologous to a multiple of the following
class:

Let us choose a base υv ...,υn in F, and for every ge Aut(F) define:

Z(g) = Matrix of g relative to the basis chosen. (1.7)

Then Z is a well-defined matrix-valued function on G = Aut(F) and

Θ = Z~1dZ (1.8)

is a well-defined matrix of 1-forms on G. The formula Z(g-g') = Z(g)-Z(gf\ then
shows that Θ goes into itself under the map Lg:g'-+gg\ and indeed the n2

components Θι of Θ form a base for the left invariant 1-forms on G. In any case we
can consider the differential forms:

ωk = Trace{Θ Λ ... Λ 0 } , (1.9)

k

and it is a fundamental theorem of the subject that:

Theorem. The DeRham cohomology of G = Aut F, dim c F= m, is an exterior algebra
with generators ω 1 ? ω 3 , . . . , ω 2 m _ i ,

. . . , ω 2 m _ 1 ) . (1.10)
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This theorem follows essentially from the fact that the cohomology of a
compact group U is already computed by the left and right invariant forms on U,
and that Aut(F) has the cohomology of its maximal compact subgroup, which
may be taken as the subgroup U(V) preserving a fixed hermitian structure on G.

Now granting (1.10) we see that every class in H2n~1(G) is represented by a
form of the type:

ω = const ω 2 n _ 1 + products of lower ω's. (l H)

But if one integrates a product UΛV, with both du = 0 and dv = 0, dimw>0,
dimι;>0, over a sphere one obtains zero because a sphere carries cohomology
only in the extreme dimensions. Hence any candidate for ω in (1.1) can be taken to
be of the form:

(1.12)

Note by the way that

ωί =t raceZ~ 1 JZ

(1.13)

so that -A, when pulled back by a map
2πι

σj^'.S1-+Aut(V)

just counts the winding number of the curve traced out by detσ in C Thus the
higher ωk, when properly renormalized should be thought of as higher analogues
of the winding number, and in fact one of the consequences of the periodicity
theorem for the Unitary group, implies the following result:

Theorem. The homotopy group π2n_1{Aut(V)} is isomorphic to the integers Έ
provided dim F ^ n, and such an isomorphism is obtained by assigning to a map

f:S2n~

the integer

j /* ω where ω =
C M

i \ln (n-l)!

2π) (2n~l)\ ω2n-ί

By the way it is not supposed to be obvious why this integral should turn out to
be an integer, and in fact there are cycles C in Aut (V) on which this form would not
be an integer. It is only on the spherical cycles that it is integer valued.

With these remarks understood the best of all theorems in this context would
be:

Theorem A. Let

D:Γ(V)~>Γ(V)

be a differential operator satisfying (1.2) and (1.4). Then

l̂ lj/̂ - (u4)
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In fact, a formula proved by Fedosov [2] has been extended by Hόrmander [3] to
a result which implies (1.14). Theorem 7.3 in [3] leads easily to

It is therefore of interest to relate (1.15) with the formula of Callias's paper.
Recall first of all that Callias deals with a vector space V which is naturally the

tensor product of two vector spaces

V= V (g) V\ dim V = p, dim V" = m

and that relative to this decomposition, and some preliminary normalizations, his
symbols take the form

(1.16)

where δ = Σδiξi, is linear in ξ, and the two functions δ and U satisfy the conditions

δ2(ξ) = \ξ\2

9U
2(x)=ί \x\^ί, (1.17)

Furthermore, U(x) is homogeneous of degree Oin |x |^ 1, and both δ(ξ) and U(x)
are unitary on the respective spheres

Sξ={\ξ\2 = l} and SJC = {|x|2 = l}.

From these conditions it follows easily that σ is nonsingular on |x|2 + | ξ | 2 ^ l , so
that it is sufficient to study σ on the unit sphere S2n~1 = {|x|2 + \ξ\2 = 1}.

Now consider the map

Sl' 1-Us2n~1
I = [0, π/2]

which sends {ζ,t,x) to ξcost-\-xsin?. This map is then onto and 1 — 1 except for
ί = 0, when the x-coordinate becomes immaterial, and ί = π/2, when the ξ
coordinate becomes immaterial. Modulo these identifications the L.H.S. becomes
the join of S"'1 with S""1, denoted by Sn~ ί*Sn~1 in topology, so that j verifies the
well known topological fact that

Now because j is 1 — 1 except for a set of measure 0, an integration of a
differential form over S 2 "" 1 can be carried out by first pulling the form up to
Sn~1 x / x Sn~1 and then integrating over the factors one by one. Thus in our case,
this amounts to the following recipe:

Set z ,

and then integrate

ω* = trace {z~γάz)2rχ-γ (1.18)

over S ^ x / x S " " 1 .
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Let us now prove that at least modulo constants, this procedure produces the
desired formula: Indeed one has:

z~1 dz = (δ cost-isintU)(dδ cost+ isintdU) + dt(-δsint + icostdU)

= δdδcos2t + ύn2t+UdU + i(sintcost)(δdU

and in view of the relations U2 — 1, δ2 = 1 we have

Thus in our computations U and δ commute, but U and dU's, δ and dδ's,
anticommute.

Hence remembering that our integrand must contain precisely one dt and
(n — ί)dδ and (n—l)dU factors we see that after the ^-integration the integral must
take the form:

const- J trace 17(dί/)11"1- J t raceδ^δ)"" 1 .
5 n - l Sn-ί

The constant here is of course in principle computable from (1.18) but involves
some algebra which is, it seems, beyond our collective abilities.

We will therefore sketch an alternative derivation which hopefully might at the
same time serve as an introduction to X-theory for physicists.

2.

First some notation. We will assume that all our vector spaces V, etc. have a fixed
hermitian structure and then write U(V) for the group of isometries of V. We also
write Gn(V) for the Grassmann variety of π-planes in V and in the hope of making
this space more palatable to physicists we define it as follows:

Gn(V) is the subset of U(V) characterized by the condition that:

u2 = 1 and u has n eigenvalues equal to + 1 . (2.1)

Thus Gn(V) becomes a component of the solution set of the equation

in U(V). It is also an orbit of U acting on itself by inner automorphisms.
If ueGn(V) we write P(u) for the Eigenspace of u associated to the eigenvalue

+ 1 , so that the 1 — 1 correspondence

u+-*P(u)

gives an identification of our Gn(V) with the more standard view of the
Grassmannian as the space of n-dimensional subspaces of V.

In any case the family of planes P(u) naturally defines an n-plane bundle P, over
Gn(V), and this bundle is of fundamental importance in all bundle theory.

Obviously the Eigenspace N(u) associated to — 1, also defines a bundle N over
Gn(V) and their direct sum is manifestly the trivial bundle V over Gn(V):



240 R. Bott and R. Seeley

We now define a map

(2.3)

which underlies Callias's computations. The map (2.4) is given by

(2.4)

It is easy to check that the R.H.S. is unitary if u2 = 1 and v2 — 1, as we are assuming,
and also that (2.4) makes the join identification. Notice now that an immediate
consequence of (2.4) - and in fact this is a better way of thinking of this map - is the
following: the image of (u,θ,v) under α, is the unitary transformation which,
restricted to various subspaces of V (x) V", is given by:

P(u)®N(v) = e~iθ

e-iθ [ ' }

In any case, the basic topological lemma which transforms Theorem A into the
Callias formula is the following one.

Lemma. Let

S*-J-+Gp(Vf) and Sb-^Gq(Vff)

be smooth maps of spheres, and let h be the composition

Sa*Sb->Gp(V')*Gq(Vfί)-^-+U(V®V"). (2.6)

Then

J h*ω=- J tracech/"1?- J tracech/"1?.
Sa*Sb Sa Sb

Here ω is the generalized winding class of the index theorem, / " x denotes the
pull-back of bundles, and ch E denotes the Chern character of the bundle E.

Recall here that this ch(£) is a mixed differential form of even degree1:

with chf(JE) a 2i form, which is well defined once a notion of parallel transport is
chosen on E, and then has the following functorial properties:

ch (trivial bundle) = dim (bundle), (2.8)

(2.9)

(2.10)

(2.11)

If dim V=2 and P is the "positive" bundle over G^-S2. Then

1 See for instance [1]
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where A is a 2 form with integral 1:

μ=i.
s2

Before we give some indications concerning the proof of this lemma, let us
demonstrate how the computations of Sect. IV in the preceeding paper follow
from it.

Let

Sq:Vι->Sq(V) (2.12)

denote the operation of taking the q-th Symmetric power of a Vector space. Then
Sq satisfies the additivity formula

Sq(V'@V") = Σ S f (n®Sy(n (2.13)
i + j = <2

This formula enables one to write down many maps from

Gr(V) to Gs(Sq{V)).

For instance, take dimF=2, so that G1(V) = S2. Now let H be a 1-subspace of V
and H1, its orthogonal complement.

Then the assignment, say,

H\->S3{H)®ί®S2(H)®H1

clearly defines a map

and the formula (2.13) - read backward! - gives the pull back of P under /:

f-1P = P3®l®P2®N.

Hence, for instance, using (2-8), ...,(2-11),

and so

J
s2

In fact it should be clear now that (2.13) implies the following proposition.

Proposition. Consider the bundles Pι(g)Nj i+j^q over G1 (F), dim V= 2. If we select
r of these say Ploc®Njθί α = l,..., r, then there is a unique map of

with

ι X i } (2.14)
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Furthermore,

S2 α = l

It is now easy to verify that the map φ of Sec. IV, say for m = 0, and q odd, is
described by the / associated to the bundles

whence

in agreement with (4.6) where q = (T+ l)/2.
Finally, a word about the proof of our Lemma. For this purpose one needs a

notion closely related to the join construction, called suspension and usually
denoted by Σ:

If X is a space, then ΣX is the space X x [0,1] with X x 0 identified to a point
and X x 1 identified to another point:

ΣX=XxI/~; (x,0)~(x',0)

(x,l)~(x',l). (2.16)

It is clear then, that

ΣX=X*S°, a n d ΣSn = Sn+ί. (2.17)

Further, for any map

f:X-*Y

one has a suspension:

Σ/:ΣX-+£Y. (2.18)

This operation enters into our considerations because there is a map

σ:ΣU{V)^Gn{V®E)dimV=n9dimE = 2, (2.19)

fundamental in the homotopy theory of U(V) in that it induces an isomorphism

πk{U(V)}-^πk+1{Gn(V®E)} (2.20)

for k ̂  n. This arrow is of course induced by sending a map

f:Sk->U(V)

to

σ°Σof:Sk+1-^Gn{V(g)E).

Now this σ is best thought of as assigning to AeU(V) the graph of
):ίe[0,oo].

<τ(Λ,ί) = graph (L4)eGn(FΘF). (2.21)
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Precisely, if we chose a basis in a 2-dim Vector space E say eί and e2, then this σ is
given by:

{A, 1 + tAv®e2} C V®E, ve V. (2.22)

Thus 04,0) goes to V®eλ and (A, oo) to F®e 2 , so that (2.11) does perform the
suspension identifications.

Now our final aim will be to understand the map

in its effect on the bundle P, and for this purpose we will study the pull-back of P
under σ°Iα as a sub-bundle of the trivial bundle

V®W®E.

But combining (2.5) with (2.22) clearly solves this problem. Indeed over the
point (A, θ, JB, ί) we find the subspace:

N{A)@P{B)®{e1-te-iθe2)
 ( 1 2 3 )

N{A)®N(B)@(e1-tewe2).

At this stage it is natural to introduce the complex number z — teίθ, and to
define the line bundle

HcS2xE

by letting the fiber over zeS2 = (Cuoo be the line

With these conventions we can identify the two suspension parameters t and θ
with the set Q indicated below:

Fig. 1.

and σ°Σ(oί) then appears as a map

Gp{V)®Gq(V") x Q-»Gpq{V'®V"®E).

Further, this map has the property, that it pulls back the bundle P of the R.H.S. to
the bundle:

P®P®H®P®N®HφN®P®(-l)H@N®N®(-lH) (2.24)
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over the L.H.S., where now H is the pull-back of H under the map z->z, and
(— 1) H the pull-back of H under the map z-> — z, etc. Indeed all this is just a trivial
rewriting of (2.13)!

But now we are essentially done.
The pertinent diagrams are (2.25) and (2.26).

We wish to compute the map in Ha + b+1 induced by the arrows on a certain class ω
- "the winding class" in Ha+b+1(U\

Sa*Sb-+G'*G"-^->U, (2.25)

but instead we compute the map in Ha + b + 2 of the suspension of (2.25). This is
admissible because suspension is an isomorphism in cohomology raising the
dimension by 1.

Thus we are now to compute the induced map of

ΣSa*Sb-+Σ(G'*G")-*ΣU. (2.26)

But now, by definition if you wish, the suspension ofω in Ha + b + 2(ΣU) is precisely the
pull-back ofcha+b + 2{P) under our map

σ-ΣU-+G.

Finally replacing the suspensions by their β-models, we see that what really
has to be computed is the effect of the sequence:

Sa x Sb x Q-+G' x G" x Q->ΣV-+G

on cha + b + 2(P) over G. But now (2.24) and our rules for ch essentially enable one to
identify this pull-back. Indeed all we need is the following refinement of the
property (2.15):

The form λ = ch1(P) over G1(V) = S2 can be taken to be invariant under the
group of rotations of S2.

From this it follows that

because the H of (2.24) is clearly the P of (2.15) and the other bundles above are
induced from H = P by either rotations or reflections.

With this understood and using the identities

we can rewrite ch of (2.24) in terms of the P's alone, to obatin

ch{(2.24)}=-4chP®chP'®λ+.. . ,

where all the remaining terms have a O-dimensional term in one of the places of the
tensor product.

Now in our final integration these all disappear and the leading term, when

integrated over Q, contributes \ because Q is just one quarter of S2 and J λ = — 1.

The Lemma now follows, and we are done. s
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Remark on the Fredholm Property. The fact that the operator D in (1.1) is a
Fredholm operator under conditions (1.2) and (1.4) is proved in [3], as part of an
elaborate theory. More direct proofs were given independently by Taylor [5], and
in [4], with the decay condition (1.2) replaced by a weaker condition

Dβaa-+0 as x-^oo, for αφO. (1.20

These papers also prove that (1.4) is necessary for a Fredholm operator. They do
not explicitly discuss systems, but they easily could. Callias refers to [4] because
we discovered only recently that the other two references contain what he needs.

It would be worthwhile to make all these results more accessible. Reese Prosser
is working on such a paper.

The known proofs of the index formula (1.15) do not seem to work when (1.2) is
weakened to (1.2')5 but it would be surprising if (1.15) where not true in that case,
too.
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