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SUMMARY 

The conservation equations a re solved for the changes occurring 
across a steady plane exothermic discontinuity. Using the deflagration 
branch of these solutions, conditions for the flow to be supersonic on both 
the "burnt" and "unburnt" sides of the flame are established. Simple flows 
capable of sustaining such fully-supersonic flames can therefore be con-
structed quite readily, and two examples are given. The second of these 
corresponds to an experimentally observed case of shock-Induced combus-
tion. The analysis is slm.plified as much as possible and the work is purely 
heuristic. 
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1. Introduction. 

The addition of heat to a flowing gas is usually effected by the release 
of chemical energy which results from the burning of an appropriate fuel. The 
details of such a process a re numerous and complicated and are certainly rendered 
no less so by the essential interactions between the flow pattern and the (chemical) 
heat-liberating mechanisms. However, under favourable conditions the portions 
of the flow field within which the reactions take place are often very small in com-
parison with the overall extent of the field and it becomes possible to treat them as 
surfaces of discontinuity. There is nothing new in such a suggestion, but it is in-
teresting to note that Emmons (1958) felt it necessary to remark that "The diagram 
of possible steady flows in a combustion wave . . . . has not been very extensively 
used to date. " and that ". . . . the more extensive use of the steady flow diagram 
seems desirable". 

We are primarily interested in the problem of heat addition to (or 
burning in) a supersonic stream and, even though a considerable body of information 
has lately been gathered together by a number of workers, amongst whom we may 
mention Fe r r i and his associates (see, e .g. F e r r i , 1964), on the hydrogen-air 
reaction under these conditions, it still seems profitable to take heed of Emmons' 
rennarks and to use the discontinuous flame-sheet model to construct possible super-
sonic flows with embedded flames. To start with we shall reiterate some of Emmons' 
(1958) analysis, making use of a few mathematical rearrangements which help one 
to comprehend the changes taking place across a discontinuous flame (and, inciden-
tally, bringing to light an er ror in the flame diagram in his art icle.) With the aid 
of this analysis we then go on to construct some simple flow patterns containing 
fully-supersonic flames (which are defined in Section 3.) 

In order to simplify the present purely heuristic analysis as much as 
possible we shall assume that both burnt and unburnt gases are ideal in the usual 
sense and have the same specific heats and molecular weights. 

2. The flame front as a discontinuity. 

Fig. 1 shows a section of a plane flame front, treating the flame as a 
discontinuity, and also illustrates the notation to be used below, ö ̂  will be called 
the flame angle and 5 the flow deflection angle. Conditions ahead of the flame are 
denoted by a subscript i and those behind the flame by a subscript a . The equations 
of conservation of mass , momentum and energy a re , respectively, 

Pi + PiU? = Pj + Pauf 

h,+ Q + iVf = h,+ iV^ 

p and P a re pressure and density, and h is the temperature - dependent part of 
the specific enthalpy. Q is the heat released by unit mass of gas as a result of 
combustion; it is treated here as a constant. In order to sinaplify the work which 

(2) 

(3) 

(4) 
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follows we shall assume that the specific heat ratio y and the gas constant R are the 
same on both sides of the flame, so that 

"n 7 . 1 " = 1 , 2 , (5) 

where T is the absolute temperature. The system is completed by the thermal 
equation of state 

Pn = PnRT„ n = 1 ,2 . (6) 

Equation 2 simply shows that there is no change of momentum parallel to 
the flame front. Since, as can be seen from Fig. 1, 

V / = u,« + V,* ; V,-

the energy equation 4 reduces to 

h, + Q + iu,^- h^+ i u / 

U / + V , ' ' (7) 

(8) 

and equations 1, 3 and 8, together with 5 and 6, are the equations satisfied by a 
stream flowing normal to the discontinuity, with a speed in the unburnt gas equal to 
u,. The latter is frequently referred to as the flame speed. 

Assuming that conditions ahead of the flame, together with the value of Q, 
are known, equations 1 , 3 , 5 , 6 and 8 can be solved to find conditions in the burnt-
gas flow. In particular, a relationship of some importance exists between the vel-
ocity ratio Lfe/u, (or equivalently, the density ratio p</pa ) and what we may call the 
flame Mach number, namely u,/a,. a, is the speed of sound in the unburnt gas; 

a,» = TRT, . 

Defining the quantities X and m such that 

X «a U2/U, ; m • U i / a , 

we can show (Emmons, 1958) that 

(9) 

(10) 

^=<^[-^.J 4(^^)'--"'(7Ti)«». .(11) 

If we adopt the point of view that m and Qa^ are known for a particular combustible 
mixture, equation 11 enables us to calculate the density ratio X across the flame. 

-2 

The nature of the X-versus-m curves for a given Qa, can be inferred as 
follows. First we note that X is a two-valued function of m. Second, it is clear that 
X is only real provided that 

^2 / 1 "̂^ 
U--V >2(T'' - l ) Q / a / (12) 

The value m^ of m which results from the use of the equality symbol in equation 12 
gives the location of a branch point XQ, m,, in the solution curves; i . e . 
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if = 2(-> -̂ 1) Q / a / , (13) 

X = - ^ [ y ^ - ] (14) 

Equat ion 13 can only be meaningful if Q > 0, but th i s condition is quite in accordance 
with the notion that burning "adds h e a t " to the flow. 

With the r e l a t i on 13 , equation 11 can conveniently be r e - w r i t t e n in the form 

We can now show that 

( 7 . 1 ) ' ^ ' ^ h \ ^ 1^ [ ( t n ' ' - l ) - i n i , M m , - ' - l ) ' ] "̂  

f rom which it follows that 

dX. 
dm 
•j^ = ± oo when m = m^ ^ 1. (17) 

When m^j = 1 we obse rve from equation 13 that Q = 0 and no burning t akes 
p lace . Then equation 15 gives 

(18) (T+l) (x- l )=[^^""o -'^ • 

and 16 gives 

< > . . , £ =[ -J'"" • ,19, 

The f i r s t of equat ions 18 and 19 give the fami l i a r adiabat ic shock wave so lu t ions , 
whils t the second r e p r e s e n t the t r i v i a l , "no change" , solut ions of the conserva t ion 
equa t ions . In th i s spec ia l case (m^ = 1) both solution cu rves pa s s through the point 
Xc = 1. ' ^ c = 1 with finite s l opes . 

Turn ing to the r ema in ing c a s e s for which Q > 0, let us wr i t e equation 13 a s 

^ c H m 2 - i V = q ^ 2(Ŷ  - l)Q/a,S0 . (20) 
\ m ( 

^s tl Then it follows that 
, 1 

(21) 

The posi t ive sign gives m > 1 whilst the negat ive sign gives m^, < 1 . 

If we plot X as ord ina te v e r s u s m a s a b s c i s s a (as in F i g . 2) the o rd ina tes 
of curve Xc ^^^ exact ly half way between those of the solution cu rves in equation 18. 
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When m •• o» , equation 15 shows that 

(T+ 1)(X- D - [.2 (22) 

and equation 16 shows that the slopes dX/dm-» 0 as follows: 

When m < 0, equation 15 shows that 

( r + l ) ( X - l ) - . [ q/^J"';"' (24) 

and equation 16 shows that the slopes dx/dm behave as follows: 

It can also readily be shown that dX/dm ^ 0 for any m in the interval 0<m<«» , 

The information that we have elicited so far enables us to sketch the X,m 
curves which a re presented in Fig. 2. These are not to scale and are not drawn 
for any particular 7 or q values, but it is evident that Fig. 6, 4b in Emmons' (1958) 
aFticle is incorrect in the rather important regions near m = 0 (using our notation; 
Emmons writes m as M,.) 

Referring to Fig. 2 the curves labelled ABC and DEF are solution curves 
for a given q, B and E being the branch points referred to earl ier . The sections 
AB and EF are those corresponding to the minus sign in equation 11, and it is with 
the section AB that we shall be concerned here since, as Emmons demonstrates, 
it is this section which gives the locus of possible flame solutions for a given q. He 
points out that EF gives strong detonation wave solutions, whilst BC and DE (rep-
resenting strong deflagrations and weak detonations, respectively) are generally 
inadmissable as solutions to physically plausible situations. The line labelled q = 0 
is the locus of possible adiabatic shock solutions, with only the part for which X<1 
being physically admissable. 

As the foregoing analysis demonstrates, the X , m relationship is unaffected 
by the obliquity of the flame front. However, the flow deflection angle 5 is related 
to Gw and X as follows. Fig. 1 shows that 

ii^= tan 0w ; ^ = tan (6^ +6) = ^ , (26) 
V i V, Vi 

the last result following from equation 2. Consequently 

I (ew 
tan e 

X = ^ ^ " < ^ / ^ > , (27) 
'w 

or 

t̂ " 6 = i \;^; 'Z'"" • (28) 
1 + X tan^Ow 

Thus 6 is a single-valued function of 6^ for any given X- In practice we are more 
likely to know the unburnt flow conditions, the flame speed and the heat of combustion; 
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i . e . we shall know M, , m and q where the Mach number M, of the unburnt stream 
is related to m by 

m = M^sine^ . (29) 

For the flame solutions (curve AB in Fig. 2) X is uniquely related to m and q, so 
that the unburnt stream conditions etc. will lead to a unique value of 6. 

We note that, since there is a maximum value mj. of m for a given q, 
there will be a corresponding maximum for 6^, (written as 6 ^c)* given by 

mc = M^sinê^c . (30) 

(N.B. 6.̂ ^ is essentially positive and M, >m under all circumstances.) Equation 28 
also shows that there is an absolute maximum of 8 for a given X, namely 

tan 6 ^ , , = ̂  (31) 

arising when 6 has a value 6^ rnax ^^^^ that 

tan e^ max = ^ (32) 

For a given value of q, X increases with m up to the maximum value XQ. Hence the 
least value of 6w max ^o^ ^ given q is given by 

( t a n e ^ ^ a x ) j ^ i ^ = ^ . (33) 

As m increases to m^,, 6^ increases to 6^^, as given by equation 30, or alternatively, 
by 

1 t a n e ^ c 

'mc* 

= [ l(Y+ l)Xc -'•'1 ^ i ' " ^j • (34) 

(using equation 14). Then the maximum permissible value of e^ , namely owe will 
always be less than ©w max i^ the condition 

Xc <Uy+ D ^ c - y]^i' -1 . 

or 

2 Xc+ 1 
^1 ' ( Y , - l ) X c - 7 • <3̂ > 

is satisfied. With Xc > 1 the greatest value of the right-hand side of equation 35 is 
2 (when Xc = 1) and the least value is {y + 1) (when Xc = <».) One can see that in a 
supersonic (M,>1) unburnt stream the flow deflection angle 5 will, in general, be 
small and, more importantly, the flame front will lie comparatively close to the on-
coming streamlines. 
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A further point of some importance is the value of the Mach number M in 
the burnt-gas flow behind the flame, where Mj is defined as 

M,= Vw ; a,''= 7RTj, . (36) 

Using equations 1 and 6 in equation 3 gives 

u,ĵ RT, + s ' j = u ĵ̂ RT, + u/j 

which, with equations 9 and 36, can be re-writ ten as 

^ = ^ . \ + T ( ^ - l ) , 
Ua* X^," VX / 

Using the definitions of M, and M, we readily show from this result that 

h'- [ ymAin^e^ - (l-0JT8in^8.e,) . (37) 

From equation 27 we can show that 

. a y- „ V X t a n * 6 w 

2 2 

X s i n Ow 

(38) 

1 + (X*- 1) sin'^ew ' 

so that equation 37 can be re-written in the form 

^^'-[wr ^^^-^^^^"'^"Ji.(x'-^sin'e^ • 

Thus Mj is greater or less than unity according as to whether 

Bin*e^ > (^—2- l j j ^ (X- 1)(1 + (T+ 1)X) J ' (39) 

In particular, if 

M , S X> 1 , (40) 

then the upper inequality in 39 is satisfied for all 6^ > 0 and M^ is always greater 
than unity. Indeed it is only possible to find M^ < 1 if M,' < X since s in^e^ is essen-
tially positive, 

An alternative form of equation 37 is 

(using equation 29), so that when m = mc and X =X c Mj has the value IV ĉ given by 

= sln^ (6c + owe)- (41) 
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Under these conditions M^ is always greater than unity unless ö^c = 0 = 6 , when 
Mj = 1 . It can be seen that the limiting flame Mach number mc for a given q is 
such as to make the burnt gas travel at a locally sonic speed normal to the flame 
front. 

3. Fully supersonic flames. 

One Interesting fact which emerges from the considerations of the previous 
Section is that it i s , at least in principle, possible to find oblique flames embedded 
in a wholly supersonic flow ( i .e . both M, and M^ are supersonic.) Indeed a suf-
ficient condition is given in equation 40, although it is of course a rather more 
restrict ive condition than is absolutely necessary. We may christen flames for 
which both M, and M^ are greater than one, "fully supersonic". 

The advantage of such fully-supersonic flames from a purely analytical 
point of view is that the limitations of upstream influence in a supersonic flow can 
be invoked in order to construct flame-flow patterns in a comparatively simple 
way. Naturally one must be careful to ensure that any elementary patterns made 
up in this way do not violate the bounds of physical plausibility, but with this in 
mind we shall go on here to discuss one configuration which immediately suggests 
itself. This is the two-dimensional V-flame which is sketched in Fig. 3. 

The flame front is assumed to be planar and to be symmetrically disposed 
about the axis of a parallel uniform cold (or unburnt) flow of Mach number M^ > 1. 
The expansion of the stream tubes resulting from heat addition at the flame front 
will give r ise to compression waves propagating out from the front and which, in 
this idealised situation, will coalesce to form a plane oblique shock front attached 
(as shown in Fig, 3) to the flame tip. If the quantities m and q are taken as known, 
together with M, , then both 6w and X, and hence 6, are uniquely determined as we 
have seen. The condition of a parallel uniform hot flow fixes the deflection angle 
required across the shock at the value 5, and hence results in a unique connection 
between the hot and cold (M„) s t reams. (The shock must necessarily be of the 'weak' 
variety if M, is to be greater than unity.) 

Some numbers for a typical case are shown in the lower half of Fig. 3. They 
were obtained as follows. Firs t the values Q/CpT, = 1 and 7 = 1.4 were selected, 
so that Q/a,* = 2 . 5 and (from equation 20) q = 4 .8 . Then equation 21 (negative sign) 
gave mc = 0.388 and equation 14 gave Xp = 3.36. Next the values M, - 2 and m = 0.2 
were chosen giving (from equation 15) X = 2.11 and (from equation 29) 6 ^ = 5° 44' . 
Then, from equations 28 and 38 respectively, it was found that 6 = 6° 13' and 
Mj = 1.44. The usual oblique shock relations were used to find that M„= 2.22, 
the shock angle 63 being 31° 48 ' . With this information i t was possible to show that 

p, = 1.44 p^ ; p^ = 1.3 p„ ; T, = 1.11 T„ . 

The pressure change across the flame was found from equation 3, which can easily 
be manipulated to show that 

p^/p, = 1 - 7m«(X- 1) . (42) 

This pressure ratio is near to unity (0.98 in the present case) owing to the smallness 
of m. The values of Pj etc. are quickly found to be 

p ^ = 1 . 4 2 p „ ; p ^ = 0 . 6 2 p „ ; T ^ = 2 . 3 T „ . 
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Another quantity of interest is the actual speed of the hot gas flow, Vz , which can 
conveniently be found from 

in the present case. The very small velocity change is noteworthy. 

Another situation which can be easily constructed by the present methods 
is depicted in Fig. 4. This basic flow configuration has been used by Rubins et al 
(1963) to study the kinetics of shock-induced combustion in an initially cold but 
pre-mixed hydrogen air system. The introduction of a solid surface into the gas 
flow means that boundary-layer effects will be present, but we propose to ignore 
these here and treat the whole field as inviscid outside the discontinuities. In 
doing so we imply that the flame angle is sufficient to carry it well away from the 
influence of the surface. 

The paper by Rubins et al which has been referred to contains a photograph 
of the flow pattern which occurs in their experiments. Unfortunately this picture 
is not of the best quality in the (photo-) copy of the paper which is available to the 
present writer , but Fig. 4 constitutes a reasonable distillation of the main facts of 
the situation which can be discerned from it. The main-stream Mach number, Mo» • 
is equal to 3 and 6 ^ , the wedge angle, is 28°. The experimental gas mixture appar-
ently contains a comparatively small amount of hydrogen and it does not seem un-
reasonable to treat the gas mixture as having a constant value of 7 equal to 1.4, 
at least for present purposes. The shock wave angle 6g (Fig. 4) can be measured 
to within a degree or so from the experimental photograph and is equal to about 
57°. This is certainly a significant amount greater than the value of 482° which 
would occur with Moo = 3, 6w = 28° and 7 = 1.4 in the absence of combustion. Assum-
ing that the flame front lies along the upstream edge of the luminous emission zone 
which can be seen in the experimental picture, a reasonable value for Q^ (Fig. 4) 
is 50° 12'. Now with M„= 3, 7 = 1.4 and Ög = 57° we can calculate 6^ + 6 = 32° 20'. 
From the geometry of Fig. 4 it follows that 6=4° 20' and 6^ = 10° 52', and from 
equation 15 we find that X = 1.42. The value of M, is equal to 1. 23 (using the oblique 
shock relations once more) whence equation 29 gives m = 0. 23. The relevant value 
of Mj (from equation 38) is 1. 06, so that the flame is just fully-supersonic in the 
sense defined above, a fact which lends a little weight to the application of our 
analysis to the experimental situation. Knowing m, X and 7 we can now use equations 
15 and 20 to find q, and thence Q/a^2 . jt t ranspires that q = 1. 82 so that Q/a,^ = 0.948. 

So far we have seen how, with the aid of a flow photograph and the infor-
mation that Moo = 3 , 6^ = 28°, it is possible with the present simple theory to cal-
culate the heat released in the burning process. It would serve as some confir-
mation of the whole procedure if we could link this calculated information with 
some additional experimental knowledge about Q/a, ' for the particular flow picture 
which has been used. Unfortunately this is not given directly in the paper, but we 
may estimate a value from some of the facts which are presented there. F i r s t , 
it is stated that the air was pre-heated to a maximum temperature of 3,800°R or 
about 2, 100°K. Assuming this to be the stagnation temperature of the stream of 
Mach number 3, this gives a value for T» of 750°K, and a value for T, of about 
1,600°K. Now although not explicitly stated, the final results in Rubins' paper 
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are quoted for an equivalence ratio of 0.4, so we may assume that this figure 
is somewhere near the experimental value. Since some of the oxygen had a l -
ready been burnt in pre-heating the experimental a ir , we shall assume that there 
are 0. 2 grams of 0̂  in each gram of gas mixture, which means that there will 
be about 0.01 grams of B^ in each gram of mixture. The complete oxidation 
of one gram of H2, using 8 grams of O2, liberates about 28,000 calories, so 
that Q will be roughly 280 calories in the present case. Taking 29 for the mole-
cular weight of the gas mixture, â * is about 155 calories and Q/a,2 « 1 . 8 . 
Bearing in mind the necessarily rather rough calculations and the assumptions 
involved here, this figure and the previous one are really quite surprisingly 
close. If, as is suggested by Rubins' resul ts , only as little as 60% of the hydro-
gen is consumed initially the agreement becomes even better. 

4. Conclusions. 

Following a re-examination of the changes occurring across a flame-like 
discontinuity it has been shown that the flow on either side of the discontinuity 
may be supersonic. This fact enables one to construct simple flow patterns 
capable of supporting such fully-supersonic flames and some evidence for their 
experimental existence has been evaluated. The technique of assuming that the 
complex flow and chemical changes (which occur in a real flame) can be compressed 
into a sheet of discontinuity in the overall flow field may well prove useful in 
evaluating the gross fluid dynamical effects in more awkward situations than 
those examined here. 
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