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Abstract
In the present communication, an attempt is made to demonstrate (once again) some of the problems with the derivation of the
“generalized Lippmann equation” considered to be valid by many researchers for solid electrodes and to address the problems in
the framework of the Gibbs model of the interface by using only the basic principles of thermodynamics. By surveying the
relevant literature, it has been shown that during the derivation of the equation, it was completely ignored that the Gibbs-Duhem
equation (i.e., the electrocapillary equation) is a mathematical consequence which follows directly from the homogeneous degree
one property of the corresponding thermodynamic potential function; consequently, the resulting expression cannot be correct.
Some alternative approaches have also been considered. The adequacy of the open system and the partly closed system approach
has been critically discussed, together with the possibility of introducing new thermodynamic potential functions.

Keywords Interfacial thermodynamics . Electrified solid/liquid interface . Gibbsmodel . Homogeneous and partly homogeneous
functions . Legendre transformation . Gibbs-Duhem equation . Lippmann equation

Introduction

The primary goals of all thermodynamic treatments are to
describe heterogeneous systems with interfaces in terms of
experimentally accessible quantities and to derive functions
which enable one to relate and compare the thermodynamic
properties of a system described by one set of physicochem-
ical parameters to those corresponding to different thermody-
namic states.

The thermodynamic theory describing the properties of the
electrified liquid/liquid interface is quite well developed. The
Lippmann equation [1]

−
∂γ
∂E

� �
p;T ;μi

¼ qM ð1aÞ

for an ideally polarizable electrode is normally derived using
thermodynamics principles and the Gibbs or Guggenheim
model of the interface [2–4]. In Eq. (1a), γ is the intensive
(interfacial) variable conjugate to the surface area as extensive
variable, qM is the charge density on the metal side of the
interface, E is the electrode potential, and μi is the chemical
potential of component i. This equation has been used suc-
cessfully many times for the analysis of experimental data,
especially for determining the charge density at electrified
liquid/liquid interfaces from surface (interfacial) tension
measurements.

Unfortunately, for electrodes containing electronically
conducting solid phase(s), the correct thermodynamic treat-
ment of the interface is not straightforward, and the thermo-
dynamic theory of solid/liquid interfaces cannot be regarded
as entirely correct [2–10]. On the other hand, the measurement
of surface parameters at the electrified solid/liquid interface is
difficult, and the measuring methods are not without their
limitations [11–13]. Some of these issues have been discussed
recently in excellent articles and reviews [5–8, 14]. The basic
concepts of the Gibbs model of interfaces are summarized,
e.g., in refs [2, 11, 15].

Since its inception, the Journal of Solid State
Electrochemistry (under the chief editorship of Fritz Scholz)
has provided a forum for critical discussions and studies on
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problems connected with surface thermodynamics.
Theoretical debates on the derivation and validity of some
pertinent equations provide good examples of these activities;
see, e.g., [5–7, 16–18]. However, even after many years of
disputes, a consensus regarding the different approaches is
still being sought.

With the aim to fill up the gaps and deficiencies in the
classical theory, several attempts have been made during the
past decades to derive thermodynamic equations for the solid/
liquid interface. On the basis of theoretical work published in
the literature [19–25] (especially on the basis of the review of
Linford [24]), a general electrocapillary equation (Eq. (1))
held to be valid generally for solid electrodes was published
in a IUPAC recommendation [26].

∂γπ=∂Eð ÞT ;p;μi
¼ −σ− γπ−Υð Þ ∂εe=∂Eð ÞT ;p;μi

ð1Þ

In Eq. (1), γπ is the superficial work, E is the electrode
potential, ϒ is the surface stress, σ is the charge density, p is
the pressure, T is the temperature, μi is the chemical potential
of the component i, and εe stands for the elastic strain. This
equation has been cited in many publications and is some-
times referred to in the literature as the “generalized
Lippmann equation” or the “Lippmann equation for a solid
electrode”; see, e.g., [27–31].

In the present work, an attempt is made to demonstrate
(once again) some of the problems with the derivation of Eq.
(1). In addition, it is also aimed to contribute to the better
understanding of the key issues in the field of the thermody-
namics of electrified interfaces which are relevant to electro-
chemistry. Therefore, for simplicity, the discussions are re-
stricted to isotropic plane interfaces in equilibrium systems
(similarly as, e.g., in refs. [22–24]) in the absence of
(complex) external force fields.

The derivation of the “general
electrocapillary equation”

The derivation of Eq. (1) is briefly summarized below (keep-
ing the notation in [24], i.e., using the symbol σ instead of γπ
and qπ instead of σ in ref. [26], respectively). (One should pay
attention to the fact that symbol σ has completely different
meanings in refs. [20, 22].)

First, the differential of the excess internal energy function
Uπ Sπ;Qπ; nπ1 ;…; nπm;Ω

� �
was defined according to the

Gibbs model and written as:

dUπ ¼ TdSπ þ ∑
i
μidn

π
i þ EdQπ þ γsdΩ ð2Þ

The “surface intensive parameter” γ s has been formally
defined in terms of the superficial work, γπ, and surface stress,
ϒ, by the equation:

γs ¼ dεp
dεtot

σþ dεe
dεtot

ϒ ð3Þ

where

dεtot ¼ dΩ
Ω

ð4Þ

is the total strain, dεp is the plastic, and dεe is the elastic strain.
In Eqs. (2) and (3), in analogy with Eq. (1), the superscript π
designates surface excess quantities. T is the temperature, S is
the entropy, σ is the superficial work, Ω is the surface area, E
is the potential,Q is the charge, and μi and ni are the chemical
potential and excess amount of substance of the species i,
respectively.

On the other hand, the excess internal energy has been
written in the integral form:

Uπ ¼ TSπ þ ∑
i
μin

π
i þ EQπ þ σΩ ð5Þ

A “Gibbs-Duhem relation” for the surface has been obtain-
ed by differentiation of Eq. (4) and subtraction of Eq. (2) in the
form:

0 ¼ SπdT þ ∑
i
nπi dμi þ QπdE þ σdΩ þΩdσ−γsdΩ ð6Þ

Dividing Eq. (6) by Ω yields:

0 ¼ sπdT þ ∑
i
Γπ

i dμi þ qπdE þ σdεtot þ dσ−γsdεtot ð7Þ

where the superficial quantities are defined by sπ= Sπ/Ω, Γi
π=

nπ/Ω, and qπ=Qπ/Ω, respectively. Taking into account that:

dεtot ¼ dεp þ dεe ð8Þ

and substituting Eqs. (3) and (8) into Eq. (6) gives

0 ¼ sπdT þ ∑
i
Γπ

i dμi þ qπdE þ dσþ σ−ϒð Þ dεe ð9Þ

Equation (1) follows directly from Eq. (9).

Doubts about the derivation of Eq. (9)

Problems with the mathematical derivation of Eq. (9) were
first pointed out in [32]. It was shown in [32] and later in much
more detail in [33] that the conjectures used to derive Eq. (9)
fail to hold if the excess internal energy function (Uπ) is a
homogeneous functions of degree 1. In the review article
[24], the author apparently did not question that Uπ is a ho-
mogeneous function of degree one (it should be noted here
that according to the converse of Euler’s theorem on homo-
geneous functions if Eq. (5) holds, then Uπ is necessarily a
homogeneous function of degree one [4, 11, 34, 35]), but
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simply adopted the rather confusing suggestion in [22, 23] that
it is a homogeneous function only, if the relationship is written
in the integral form.

However, it can be shown that the derivation followed in
[22–24] is mathematically incorrect because of the following
major reasons:

According to Euler’s theorem, Uπ can be given as:

Uπ ¼ ∂Uπ

∂Sπ

� �
nπ1;⋯m;Q

π;Ω

Sπ

þ ∑
m

i

∂Uπ

∂nπi

� �
Sπ;nπ1;⋯ ;i≠ j;⋯m;Q

π;Ω

nπi

þ ∂Uπ

∂Qπ

� �
Sπ;nπ1;⋯m;Ω

Qπ þ ∂Uπ

∂Ω

� �
Sπ;nπ1;⋯m;Q

π

Ω ð10Þ

or by replacing the partial derivatives with the corresponding
symbols

Uπ ¼ TSπ þ ∑
m

i
μin

π
1 þ EQπ þ γΩ ð10aÞ

(γ is the intensive variable conjugate to the extensive var-
iable Ω).

On the other hand, the total differential of Uπ

Sπ;Qπ; nπ1 ;…; nπm;Ω
� �

is

dUπ ¼ ∂Uπ

∂Sπ

� �
nπ1;⋯m;Q

π;Ω

dSπ

þ ∑
m

i

∂Uπ

∂nπi

� �
Sπ;nπ1;⋯ ;i≠ j;⋯m;Q

π;Ω

dnπi

þ ∂Uπ

∂Qπ

� �
Sπ;nπ1;⋯m;Ω

dQπ þ ∂Uπ

∂Ω

� �
Sπ;nπ1;⋯m;Q

π

dΩ ð11Þ

or after replacing the partial derivatives with the correspond-
ing symbols

dUπ ¼ TdSπ þ ∑
m

i
μidn

π
1 þ EdQπ þ γdΩ ð11aÞ

In Eqs. (10) and (11), the partial derivatives are the same
being homogeneous functions of degree 0 of the extensive
variables. It follows that the intensive (interfacial) parameter

conjugate to the extensive variable Ω is γ ¼ ∂Uπ

∂ Ω

� �
Sπ ;nπ1;…;m;Q

π

and the introduction of two different parameters into Eqs. (2)
and (5) is mathematically incorrect, and therefore, Eq. (1) is
the result of the misunderstanding or misuse of the mathemat-
ical formalism.

Since in refs. [32, 33], the attention was focused only on the
mathematical consequences of the homogeneous property of

the fundamental equation, and the problems with the meaning
of some of the parameters in Eq. (2) (e.g., why is the intro-
duction of Qπ as an independent variable highly questionable
[2]) were not discussed.

On the other hand, as was pointed out first by Gutman [36],
Eq. (6) which is often called “the Gibbs-Duhem equation”
(see, e.g., ref. [24]) cannot, in fact, bear this name, since it
contains differentials of the extensive parameter Ω. This
means that equations like Eq. (6) are inconsistent with classi-
cal thermodynamics stating that the Gibbs-Duhem equation
presents the relationship between the intensive variables in
the differential form.

Approaching the problem with the derivation
of Eq. (1) from a different point of view

Although the argumentation presented in the previous section
is sufficient to demonstrate the incorrectness of the derivation
of Eq. (1), it is nonetheless interesting to look at the problem
from a different viewpoint.

At the outset, it is worth highlighting two important con-
cepts of theoretical thermodynamics: (i) State principle.
According to thermodynamic theory, the thermodynamic state
of equilibrium of any system can be completely and uniquely
determined by the independent thermodynamic variables.
Thermodynamic fundamental relations (state functions, point
functions) describe the state (condition) of a system at a given
time rather than how the system arrived at that state. The
advantage of the use of state functions is that one can tabulate
them once for all as functions of the state of the substance and
one does not have to be concerned about how the state has
been achieved. (ii) Reversible processes. In ref. [7], the author
summarizes the key points of the second statement (relevant to
the thermodynamics of interfaces) impeccably, so I quote him
verbatim here: “surface scientists prescribe a special way of
changing A {in ref. [7] A is the surface area denoted by Ω in
the present work} so that friction forces, trapped configura-
tions, and multiple pathways are avoided. What they do is
focus on (thought) experiments in which the work of forming
A is absolutely minimal at every stage so that the value of γ
depends only on the value of A and not at all on the path by
which A is reached. In the jargon of thermodynamics, this is
called the ‘reversible’ path.”

On the other hand, it may be instructive to quote here some
paragraphs from one of the papers in which the “dual defini-
tion” of the intensive parameter conjugate to the surface area
was first introduced. According to the authors of [22], the
“thermodynamic formalism” introduced in [21] for one com-
ponent systems was extended “to multicomponent systems
with, in general, nonzero surface excess of matter”.

In ref. [22], the following statements were made: “There
are three relevant surface parameters that have been
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introduced for the one-component system and have the same
meanings in the multicomponent system. If dWp

s, denotes the
reversible work increment to effect an entirely plastic area
increment, dAp, at constant temperature, elastic strain, and
surface composition, i.e., at constant chemical potential, then
formally.

dW s
p≡σdAp ð1aÞ

The scalar σ, which symbol for historical and other reasons
we now prefer for the property previously denoted by γ (…),
is conceptually identifiable with Gibbs’ σ or, “the work spent
in forming a unit of the surface of discontinuity” (…). This
parameter, the surface parameter that appears in homogeneous
first-order energy relations (…) in general cannot be properly
regarded as the tension to be ascribed to the surface of tension
(…) which here will be denoted by f. A measure of this latter
parameter may be simply defined if we consider the reversible
isothermal surface work increment dWe

s to effect an entirely
elastic surface area increment dAe, at constant composition for
an isotropic surface, whence formally (…):

dWe
s≡ f dAe; ð1bÞ

This definition then illustrates that f is the surface intensive
parameter conjugate to the (surface) elastic stretching process and
is the mechanical tension to be ascribed to the surface of tension.
In addition to the above-mentioned parameters, it is possible and
conceptually useful to define a more general surface-intensive
parameter. If dWs denotes the reversible isothermal work incre-
ment to effect a general (part elastic and part plastic) surface area
change dA at constant composition then formally (…):

dW s≡γsdA ð1cÞ
The parameter γs, is thus the surface-intensive parameter

conjugate to the general surface area change and, consequent-
ly, is in general path-dependent; only for particular systems
can this parameter be identified with either of the two above-
mentioned surface parameters, σ and f (…)”.

The definition of f in ref. [21] is given as “… if the surface of
tension is isothermally stretchedwhile maintaining the numberNs

of atoms associated with the surface constant, then γs = f, where f,
called the surface stress, is themechanical resistance of the surface
of tension to the elastic stretching process (…) and has the units of
force per unit length. The surface work increment, dWe

s, required
to elastically change the area of the surface of tension by an
amount dAe, is formally written as dWe

s ≡ f dAe.”
A “generalization” of the relevant equations introduced in

[16] for one component systems was done in ref. [22] but,
unfortunately, without any further explanation from the au-
thors. According to [22]: “it then follows from a comparison
of the two possible differential forms of the internal energy

that the Gibbs-Duhem relation for a surface in this system
becomes

SσdT þ Adσþ ∑
i
Nσ

i dμi þ σ−γsð ÞdA ¼ 0 ð2Þ

The parameters of Eq.[2] not discussed here have their
usual meanings; the superscript σ denotes quantities referred
to the Gibbs surface”.

A similar reasoning can also be found in [37].
“The differential surface excess internal energy is

dUπ ¼ TdSπ þ γπ dΩ þ ∑μrn
π
r þ EdQπ ð21Þ

since customarily no work of expansion term is associated
with the surface … The surface Gibbs-Duhem equation is
obtained in the usual way by integration and subsequent dif-
ferentiation of this equation, followed by comparison of the
result with eqn. [21]. We need only note that in the integrated
relationship σΩ rather than γπΩ is the legitimate term ... This
gives:
0 ¼ SπdT þ ∑nπr dμr þ QπdE þ σ−γπð ÞdΩ þΩdσ ð22Þ

...“ This line of argumentation completely ignores (again)
the fact that the Gibbs-Duhem equation is a mathematical
consequence which follows directly from the homogeneous
degree one property of the corresponding thermodynamic po-
tential function.

In case of a one-component solid phase, e.g., a metal far from
its melting point, the plastic and elastic surface deformations
(strains) may have a relatively clear meaning settled by conven-
tion (see, e.g., [24]), and the “total strain” can perhaps be imag-
ined to be formally divided into “plastic” and “elastic” contribu-
tions in the above sense. However, when dealing with electrified
solid-liquid interfaces, the situation ismuchmore complicated. In
such cases, it is rather impossible to set up a consistent model to
account for all the above features, and the separation of the de-
formation into purely “plastic” and purely “elastic” contributions
is highly questionable, even if the solid phase contains only one
pure component. If an interface in a multicomponent system
containing a liquid and a pure solid phase is strained, the surface
density of the “atoms of the solid substance” ns/Amay not remain
constant; however, this is not necessarily true for the ions and
molecules originating from the liquid phase, i.e., the amounts of
the different components can be exchanged between the interfa-
cial region and interior of the liquid (solution), and the surface
densities of one or more of these components may remain un-
changed. As a consequence, the concept of “elastic strain” can
only make sense for the solid (immobile?) substance. Although
the latter conclusion clearly contradicts the definition of “surface
stress” formulated, e.g., in refs. [21] and [22, 24], many authors
still prefer this terminology. There are two additional facts worth
noting here. One is that in electrochemical/mechanical experi-
ments carried out using solid/liquid interfaces (“solid
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electrodes”), the change in the area of the interface is typically
small, and the surface strain of the solid remainswithin the elastic
limit. The other is that it was already concluded in [5] that “The
main problem in electrocapillarity of solid electrodes is the lack
of clarity in determining the surface stress and basic equations”.

In the following, an attempt will be made to address the
above problems in the framework of the Gibbs model of the
interface and by using only the basic principles of thermody-
namics, i.e., thermodynamic relations for independent vari-
ables not including stress. It is emphasized again that in the
Gibbs model, the interface is treated as a mathematical divid-
ing plane between the two macroscopic phases, and its prop-
erties are given in terms of the surface excess values relative to
a hypothetical reference system containing homogeneous
phases in which the values of all intensive variables and asso-
ciated properties are uniform and equal with those in the
interface.

Some concepts and methodology of classical
thermodynamics

In thermodynamics functions of state, variables are multivar-
iable functions. The internal energy function (U) is completely
specified by the entropy (S), the volume (V), the amounts of
the system’s chemical constituents ni, and eventually some
other extensive variables, e.g., Ω. This set of independent
variables is not by any means the most convenient.
Nevertheless, there are many other possible representations
that enable us to write fundamental equations as functions of
parameters that are often conveniently controllable, such as
intensive variables like temperature or pressure. These new
functions are often called thermodynamic potential functions
(or thermodynamic potentials). From a mathematical point of
view, the different thermodynamic potential functions are just
Legendre transforms as used in other disciplines, e.g., in me-
chanics, the Lagrangian is a function of coordinates and ve-
locities, but it is often more convenient to define the
Hamiltonian function applying a Legendre transform because
the Hamiltonian is a function of coordinates and momenta.
The important point about Legendre transforms is that the
thermodynamic potential functions defined in this way all
contain exactly the same thermodynamic information as the
internal energy function. The introduction of such functions is
not necessary for the logical completeness of thermodynam-
ics, but they can greatly simplify the calculations. For exam-
ple, the “free energy function”, “Helmholtz free energy func-
tion,” or “Helmholtz potential,” F(T,V,…), is the (negative)
Legendre transform of U(S,V,…) with respect to S, defined
(formally) as F =U − TS, and the “Gibbs free energy func-
tion,” “free enthalpy function,” or “Gibbs potential,”
G(T,p,…), is defined as the (negative) Legendre transform
of the internal energy U(S,V,…) with respect to the entropy S

and the volume V, i.e., G =U – TS + pV [4, 35], etc. The
introduction of the Gibbs free energy function can be particu-
larly useful if the multicomponent, multiphase system under
consideration is closed.

Analogously, we may consider the Legendre transforms of
Uπ with respect to some extensive variables. For instance, the
surface excess (Helmholtz) free energy function can be ob-
tained from the internal energy function via Legendre trans-
formation as:

Fπ ¼ Uπ−TSπ ð12Þ

If Uπ ¼ Uπ Sπ;Qπ; nπ1 ;…; nπm;Ω
� �

(or more correctly, if

charge is not considered an independent variable Uπ ¼ Uπ

Sπ; nπ1 ;…; nπc ;Ω
� �

) , t hen Fπ i s g iven as Fπ ¼ Fπ

T ;Qπ; nπ1 ;…; nπm;Ω
� �

(or Fπ T ; nπ1 ;…; nπc ;Ω
� �

), and the in-

tensive parameter conjugate to Ω is γ ¼ ∂Fπ

∂ Ω

� �
T ;nπ1;…;m;Q

π (or γ

¼ ∂Fπ

∂ Ω

� �
T ;nπ1;…;c

). (We should remember that according to the

preceding sections, the intensive (interfacial) variable conju-
gate to the extensive variable Ω can be defined as the partial
derivative of Uπ with respect to Ω.)

The “grand thermodynamic potential,” “Kramers energy
function,” or “mechanical work function”, Ψ, is usually de-
fined as the (negative) Legendre transform of the internal en-
ergyU function with respect to the entropy S and the chemical
amounts ni [35, 38].

Especially, in ref. [24], the superficial Kramers energy is
given as:

Ψπ T ;E;μπ
1…μπ

m;Ω
� � ¼ Uπ−TSπ−EQπ− ∑

m

i¼1
μin

π
i

¼ σΩ ð13Þ
and the superficial work, i.e., “the work required to form unit
area of new surface,” is expressed as:

σ ¼ Ψπ

Ω
ð14Þ

On the other hand,

σ ¼ ∂Ψπ

∂Ω

� �
T ;E;μπ

1;…;m

ð15Þ

It should be noted here that Ψπ is a (partly) homogeneous
function of degree one with respect toΩ [2, 35]. If the charge
is not considered an independent variable, the Ψπ

T ; eμπ
1…eμπ

m;Ω
� �

function can be given as:

Ψπ T ; eμ1
π…eμc

π;Ω
� �

¼ Uπ−TSπ− ∑
c

i¼1
eμi
πnπi ¼ σΩ ð16Þ

where eμπ
i is the electrochemical potential of component i [2,

11, 32, 39] and
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σ ¼
∂Ψπ T ; eμ1

π…eμc
π;Ω

� �
∂Ω

0
@

1
A

T ;eμ1;…;c
π

ð17Þ

Equations (15) and (17) can be interpreted as correspond-
ing to a situation in which the surface area is changed while
keeping constant the remaining variables, including the
(electro)chemical potentials of all chemical constituents.
This may be considered equivalent to the assumption that
the system is connected to reservoirs (“bulk phases”) of con-
stant temperature, pressure, and constant chemical potentials
and the interface can exchange energy and particles with the
reservoirs without altering the composition of the “bulk
phases,” i.e., the system is an “open” system. The above ap-
proach can be legitimately applied for fluid-fluid interfaces.

On the adequacy of a partly closed system
approach

In case of a solid, e.g., a metal, the change of the surface
area is not necessarily accompanied by the change of the
number of metal atoms in the surface region. In heteroge-
neous systems containing solid-liquid interfaces, there
may be at least a single “immobile” component. The
mechanisms for equalizing chemical potentials may not
operate with respect to the immobile components; howev-
er, the system may contain any number of “mobile” com-
ponents with uniform chemical potentials [11]. It should
also be noted that, as a consequence of the special selec-
tion criteria of the reference system (homogeneous refer-
ence phases), the Gibbs model allows, in principle, also
the change of the amount of an immobile constituent in the
two-dimensional phase if the composition of the liquid
phase changes, but the amount of the immobile constituent
in the whole system remains constant.

Thus, according to the formalism of thermodynamics, it
may be expedient to introduce an appropriate new thermody-
namic potential function for the description of such systems.
For example, a thermodynamic potential function can be in-
troduced via Legendre transforms of Uπ (if charge is not con-
sidered an independent variable):

Φπ T ; eμ1
π…eμc−1

π ; ncπ;Ω
� �

¼ Uπ−TSπ− ∑
c−1

i¼1
eμi
πnπi ð18Þ

where enπc is the excess amount of the “immobile” constituent.
This function is formally analogous to the “hybrid thermody-
namic potential” introduced first in [40].

The intensive variable conjugate to Ω can be given as:

γ ¼
∂Φπ T ; eμ1

π…eμc−1
π ; nπc ;Ω

� �
∂Ω

0
@

1
A

T ;eμ1;…;c−1
π

;nπc

ð19Þ

and is clear that in this case

γ≠
Φπ

Ω
ð20Þ

By comparing Eqs. (16) and (18), it is easy to see that Ψπ

T ; eμπ
1…eμπ

c ;Ω
� �

is the (negative) Legendre transform of Φπ

T ; eμπ
1…eμπ

c−1; n
π
c ;Ω

� �
with respect to enπc .

The expressions of σ (Eq. (17)) and γ (Eq. (19)) are written
in terms of different variable sets and have different functional
forms, but they both represent the same underlying physical
quantity. This can be shown, e.g., if we consider an arbitrary
analytic function f(x, y) and its negative Legendre transform
with respect to x, defined as

g f x; yð Þ ¼ f x; yð Þ−x ∂ f x; yð Þ
∂x

ð21Þ

where f x ¼ ∂ f x;yð Þ
∂x . A necessary condition is the existence of a

one-to-one relation between fx and x, i.e., the function fx(x, y)

can be inverted to give x. This means that ∂2 f x;yð Þ
∂x2 ≠0; conse-

quently, fx is bijective, and x can be expressed as a function of
fx and y:

x ¼ z f x; yð Þ: ð22Þ

Substituting z and fx into Eq. (21) yields:

g f x; yð Þ ¼ f z f x; yð Þ; yð Þ−z f x; yð Þ f x: ð23Þ

The partial derivative of g with respect to y is:

∂g f x; yð Þ
∂y

¼ ∂ f z f x; yð Þ; yð Þ
∂z

∂z
∂y

þ ∂ f z f x; yð Þ; yð Þ
∂y

−
∂z f x; yð Þ

∂y
f x ð24Þ

and since ∂ f z;yð Þ
∂z ¼ f x,

∂g f x; yð Þ
∂y

¼ ∂ f z f x; yð Þ; yð Þ
∂y

¼ ∂ f x; yð Þ
∂y

ð25Þ

This means that for the function values in a given state of
the system:
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γ ¼
∂Φπ T ; eμ1

π…eμc−1
π; nπc ;Ω

� �
∂Ω

0
@

1
A

T ;eμ1;…;c−1
π

;nπc

¼
∂Ψπ T ; eμ1

π…eμc
π;Ω

� �
∂Ω

0
@

1
A

T ;eμ1;…;c
π

¼ σ ð26Þ

Two things should be noticed at this point. First, it is some-
times claimed that for a solid-fluid interface, the “mathematical
homogeneity property cannot in general be associated with the
process of stretching the surface phase” (see, e.g., [19]).
However, the internal energy of a thermodynamic system is
determined by its state and not by processes (see, the state
principle formulated above). This brings us to our second point,
namely, although the (excess) thermodynamic potential
functions introduced in the Gibbs or Guggenheim models to
describe the thermodynamic properties of the interface are ho-
mogeneous functions of degree one with respect to its extensive
variables, changes in the system (“processes”) in which the
change of an extensive variable (e.g., an increase in the surface
area Ω) is not accompanied by a proportional increase in the
number of moles of the surface atoms are also allowed. It is
completely analogous with the situation in a homogeneous bulk
phase. In these cases, some of the extensive variables can re-
main constant or can change in different ratios. The function
values will then change according to the state of the system.

On the other hand, regardless of the above, the derivation
of Eq. (25) is also valid for functions that are not homoge-
neous of degree one with respect to its variables.

Concluding notes

It is well-known that in a system containing a solid/liquid
interface, many physical properties (e.g., the concentration
of the components, density) can vary as a function of the
distance perpendicular to the interface. In the model of
Gibbs, the real interfacial region is replaced by a mathematical
dividing surface, and the surface excess quantities are the re-
spective differences between the real system and the chosen
reference system (homogeneous reference phases). According
to the Gibbs model, the reference phases are thought to be
making up the volume of the actual real system (Vref,1 +
Vref,2 = Vsystem). The “surface of discontinuity” or “dividing
surface” in the idealized system is a homogeneous two-
dimensional region (phase) without thickness [2, 35].
Although it is widely accepted that Gibbs’mathematical plane
model is “extrathermodynamic” [41], it is logically coherent
and mathematically sound [15]. As a consequence of the mod-
el assumptions, the excess internal energy function becomes a
homogeneous function of degree one in the extensive vari-
ables, including the surface area, and its Legendre transforms

are partly homogeneous functions of degree one with respect
to the extensive variables. This gives a considerable advantage
in the mathematical treatment of the thermodynamic func-
tions, and most probably, this was the main reason for setting
up such a mathematical model. The same may be true for the
Guggenheim model [3, 11, 35] as well. Namely, if the excess
internal energy function is a homogeneous function of degree
one in its variables, then the mathematical formalism of clas-
sical (equilibrium) thermodynamics (which is based on the
theory of homogeneous functions and Legendre transforma-
tions [35, 42]) can be used for the study of the two-
dimensional “phase”. The Gibbs-Duhem equation is a
mathematical consequence which follows directly from
the homogeneous degree one property of the corre-
sponding thermodynamic potential function. Since the
Gibbs-Duhem equation (the “electrocapillary equation”
in the present case) is the unique constraint on all in-
tensive variables, it seems highly questionable to intro-
duce two different parameters for the intensive variable
conjugated to the surface area, and one is forced to
conclude that the “modified Lippmann equation” given
in the IUPAC recommendation [26] cannot be obtained
without violating mathematical principles.

Of course, one could argue that in certain systems, more
than one extensive surface variable may be needed to describe
the thermodynamic state in practical situations; therefore, the
number of intensive variables conjugate to these extensive
variables is also greater than one. For instance, a possible
way to describe the simultaneous mechanical and chemical
equilibrium at the interface between an electrolyte solution
and a solid conductor in terms of a continuum theory has been
presented in ref. [43]. Nevertheless, it is well-known that a
common approach in thermodynamics is to introduce addi-
tional generalized work terms into the fundamental equation.
An interesting attempt for introducing a new thermodynamic
potential function for solid or mixed systems subjected to a
complex external mechanical force field can be found in ref.
[44]. This function (which could be called "Rusanov poten-
tial" after its proposer) is defined as:

ℜ ¼ Ψ− ∮
Ω
P⋅uð Þ dΩ ð27Þ

or

eℜ ¼ Φ− ∮
Ω

P⋅uð ÞdΩ ð28Þ

where P is an external force (stress) per unit area of the system
surface as a function of location on the surface (Ω), u is the
local vector of the surface displacement. In principle, an anal-
ogous potential function could also be used to describe the
behavior of electrified solid/liquid interfaces. However, it is
not completely clear (at least for the present author) how to
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bring the definitions of the variables of Eqs. (27) and (28) into
line with the definition of surface excesses. Moreover, as it
was correctly pointed out by one of the anonymous reviewers
of the original manuscript, the calculations using the J-poten-
tial in [44]may lead to the same problem as in Eq. (9), namely,
to the appearance of the questionable binomial term.
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