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The recent comments by Y. Kuramoto [Prog. Theor. Phys. 49 (1973), 1782] on the 

theory of fluctuations in nonlinear chemical kinetics developed by Nicolis and Prigogine are 

discussed, and an answer to his objections is supplied. Some further results about the con

nection' between the phase space description and the usual "birth and death" type descrip· 

tion are presented. It is concluded that these two formalisms describe, respectively, the be

havior of local fluctuations and of large scale, macroscopic fluctuations.' An Einstein-like 

formula for the distribution of local fluctuations is recovered con&istently. 

§ I. Introduction 

In a recent series of papers, Prigogine and Nicolis1'' 2' have analysed. the 

stochastic behavior of nonlinear chemical networks around steady states far from 

equilibrium. One of their main conclusions has been that the descriptions based 

on a birth and death type theory and on a more detailed phase space theory give 

rise generally to different results. The former predicts deviations of the prob

ability distribution of fluctuations from the Poisson form. Moreover, in systems 

whose steady state lacks asymptotic stability the mean square deviation of fluc

tuations is shown to depend explicitly on time. In contrast the phase space de

scription, supplemented with an initial factorization condition, predicts a universal 

behavior of small, local fluctuations given by a generalized Einstein formula. 

This result applies equally well to systems lacking asymptotic stability. Thus, 

according to the Prigogine-Nicolis analysis, the only way for such systems to 

evolve beyond the threshold .for instability to a new regime is through a mech

anism of large scale fluctuations, for which the birth and death description could 

again be applicable. So far these ideas have been illustrated on two models, a 

reaction involving a single intermediate and a bimolecular step and the autocatalytic 

set· of reactions originally investigated by Volterra and Lotka. 

At first sight it is indeed an unexpected result to find differences between 

the birth and death and the phase space formalisms. Therefore, we were not 

astonished when we became aware of a ·quite recent paper by Kuramoto,S> who 

criticized the Prigogine-Nicolis theory, and more specifically the factorization 

admitted by these authors to solve the phase space master equation. Using the 

same bimolecular model as in Refs. 1) and 2), he has derived -equations for the 

first two moments of the probability distribution, which go beyond factorization. 
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1482 G. Nicolis, P. Allen a1id A. Van Nypelseer 

Assuming constant transition probabilities, he· showed that the mean square de
viation of the macroscopic variable (which in this model represents the number 
of particles of the chemical intermediate) is identical to the result of the birth 
and death analysis. Finally, Kuramoto expresses the opinion that a generalized 
Einstein formula for the probability of fluctuations cannot possibly explain the 
onset of chemical instabilities. The existence of the latter is well-established.'> 

The interesting comment of Kuramoto has motivated us to review here the 
whole subject and to include some recent results which were already announced 
in our previous papers.1>• 8> In § 2 we recall the main aspects of the phase space 
description of fluctuations. The structure of the phase space master equations 
is illustrated in § 3. The connection between the birth and death description and 
the phase space description of fluctuations is made explicit. It· is shown that the 
phase space formalism enables one to treat correctly the behavior of localized 
fluctuations. Moreover, the comparative strengths of the elastic and reactive 
effects play a decisive role in the validity of these two formalisms. Section 4 
is devoted to a qualitative analysis of the solutions of the phase space master 
equations. In the final section 5 some general comments are presented on the 
master equation description of fluctuations. The results derived in this paper 
provide an answer to the objections raised by Kuramoto, who apparently had not 
realized the fact that the Prigogine-Nicolis theory applies to the analysis of local 
fluctuations. 

§ · 2. The phase-space description of fluctuations 

Consider an open nonlinear chemical reaction netwo:r:k and let {X} denote 
the composition variables of the mixture. The macroscopic behavior of the system 
is described by the rate equations 

dX=V(X). 
dt 

(2·1) 

We assume that the mixture is dilute, and is maintained uniform. V (X) denote 
the total change of X arising from chemical reactions containing the particular 
constituent under consideration. It is well known'> that certain types of reactions 
described by (2·1), once driven far from equilibrium, exhibit unstable steady 
state solutions and evolve subsequently to a regime showing coherent behavior, 
e.g., in the form of temporal oscillations. In order to understand the onset of 
this coherent behavior it is necessary to analyze the behavior of fluctuations 
around the (unstable) nonequilibrium steady state. 

What we want in fact is to analyze the behavior of such fluctuations in 
macroscopic systems involving a large number of degrees of freedom, N in .a. 
big volume, V such that N-HXJ, V~OQ, (NjV) =finite. The study of small sys
tems is complicated by the fact that one needs corrections to the solutions of 
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Remarks on the Theory of Fluctuations around Nonequilibrium States 1483 

the master equations in powers of 1/V. 

We want moreover to restrict ourselves to small fluctuations, whose contri

bution to the second order excess entropy (iJ2S)0 evaluated around the reference 

state is such that their probability remains appreciable, Suppose for a moment 

that, in spite of the fluctuations, the system remains homogeneous in space. By 

virtue of the central limit theorem, the probab!lity distribution takes the form 

(assuming one remains below a critical point of instability): 

(2·2) 

Here x is an intensive variable: 

X 
x=-

V 
(2·3) 

and the extensive variable X represents the number of particles of a reactant in 

ti?-e volume V. The variance (J (x) depends on the average value, .x of x, and 

is independent of the size of the system. Obviously, the only way for (2 · 2) to 

give rise to a nonvanishing ·probability is 

1 
iJxoc--. 

Vlf2 
(2·4) 

Noting that V stands here for the size of the entire (macroscopic) system, we 

realize that a fluctuation obeying (2 · 4) is exceedingly small and cannot possibly 

influence the behavior of the system. 

Consequently, a fluctuation 

iJxoca, a~O (1) (2· 5) 

occurring with a finite probability, where the factor a is now independent of the 

size of the entire. system, will necessarily have to be local, i.e., to refer to a 

small part of the big system having a volume JV, such that (JV)-112 is of 0 (1). 

But then, one should have to account for the coupling between this small sub

system and the remaining part of the big system, arising, e.g., fr.om the ex-change 

of matter .across the V-JV interface. In different terms, because of the density 

fluctuations, the system will become locally inhomogeneous and the description 

based on (2 · 2) will br.eak down. 

Conversely, if one wants to maintain the picture of a homogeneous big sys

tem fluctuating appreciably in a coherent way, one will have to introduce large 

scale fluctuations of exceedingly small probability. In this respect we notice 

that in the work of Kuramoto, who adopts the picture of a homogeneous system, 

the very possibility of small fluctuations which precisely interest us here, is ruled 

out. A similar restriction to homogeneous systems is made automatically in the 

birth 'and death formalism. 

It is remarkable that for linear systems or for systems near a (stable) equi-
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1484 G. Nicolis, P. Allen and A. Van Nypelseer 

'llCv> occupation number distr. 

v 

Fig. 1. Distribution of the occupation numbers as a function of velocity v in the general 
case of a variable mean velocity distribution. 

librium state both ways to treat fluctuations are equivalent.D> In different terms, 
there seems to be a "similitude" theorem applicable to these fluctuations, by 
virtue of which questions of size - and thus of homogeneity - do not matter. 
This property is a direct consequence of the absence of correlations between 
different reaction steps or between d-ifferent degrees of freedom. These features 
are no longer found in nonlinear, nonequilibrium systems. 

Having recognized the necessity of a local description of fluctuations far 
from equilibrium, we are led to adopt the phase space description where this 
local character is preserved. Let Xa .be the number of particles of X in a phase
space volume Ara around the microscopic state a whose spectrum is ta,ken dis
crete for simplicity (see Fig. 1). A random fluctuation of the macrovariable 
X will be expressed as 

(2·6) 

The reference state Xa will obey a kinetic equation of the Boltzmann type: 

dXa = I:; Jr (Xa, Xa') + (dXa) . 
dt X' dt el 

(2·7) 

Here, Jr describes the effect of :reactive collisions. The elastic collision term 
(dXa/dt)ei may be set approximately zero, if one deals with· systems near a local_ 
equilibrium regime. 

Assuming now that Eq. (2· 7) defines a Markovian birth and death pr~cess 
in the complete phase space (including positions as well as internal states), one 
can derive a generalized master equation in this space in the form 

dP({Xa}, t) 

dt (2·_8) 

In Refs. 1) and 2), this equation was solved in the limit of small local 
fluctuations. It was shown that the latter obey indeed a· generalized Einstein 
distribution, with 
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Remarks on the Theory of Fluctuations around Nonequilibrium States 1485 

(2·9) 

The absence of correlations between degrees of freedom follows from the property 
(consistent with the limit of small local fluctuations) that the reduced probability 
functions P1 ... k (Xa,, · · ·, Xa•• t) (k< oo) factorize over the various degrees of free
dom. According to Eq. (2 · 6) then, the mean quadratic fluctuations of the mac
rovariable X also satisfy Einstein's relation in this approximation: 

P((JX) ocexp[ WS)o/2k], (2·10) 

where k is Boltzmann's constant. For an ideal system this relation implies: 

The implications of these conclusions in the problem of the onset of insta
bilities ~as been discussed in detail in Refs. 1) and 2). The crux of our argu
ment has been the distinct behavior of local and of large scale fluctuations. It 
was argued that macroscopic instabilities (like chemical or fluid dynamical ones) 
cannot arise from a mechanism of local fluctuations, which will be damped by 
collisions. They require the nucleation (Ref. 2), p. 218) of large scale fluctua
tions which, once formed, behave in much the same way as in the birth and 
death description. In p!j.rticular, in a state of marginal stability, these fluctua
tions will increase' in time and drive the system to a new regime. As the prob
ability of occurrence of such fluctuations is small in a system far from a region· 
of phase transition, one should expect that the generalized Einstein relation will 
not be altered appreciably by these fluctuations. 

§ 3. The connection between birth and death 

and phase space descriptions 

In this section we illustrate some aspects of the phase space approach on 
an example considered in the previous papers by Prigogine and Nicolis :1h 2> 

k, 

2X~B+D. (3·1) 

A similar analysis has been carried out for the Volterra-Lotka model. The results 
are reproduced "in the Appendix. The concentration of A, M, D, E are maintained 
constant. The macroscopic behavior of this system is summarized in Refs. 2) 
and 5). Suffice it to recall here that (3·1) admits a single asymptotically stable 
steady state corresponding to a (mean) number of particles of constituent X, 

X= ( k1AM) 1
f2. 

0 2k2 
(3·2) 

In order to discuss fluctuations around this state one must make an assump
. tion about the type of stochastic process corresponding to (3 ·1). If the usual 
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1486 G. Nicolis, P. Allen and A. Van Nypelseer 

assumption of a birth and death process in the space of the number of particles 
of the total system is made, the following equation is derived for the correspond
ing probability distribution :1>• 2> 

dP~~' t) =k1AM[P(X-1, t) -P(X, t)] 

+k2 (X+ 1) (X+2)P(X+2, t) -k2X(X-1)P(X, t). 

In the limit of a "large system", X____,. oo, this equation gives1h 2l 

iJX2 = (X-XY-:::::. (X-XoY =1._ Xo+0(1). .. 4 

The factor 3/4 is specific to the modeL 

(3·3) 

(3·4) 

For the reason explained earlier this result appears to discard the local char
acter of the fluctuations. In an effort to clarify further this point we consider, 
as in Refs. 1) and 2) and § 2, that reaction (3 ·1) involves a birth and death 
process in phase space. Setting Xa the number of particles in state a (see also 
Fig. 1), we want to derive an equation for the probability functions P( {Xa}, t). 

There are two basically different processes present. Firstly, there are elastic 
collisions, which do not change the total number of particles of constituent X 

. but tend to redistribute the initial Xa's (see Fig. 1) according to the Maxwell
Boltzmann law (see Fig. 2). Secondly, there are reactive collisions, which change 
the number of particles of X present and modify the velocity distribution. 

A central problem of chemical kinetics is therefore to account for the com
bined effects of these two processes. Several cases are conceivable, depending 
on the comparative strengths of the elastic and reactive effects. We can delineate 
three different limiting regions. 

A. Elastic effects are very weak. 

This corresponds to such problems as strongly exothermic reactions, or reac
tions in a rarified mixture. It may also describe adequately certain ecological 
situations involving competing populations where the ratio of predator versus prey 
is of the order of unity. The relevant equation is that of a stochastic process 
in phase and number space, but one where the velocity distributipn is in no way 
centred on a Maxwell distribution. Essentially, each velocity region, and hence 
also the average populations in the various internal states evolve almost independ
ently. For model (3·1) the equation describing this situation will be of the form 

dP( {X}, t) 

dt 
:E Ba[P(Xa-1, {X'}, t) -P(Xa. {X'}, t)] 

a 

+ :E Aa.e[ (Xa+ 1) (X.e+ 1)P(Xa+ 1, X.e+ 1, {X'}, t) 
a/1 

(3·5) 
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Remarks on the Theory of Fluctuations around Nonequilibrium States 1487 

occupation number distr. 
'Y\(y) 

v 

Fig. 2. Distribution of the occupation numbers as a function of velocity v when the velocity 
distribution is maintained in the Maxwellian form. 

The notation is the same as in Refs. 1) """3). The coefficients Ba and Aap are 
related to the transition probabilities BtJk! and AtJk! per unit time associated with 
the two steps in the reaction mechanism (3 ·1) as follows: 

Ba = ~ A,M,Bija! , 
ij! 

B. Elastic effects· are significant. 

(3·6) 

In this case the stochastic process is centred around Maxwellian equilibrium. 
This leads to the equation 

dP( {X}, t) 

dt 
~ Ba'[P(Xa-1, {X'}, t) -P(Xa, {X'}, t)] 

a 

-XaXpP(Xa, Xp, {X'}, t)] 

+(dP({X},t)) . 
dt el 

(3· 7) 

In principle one has to solve this equation by taking into account explicitly 
the effect of elastic collisions. A more straightforward and still fairly satisfactory 
procedure would be to say that elastic effects serve simply to establish approxi
mately a Maxwell distributi?n, and that their explicit influence on the master 
equation can be neglected. This point of view has been adopted in the earlier 
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1488 G. Nicolis, P. Allen and A. Van Nypelseer 

publications by Prigogine and Nicolis.1l• 2> Equation (3 · 7) becomes 

dP( {X"}, t) 

dt 
:E Ba'[P(Xa"-1, {X'"}, t) -P(Xa", {X''}, t)] 

a 

(3·8) 

where the superscript "~" denotes that the various populations are centred around 
a Maxwellian (see Fig. 2). Notice that small fluctuations around the Maxwellian 
are a_llowed and are in fact essential to keep all the stochastic variables {X} 
independent. 

When Eq. (3 · 8) is solved with an additional initial factorization assumption, 
the Einstein formula (2·10) is recovered.1>• 2> It l.s to he noted that implicitly 
the factorization of the probability distribution assumes that the correlations be
tween fluctuations of various degrees of freedom must he small. This in turn, 
can only be true for small, local fluctuations. 

C. Elastic Effects are dominant. 

In this limit thermal equilibrium is always, rigorously maintained, i.e., one 
neglects fluctuations of the velocity distribution. Thus, a chemical reaction can 
only provoke changes between equilibrium states with different total numbers of 
particles. As an example, the step of (3 ·1): 

produces one particle of X in some velocity state Vt, but the velocity distribu
tion immediately relaxes from 

to 

(X+ 1)v2e-<Pf2Jv' 

Zo 

where Z0 is a normalization constant. Thus, the whole process is insensitive to 
which velocity state in fact received the particle. As. a result, the stochastic 
process in phase space degenerates to . a process involving a single variable, the 
total number of particles of constituent X. The master equation becomes 

:E Ba'[P( {X+ 1}M, t) -P( {X}M, t)] 

" 
+ :E A~p[(X+ 1)M(X+2)MP( {X+2}M, t) 

aP 

(3·9) 
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Remarks on the Theory of Fluctuations around Nonequilibrium States 1489 

where for example, 

{X+ 1}M = {(X+ 1) vl~e-<f1! 2 >v•'dvh (X+ 1) vle-<f112>v•'dv2, • • ·}. (3·10) 

We now define the quantities 

(3·11) 

Then, Eq. (3 · 9) becomes identical to the birth and death master equation (3 · 3). 

This implies both the validity of the macroscopic result (3 · 2) and of the non

Poisson mean square deviation (3· 4) .*> 

We see that the birth and death result is obtained by "freezing" the velocity 

distribution. We expect that this type of behavior will be representative of large 

scale fluctuations, which evolve in a time scale slow compared .to the relaxation 

time of the velocity distributions. In contrast, local fluctuations of microscopic 

size, evolve too rapidly for this third type of behavior to be applicable. In a 

sense therefore, the usual birth and death description is not representative of the 

dynamics of a chemical system, but only of the evolution of the (infrequent) 

large scale fluctuations. 

§ 4. The second moment approximation 

We want now to solve Eq. (3 · 7) by extending our previous factorization 

assumption in taking correlations into account. To this end we consider the 

third moment of the probability distribution and assume the following decompo

sition: 

(4·1) 

with 

(4·2) 

Here the indices i refer to ,internal states and- the Mt1, Mt1k are defined as 

(4·3) 

It is expected that this decomposition will permit a first consistent treatment of 

large scale fluctuations, which were automatically discarded in the factorization 

assumption. 

When the above relations are inserted into the moment equations of (3· 7) 

a closed set of equ~tions for Xa~ M~ is deduced. One finds 

*J In actual fact Eqs. (3·10)"-'(3·11) are related to Kuramoto's example. As in his case, 

we .also have here a set of "effective" transition probabilities per unit time, namely, k, and 

ka which are summed over, and thus become independent of the internal states. 
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1490 G. Nicolis, P. Allen and A. Van Nypelseer 

(4·4) 

dMfa _ - x - . x X - ----Ba + 2 ~ Aa, [-2X,Maa- 2XaMa, + Ma, +X aX,]. dt Na 
(4·5) 

If, in addition, a steady state assumption is made for the :first moments, Eq. ( 4 · 5) 
reads 

(4·6) 

Finally 

dM~ = -2M~ ~ (Aa, + A,e,) X, 
dt . J 

-2 ~ A.e,M~X.e-2 ~ Aa,Mft'Xa 
J+a J+P 

-2 Aa.e[Mfa'X.e+M!PXa-XaX.e-M~]. (a=l=[i) ( 4 · 7) 

By construction, all these relations are local through the indices a and {i. 
The crucial problem now is to estimate the order of magnitude of the cor

rections to the Einstein-like result brought by the second moment.approximation. 
To this end we show that the moment equations (4·6) and (4·7) admit solutions 
of the form 

Mfa='Xa(1 + O(density) ), 

M~ = 0 (density). (4·8) 

We :first write the (local) equation (4 · 7) at the steady state in the form 

where we set 

Aap,kt= ( -Aa.e+ ~ (Aa1 +A.eJ)X,)oJ;;of; 
j 

+ ~ A.e,X .eof;of! 
J+a 

(4·9) 

(4·10) 

Note that in the limit of continuous spectrum A becomes a differential-integral 
operator over momenta and positions. 

We see that the auto correlations Mfa contribute to the inhomogeneous terms 
of the equation (4·9) for Mfz. On the other hand, from Eq. (4·6) it is obvious 
that the deviation of Mfa from the Einstein iesult: Mfa =X a can only be due 
to corrections arising from the cross correlations M~. Assuming that the latter 
are smaller than 0 (X a) we can substitute to :first approximation in Eq. ( 4 · 9) 
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Remarks on the Theory of Fluctuations around Nonequilibrium States 1491 

the value of M! ~iven by Einstein's formula: 

r.h.s. of ( 4 · 9)::::::::- Aa.eXaX.e . 
(4·9) 

The mean occupation numbers Xa can be estimated as follows :6> 

(4·11) 

(4·12) 

where V is the total volume of the system, N is the mean number of particles 

therein and the reduced variable xa is a chemical composition variable (like molar 

fraction) multiplied by a distribution function of momenta and internal energies. 

Both N and V are macroscopic. Their ratio n = (N jV) <( 1, as long as the system 

is not too dense. 

Finally, it should be recalled that a sum over internal states, :E1 is expressed 

as follows:. 

:E = :E 
J positions r,, momenta PJ• 

internal energies {r} 

(4·13) 

We may now substitute relations ( 4 ·11), ( 4 ·12) into Eq. ( 4 · 9) which takes 

the form 

(4·14) 

with 

a=0(1). (4·15) 

The important point now is that, the sums over states in the definition (4·10) 

of A cannot introduce volume factors. Indeed, the presence of the transition 

probabilities AaJ etc. in front of the factors X, etc. implies that, effectively, these 

sums extend only over a small coherence region much smaller than the size of 

the system. Thus the operator A itself is of order 1, or more precisely of the 

same order as Aa.e and the solution of Eq. (4·14) can be written in the form 

(4·16) 

where 

(4·17) 

This result is a direct consequence of the local character of Eq. (4·14) or 

(4· 7). If on the contrary the assumption of a homogeneous fluctuation adopted 

by Kuramoto had been made, one would have the completely different result: 

1 (N) 2 N M{p=-.- x0(1) =-x0(1). 
NV V 2 

(4·18) 
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1492 G. Nicolis, P. Allen and A. Van Nypelseer 

The :final step is to calculate the contribution of M~ to the quadratic .:fluctua
tion of the macroscopic variable X: 

oX2 = (,L; oXa)2 = .L; oXa2 + .L; tJXatJX11 a a a+l 

(4·19) 

For the reasons explained above, the double sum over states in (4·19) can.not 
yield two volume factors. The cross-correlation M~ is only nonvanishing as 
long as the corresponding degrees of freedom can interact, i.e., as long as the 
two colliding particles are nearby. Thus, in the notation of (4·13), 

(4·20) 

In a system which is macroscopically uniform one can integrate over the center
of-mass coordinates: 

(4·21) 

Combining. with (4·19) we finally obtain 

oX2 =X'[l+n X 0(1)] (4·22) 

in agreement ~ith the conjecture made previously by Prigogine and Nicolis. In 
contrast, if the .estimate (4·18) were made, one would obtain 

.L;M~= v~ X .L; (const)=Nx0(1). 
·«+I 't"a,'t"fh Pa•Pfh {<} 

(4·23) 

This latter procedure has been followed by Kuramoto. Let us emphasize again 
that treati~g M~ as constant throughout the system is opposite to the very mean
ing of fluctuation theory. For instance, in the theory of fluctuations in closed 
systems it is essential to consider a smalt part of the total volume and evaluate 
the fluctuations therein, since quite obviously the number of particle fluctuations 
in the total volume vanish.7> Incidentally we :find here one ·more serious deficiency 
of the birth and death formalism which by construction discards the local character 
of fluctuations. Again, for large scale fluctuations the local aspects be·come less 
important and the birth and death formalism can again be used with confidence. 

Finally, it is instructive to point out the striking similarity between Eq. 
( 4 · 7) or ( 4 · 9) and the statistical mechanical BBGKY hierarchy for the correla
tion functions. Let f 1 (1) and fa (1, 2) be respectively the single and the two 
particle distribution functions of a many-body system. The pair correlation func
tion (J2 is defined by 

(4·24) 
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where (1, 2) stand formally for the degrees of freedom , of particles 1 and 2. 

It can be shown that if triple' correlations are neglected g2 obeys the equation8l 

(4·25) 

In this relation L 12, 012 are operators depending on the interaction potential and 

acting on the two particle coordinates and momenta; and C{l is an integral operator 

(the sum of two Vlassov operators8l) containing 012f 1 (2) or 012f 1 (1) as kernel. 

Comparing with (4·7) or (4·9) we easily establish the correspondence: 

g2(1, 2) ~ M~, 

f1(1) ~. Xa, 

L12 ~ Aa.e+ :E (AaJ+A.eJ)XJ, 
J 

C{lg2(1, 2) ·~ 
- X - X 

I:; A.eJX.eMJa + :E Aa,XaMJfl, 
J+fl J+a 

Ouf1 (1).f1 (2) ~ Aa.e[M:C.X.e+M!PXa-XaX.e]. (4·26) 

From this analogy and from the well-known results of statistical mechanics it 

should already be clear that the cross-correlation M~ contains an additional den

sity factor compared to M:C. or to Xa. As we showed earlier in this subsection, 

this property is also a rigorous consequence of the structure of the second mo

ment phase space equations ( 4 · 7) or ( 4 · 9). 

§ 5. Concluding remarks 

We have defined here a class of systems where the fluctuations obey a gen

eralized Einstein formula to a first approximation. The crucial feature of this 

class was the c~mdl.tion Aa,e~O as the distance Ira- r .el exceeds a suitable co

herence length ... This condition, which is to be contrasted with Kuramoto's as

sumption of constant transition probabilities, has required, in turn, a local descrip

tion of the fluctuations by means of a phase space master equation. Clearly, 

this description is in agreement with the requirements developed in § 2. Indeed, 

the excess entropy (]2S ( {Xa}) which now becomes a functional of r through {Xa} 

takes the form 

(5·1) 

with 

g,,,=::.(J (r- r'), 

where the indices a, {3 do not include now the center of mass coordinate. Thus, 

the probability distribution 
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1494 G. Nicolis, P. Allen and A. Van Nypelseer 

P({oXa})oc exp [_!_ :E WS(r))J 
2k T<V 

(5·2) 

This permits one to define reduced probabilities for a subsystem of size LIV which 
will remain appreciable provided LIV is sufficient!~ small. 

What are the,implications of these results to the problem of the onset of 
evolution through fluctuations around a steady state lacking asymptotic stability? 
We have, on the one _hand, the fact that local fluctuations- (which in their over
whelming majority are of infinitesimal size) are dominated by the generalized 
Einstein formula and are therefore damped. On the other hand we have the 
equally well established fact (see § 3 C) that large scale fluctuations can only 
see the average state of the system and can be amplified if the macroscopic equa
tions of evolution predict a point of marginal stability. We believe that this 
quite opposite behavior suggests strongly a mechanism of nucleation of the fluc
tuations triggering the evolution to a new solution beyond instability. In other 
terms: because the small, local fluctuations are damped, it is essential that there 
exists a partial volume of the system, of dimensions much larger than the charac
teristic molecular dimensions but smaller than the total volume of the system, 
within which the fluctuations add up to a sizable result capable of modifying the 
macroscopic behavior. In principle this conjecture can be tested by direct solu
tion of the phase space master equations or by numerical "experiments" of the -
molecular dynamics type. Work in both directions is presently in progress. Some 
preliminary results based on a simplified formalism are reported in Ref. 9). 

Essential for the derivation of the above results have been the conditions 
that the reacting mixture is not dense and is maintained, on the average, near 
a local equilibrium regime. It would be very interesting to extend the theory 
of fluctuations in open systems by relaxing one or both of these restrictions. 
Some preliminary steps have been undertaken in this direction. 

Finally, it is quite clear that the results derived in this paper provide answers 
to the objections raised by Kuramoto. 8l As we have shown his model discards 
the local character of fluctuations which is essential for the validity of Einstein
like formulae. Moreover, Kuramoto's objection concerning the compatibility of 
instabilities with a generalized Einstein formula is accounted for by the nuclea
tion mechanism whose existense was already suggested by Prigogine and Nicolis1l, 2l 

and it is further supported by the results derived in this paper. 
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Appendix 

The Volterra-Lotka model 

We consider the autocatalytic scheme 

k, 

A+X~2X, 

k, 

X+Y~2Y, 

k, 

Y+D~E+D. (A·1) 

T,he concentration of A, D,.E is maintained constant. .The macroscopic equations 

of evolution of X, Y admit an infinity of periodic solutions around the marginally 

stable steady state: 

{A·2) 

The birth and death master equation reads1>• 2> 

dP(X, Y, t) 

dt 
A(X-1)P(X-1, Y, t) -AXP(X, Y, t) 

+(X+l)(Y-1)P(X+1, Y-1,t)-XYP(X, Y,t)· 

+D(Y + 1)P(X, Y + 1, t) -DYP(X, Y, t). (A·3) 

It has been shown1>· 2> that in the limit of small fluctuations the mean quadratic 

deviations become 

iJX2-, iJY2 =increasing function of t, 

iJXiJY= oscillatory function of t . (A·4) 

For the reasons explained 'in §§ 2 and 3, a correct treatment of local fluctua

tions necessitates a phase space description. The corresponding master equation 

for (A ·1) is, in the notation of § 3: 

dP({X}, {Y}, t) 

dt 

-XiP(Xi,Xk,Xz, {X'}, {Y},t)] 

+ :EBiJkz[(Xi+1)(Y1 +1)P(X,+1, Y1+1, Yk-1, Yz-1, {X'}, {Y'},t) 
ijk! 

-X,Y1P(X,, Y" Yk, Yz, {X'}, {Y'}, t)] 

+ I;C,[(Y,+1)P(Y,+1, {X}, {Y'},t) 
i 
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1496 G. Nicolis, P. Allen and A. Van Nypelseer 

- YiP(Y1, {X}, {Y'}, t)] 

+(_qP(JX},jY},t)) , 
dt e! 

(A·5) 

where we have set 

Aile!= :E Ai 1 ~ctA 1 , 
j 

c~ = :E ci,k!J5,. 
jk! (A·6) 

A 11 ~c 1 , B 11 ~c 1 , C 11 ~c 1 being the transition probabilities per unit time associated with 
the three steps of (A·l). . 

The second moment approximation can be worked out quite straightforwardly 
for this modeL The difference with § 4 is that the equations for the various 
moments are much more complicated owing to the ·c~mpling between the two 
components X and Y. As an example we reproduce hereafter the equation for 
M;[: 

dM;[ 

dt 

-M!![ " B Y + -e ..:..., aJk! J 
N=P 

k=f=P,i"cP 

+ :E (Baw1 ¥;- Btr>r>r>X! + 2Bar>r>t Yp) + Bar>r>r>yr> -Bar>r>r>Xa + Bar>r>r> + C p] !=/=P 

+2 :E M;T[ :E B~cjp!X~c+ :E (B~cjppX~c+BaJr>lcXa-BaJr>lc) 
J=I=P k=f=a k=f=a 

!=f=P 

+BajppXa-Bajpp] +2 L:; Mff ( L:; Aja! +AJaa) 
j=f=a !=f=a 

+ L:; M!t [ L:; (2B Jkpt Y~c- B Jr>kt Yp) + 2 L:; B 11pp ¥; + B Jr>r>r> Yp] J=/=a k=f=P !=/=P 
!=f=P 

-:EM%,[ :E BaJic!Xa+2 :E BaJr>tXa+BaJr>r>Xa] J=I=P lc=/=P !=/=P 
!=/=P 

+ :E (Bapk!Xa Yp- 2Bakp!Xa Y~c) -2 :E Batr>r>Xa ¥;- Bar>r>r>Xa · Yp . k=/=P !=/=P !=/=P , 

(A·7) 

All calculations of § 4 can be repeated for Eq. (A· 7). The result is that, again, 
the generalized Einstein formula is recovered consistently for localized fluctua
tions in spite of the fact that the macroscopic steady state (A· 2) lacks asymptotic 
stability. 
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Note 1: This work was completed when we became aware .of a preprint by A. Nitzan and J. Ross, 

entitled "A comment on Fluctuations around Non-Equilibrium Steady States". They show that 

the factorization assumption of Prigogine and Nicolis is in contradiction with the rigorous mainte

nance of a local· equilibrium distribution throughout the system. Nitzan and Ross objections are 

answered if one realizes that our analysis deals essentially with the behavior of localized fluctua

tions, whereas in their work Kuramoto and Nitzan and Ross make the assumption of homogeneous 

fluctuations. We want to express our appreciation to Professor J. Ross for stimulating correspond

ence on this subject and for communicating to us his paper with Nitzan before publication. 

Note 2: This work was submitted for publication when we became aware of a preprint by Y. 

Kuramoto entitled "Effects of Diffusion on the Fluctuations in Open Chemical Systems". Using a 

method which appears to be intermediate between the phase space formalism and the method fol

lowed in Ref. 9) given in our paper he shows that the extended Einstein· formula for the fluctua~ 

tions is recovered consistently in the limit where the molecules diffuse sufficiently rapidly with re

spect to the scale characterizing' chemical relaxation. Thus, Kuramoto's latest result confirms the 

original Prigogine-Nicolis theory of fluctuations. Some further results in ·this field are described 

in Ref. 9) given in our paper as well as in a forthcoming paper by Malek-Mansour, Nicolis, Van 

Nypelseer and Kitahara (submitted for publication in Physica). 
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