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TABLE III
RM CODES OF LENGTH 256: THE LIST SIZES, COMPLEXITIES, AND

THE CORRESPONDING SNRS, AT WHICH THE PERMUTATION
ALGORITHM �m

r
(l) PERFORMS WITHIN � = 0.25 dB FROM ML
DECODING AT WER 10�4

TABLE IV
RM CODES OF LENGTH 256: THE LIST SIZES, COMPLEXITIES, AND THE
CORRESPONDING SNRS, AT WHICH THE PERMUTATION ALGORITHM

�m
r
(l) PERFORMS WITHIN� = 0.5 dB FROM ML DECODING AT WER 10�4

Note, however, that the algorithm�m
r
(l) gives almost no advantage

for the subcodes considered in the previous subsection. Indeed, these
subcodes are obtained by eliminating the leftmost (least protected) in-
formation bits. However, any new permutation �(i) assigns the new
information bits to these leftmost nodes. Thus, the new bits also be-
come the least protected. Another unsatisfactory observation is that in-
creasing the size of the permutation set T—say, to include allm! per-
mutations of allm indices—helps little in improving decoding perfor-
mance. More generally, there are a number of important open problems
related to these permutation techniques. We name a few:

— find the best permutation set T for the algorithm �m
r
(l);

— analyze the algorithm �m
r
(l) analytically;

— modify the algorithm �m
r
(l) for subcodes.

V. CONCLUDING REMARKS

In this correspondence, we considered recursive decoding algo-
rithms for RM codes that can provide near-ML decoding with feasible
complexity for RM codes or their subcodes on the moderate lengths
n � 512.
Our study still leaves many open problems. First, we need to tightly

estimate the error probabilities p(�) on the different paths �. To opti-
mize our pruning procedures for specific subcodes, it is important to
find the order in which information bits should be removed from the
original RM code. Finally, it is still an open problem to analytically es-
timate the performance of the algorithms 	m

r
(L) and �m

r
(l).
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Some Restrictions on Weight Enumerators of Singly Even
Self-Dual Codes

Masaaki Harada and Akihiro Munemasa

Abstract—In this correspondence, we give some restrictions on weight
enumerators of singly even self-dual [ 2 ] codes whose shadows
have minimum weight 2. As a consequence, we determine the
weight enumerators for which there is an extremal singly even self-dual
[40 20 8] code and an optimal singly even self-dual [50 25 10] code.

Index Terms—Extremal code, minimum weight, self-dual code, shadow,
weight enumerator.

I. INTRODUCTION

Let C be a singly even self-dual code and let C0 denote the sub-
code of codewords having weight � 0 (mod 4). Then C0 is a sub-
code of codimension 1. The shadow S of C is defined to be C?0 n C .
Shadows for self-dual codes were introduced by Conway and Sloane
[1] in order to derive new upper bounds for the minimum weight of
singly even self-dual codes, and to provide restrictions on the weight
enumerators of singly even self-dual codes. Using shadows, the largest
possible minimum weights of singly even self-dual codes of lengths up
to 72 are determined in [1, Table I]. The work was extended to lengths
up to 100 in [2, Table VI]. The possible weight enumerators of singly
even self-dual codes with the largest possible minimum weights are
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given in [1] for lengths up to 64 and length 72 (see also [3] for length
60), and the work was extended to lengths up to 100 in [2] (see also [4]
for length 68).
It was shown in [5] that the minimum weight d of a singly even

self-dual code of length n is bounded by d � 4[n=24] + 4 unless
n � 22 (mod 24) when d � 4[n=24] + 6. We call a singly even
self-dual code meeting this upper bound extremal. It is known that no
extremal singly even self-dual code exists for some lengths. According
to [6], a singly even self-dual code is called optimal if it has the largest
minimum weight among all singly even self-dual codes of that length.
In this correspondence, we give some restriction on the number

of vectors of weight d=2 in the shadow of a singly even self-dual
[n; n=2; d] code. We eliminate some of the possible weight enumer-
ators determined in [1] and [2] for singly even self-dual codes with
the largest possible minimum weight. In particular, we determine
the weight enumerators for which there is an extremal singly even
self-dual [40; 20; 8] code and an optimal singly even self-dual
[50; 25; 10] code.

II. PRELIMINARIES

Throughout this section, let C be a singly even self-dual code of
length n and let C0 denote the subcode of codewords having weight
� 0 (mod 4). There are cosets C1; C2; C3 of C0 such that C?0 =
C0 [ C1 [ C2 [ C3 where C = C0 [ C2 and S = C1 [ C3 is the
shadow. Let Bi be the number of vectors of weight i in the shadow S.

Lemma 1 (Brualdi and Pless [7]): Let x; x0 be vectors of C1 and
let y; y0 be vectors of C3. Then we have the following:

1) if n � 0 (mod 4) then x; y are not orthogonal;
2) if n � 2 (mod 4) then x; x0 are not orthogonal and y; y0 are

not orthogonal.

Although the following sharpenings of [1, Theorem 6c), (19)] follow
easily from Lemma 1, the consequences implied by them (cf. Sections
III and IV) do not seem to be made explicit in the literature.

Lemma 2: Suppose that n � 2 (mod 4). Then Bd=2 � 2. If
Bd=2 = 2, then each of C1 and C3 contains exactly one of the two
vectors of weight d=2 in S.

Proof: Assume that S contains at least 3 vectors of weight d=2.
Then we may suppose without loss of generality that C1 contains at
least two vectors of weight d=2. By Lemma 1, any two vectors in C1

(or C3) are not orthogonal. The sum of any two vectors in the shadow
is a codeword of C . Hence, C contains a codeword of weight less than
d which gives a contradiction.

Lemma 3: Suppose that n � 0 (mod 4). Then Bd=2 � 2n=d,
and one of C1 or C3 contains all the vectors of weight d=2 in the
shadow. Moreover, we have the following:

i) if n is divisible by d=2, then Bd=2 6= 2n=d� 1;
ii) if n is not divisible by d, then Bd=2 � 2[(n=d)]� 1.
Proof: Let x1; x2; . . . ; xB be the vectors of weight d=2 in S.

Since the sum of two vectors of S is a codeword of C , these vectors
have disjoint supports. This implies (d=2)Bd=2 � n, and that these
vectors are pairwise orthogonal. In particular, one of C1 or C3 must
contain all of them by Lemma 1.
i) Suppose contrary, that Bd=2 = 2n=d � 1. Let y be the sum of

the all-one vector and x1+x2+. . .+xB , so that y has weight
d=2. Then y is a codeword if Bd=2 is even, while y belongs to
the shadow and is different from x1; x2; . . . ; xB if Bd=2 is
odd. Thus we obtain a contradiction in both cases.

ii) Suppose contrary, that Bd=2 � 2[n=d]. Let y be the sum of the
all-one vector and x1+x2+. . .+x2[(n=d)]. Then y is a nonzero
codeword of weight less than d. This is a contradiction.

Although the above lemmas can be applied to any singly even self-
dual code, we concentrate on extremal singly even self-dual codes and
optimal singly even self-dual codes in the next sections.

III. SELF-DUAL CODES OF LENGTHS 40, 60, 68, 80 AND 88

The possible weight enumerators of extremal singly even self-dual
[40; 20; 8] codes and their shadows are given in [1]:

WC = 1 + (125 + 16�)y8 + (1664� 64�)y10 + . . .

WS = �y4 + (320� 8�)y8 + (21120+ 28�)y12 + . . .
(1)

where � is an integer. By Lemma 3, 0 � � � 10 and � 6= 9. For
the weight enumeratorsWC (� = 0; 1; . . . ; 8 and 10), it is known that
there is a singly even self-dual [40; 20; 8] code (see [6]). Hence, we
have the following.
Proposition 4: There exists an extremal singly even self-dual

[40; 20; 8] code with weight enumerator given by (1) if and only if
0 � � � 10; � 6= 9.
Let C be a singly even self-dual [40; 20; 8] code whose shadow

C1 [ C3 has minimum weight 4. By Lemma 3, we may assume that
C3 contains the vectors of weight 4 in the shadow. For � 6= 0, the de-
composition of the weight enumerator of the shadow S into the weight
enumerators ofC1 andC3 is uniquely determined. In fact, by Theorem
3 in [1], the decomposition is obtained as follows:

WC =(160� 16�)y8 + (10560� 32�)y12

+ (120160+ 272�)y16

+ (262528� 448�)y20 + . . .

WC =�y4 + (160+ 8�)y8 + (10560+ 60�)y12

+ (120160� 328�)y16

+ (262528+ 518�)y20 + . . . :

We remark that this decomposition holds also for � = 0 (see [8]).
Now we give some restriction on the possible weight enumerators of

extremal singly even self-dual codes of lengths 60, 68, 80, and 88.

• The possible weight enumerators of extremal singly even self-
dual [60; 30; 12] codes with shadows of minimum weight� 6
and their shadows are

WC = 1 + (2555+ 64�)y12

+(33600� 384�)y14 + . . .

WS = �y6 + (396� 12�)y10 + . . .

where � is an integer [3]. By Lemma 3, 0 � � � 10; � 6= 9.
Singly even self-dual [60; 30; 10] codes with weight enumer-
atorsWC are known for � = 0; 1; 7; 10 (see [6]).

• The possible weight enumerators of extremal singly even self-
dual [68; 34; 12] codesC with shadows S of minimumweight
� 6 and their shadows are

WC = 1 + (442 + 4�)y12 + (14960� 8� � 256)y14

+(174471� 36� + 2048)y16 + . . .

WS = y6 + (� � 14)y10 + (29920� 12� + 91)y14

+(2956096+ 66� � 364)y18 + . . .

where �;  are integers. We remark that the weight enumerators
of C and S given in [2] are incorrect and the correct possible
weight enumerators for C are given in [4]. Here we give the
possible weight enumerators of C along with those of S. By
Lemma 3, 0 �  � 9. For  = 0; 1; 2 only, singly even self-dual
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[68; 34; 12] codes with weight enumeratorsWC are known for
many values of � (see [6]).

• The possible weight enumerators of extremal singly even self-
dual [80; 40; 16] codes with shadows of minimum weight� 8
and their shadows are

WC = 1 + (54045+ 256�)y16

+(675840� 2048�)y18 + . . .

WS = �y8 + (800� 16�)y12

+(88640+ 120�)y16 + . . .

where� is an integer [2]. By Lemma 3, 0 � � � 10; � 6= 9. It is
not known whether there is a singly even self-dual [80; 40; 16]
code.

• The possible weight enumerators of extremal singly even self-
dual [88; 44; 16] codes with shadows of minimum weight� 8
and their shadows are

WC = 1 + (14212+ 16�)y16

+(285824� 64�� 1024�)y18 + . . .

WS = �y8 + (�� 18�)y12

+(35904� 16�+ 153�)y16 + . . .

where �; � are integers [2]. By Lemma 3, 0 � � � 11; � 6=
10. It is not known whether there is a singly even self-dual
[88; 44; 16] code.

IV. SELF-DUAL CODES OF LENGTHS 50; 58; 78; AND 98

The possible weight enumerators of optimal singly even self-dual
[50; 25; 10] codes with shadows of minimum weight � 5 and their
shadows are

WC = 1 + (580� 32�)y10 + (7400+ 160�)y12 + . . .

WS = �y5 + (250� 10�)y9 + . . .
(2)

where � is an integer [1]. By Lemma 2, 0 � � � 2. For the weight
enumerators WC(� = 0; 1; 2), it is known that there are singly even
self-dual [50; 25; 10] codes (see [6]). The other possible weight enu-
merator for singly even self-dual [50; 25; 10] codes is

1 + 196y10 + 11368y12 + . . . (3)

and there are codes with the weight enumerator [9], [10], [11]. Hence,
we have the following.

Propostion 5: There exists an optimal singly even self-dual
[50; 25; 10] code with weight enumeratorW if and only ifW = WC

in (2) with � = 0; 1; 2, orW is given by (3).
Let C be a singly even self-dual [50; 25; 10] code with weight enu-

meratorWC in (2). By Lemma 2, the decomposition of the weight enu-
merator of the shadow S into the weight enumerators of C1 and C3 is
uniquely determined. By Theorem 3 in [1], the decomposition is ob-
tained as follows for � = 1

WC =y5 + 108y9 + 21228y13 + 586728y17 + 4014358y21

+ 7531440y25 + . . . ;

WC =132y9 + 21617y13 + 584952y17 + 4016652y21

+ 7531440y25 + . . .

under the assumption that C1 contains the vector of weight 5 in the
shadow, and for � = 0; 2;WC = WC = (1=2)WS . We remark that
for the weight enumerator (3) the decomposition is given in [1].
Now we give some restriction on the possible weight enumerators of

optimal singly even self-dual codes of lengths 58, 78 and singly even
self-dual [98; 49; 18] codes.

• The possible weight enumerators of optimal singly even self-
dual [58; 29; 10] codes with shadows of minimum weight � 5
and their shadows are

WC = 1 + (319� 24� � 2)y10

+(3132+ 152� + 2)y12 + . . .

WS = �y5 + y9

+(24128� 54� � 10)y13 + . . .

where �;  are integers [1]. By Lemma 2, � = 0; 1; 2. For these
values of �, singly even self-dual [58; 29; 10] codes with weight
enumeratorsWC are known for many values of  (see [6]).

• The possible weight enumerators of optimal singly even self-
dual [78; 39; 14] codes with shadows of minimum weight � 7
and their shadows are

WC = 1 + (3705+ 8�)y14

+(62244� 24� + 512�)y16 + . . .

WS = �y7 + (�� � 16�)y11

+(31616+ 14� + 120�)y15 + . . .

where �; � are integers [2]. By Lemma 2, � = 0; 1; 2. Singly
even self-dual [78; 39; 14] codes with weight enumerators WC

are known only for � = 0 (� = 0 [2],�19 [12],�78 [13],�26
[14]).

• The possible weight enumerators of singly even self-dual
[98; 49; 18] codes with shadows of minimum weight � 9 and
their shadows are

WC = 1 + (70756+ 32�)y18

+(1256752+ 2048�� 160�)y20 + . . .

WS = �y9 + (�20�� �)y13

+(27930+ 190�+ 18�)y17 + . . .

where �; � are integers [2]. By Lemma 2, � = 0; 1; 2. It is not
known whether there is a singly even self-dual [98; 49; 18] code,
but such a code is optimal if it exists.
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On the Shannon Cipher System With a Capacity-Limited
Key-Distribution Channel

Neri Merhav, Fellow, IEEE

Abstract—We consider the Shannon cipher system in a setting where the
secret key is delivered to the legitimate receiver via a channel with limited
capacity. For this setting, we characterize the achievable region in the space
of three figures of merit: the security (measured in terms of the equivoca-
tion), the compressibility of the cryptogram, and the distortion associated
with the reconstruction of the plaintext source. Although lossy reconstruc-
tion of the plaintext does not rule out the option that the (noisy) decryption
key would differ, to a certain extent, from the encryption key, we show, nev-
ertheless, that the best strategy is to strive for perfect match between the
two keys, by applying reliable channel coding to the key bits, and to con-
trol the distortion solely via rate-distortion coding of the plaintext source
before the encryption. In this sense, our result has a flavor similar to that
of the classical source–channel separation theorem. Some variations and
extensions of this model are discussed as well.

Index Terms—Cryptography, encryption, key distribution, Shannon ci-
pher system, source–channel separation.

I. INTRODUCTION

In the classical Shannon-theoretic approach to cryptology (see, e.g.,
[8], [6], [13], and references therein), two assumptions are tradition-
ally made. The first is that the reconstruction of the decrypted plaintext
source at the legitimate receiver is distortion free (or almost distortion
free), and the second, which is related, is that the encryption and the de-
cryption units share identical copies of the same key. Yamamoto [15]
has relaxed the first assumption and extended the theory of Shannon
secrecy systems into a rate–distortion scenario, allowing lossy recon-
struction at the legtimate receiver.
In this correspondence, we examine also the second assumption. Re-

ferring to Fig. 1, we consider the case where the key is delivered to the
legitimate receiver across a channel, which is cryptographically secure,
but has limited capacity. For this setting, we characterize the achievable
region in the space of three figures ofmerit: the security level (measured
in terms of the equivocation), the compressibility of the cryptogram,
and the distortion associated with the reconstruction of the plaintext
source.
One conceptually simple approach to handle such a situation would

be to apply a reliable channel code to the encryption key bits, at a rate
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Fig. 1. A cipher system with capacity-limited key distribution.

below the capacity of the channel, and thereby obtain, with high prob-
ability, the exact copy of the transmitted key bits at the receiver side.
With this approach, however, the effective key rate, and hence the se-
curity level in terms of the equivocation, is limited by the channel ca-
pacity. The question that naturally arises at this point, especially in the
lossy reconstruction scenario, is whether this is the best one can do.
To sharpen the question, let us even assume that there is an un-

limited reservoir of random key bits at the transmitter side, denoted
KKK = (K1; K2; . . .); Ki 2 f0; 1g; i = 1; 2; . . .. Then, perhaps one
might wish to use more the key rate (somewhat above capacity) for
encryption and thereby increase the security of the cryptogram at the
expense of some distortion at the reconstruction, due to the unavoidable
mismatch between the encryption and decryption keys. To explore this
point, let us consider a few speculative strategies.
In the first strategy, one sends the key bits KKK uncoded across

the channel (assuming, for simplicity, that the channel has a binary
input–output alphabet). Referring to Fig. 1, let us take then N = n

and Xi = Ki; i = 1; 2; . . .. In this case, the noisy version of the key,
obtained at the receiver side K0

i = Yi is of course somewhat different
from the original key. However, since only lossy reconstruction of the
plaintext is required at the receiver side, it may seem conceivable that
a reasonably small difference between the keys at both ends could be
managable and thus cause a reasonably small distortion in the recon-
struction. This is relatively easy to have if the encryption of the source
precedes compression, as proposed in [3]: One may apply, for example,
a certain memoryless mapping from the key bit stream into a stream of
symbols Z1; Z2; . . . taking (two of the) values in the alphabet of plain-
text source U . Then assuming that U is a commutative group endowed
with an addition operation� (e.g., addition modulo the alphabet size),
one can create the encrypted sequence U 0

i = Ui � Zi; i = 1; 2; . . .
and then compress the block (U 0

1; . . . ; U
0

n) with (K
0

1; . . . ; K
0

n) as side
information at the receiver, using a Slepian–Wolf encoder [9] in the
lossless case, or a Wyner–Ziv code [11] in the lossy case. Assuming,
for simplicity, lossless compression, then upon decompressing the
source at the receiver side and obtaining ( ~U1; . . . ; ~Un) (which is with
high probability equal to (U 0

1; . . . ; U
0

n)), one “subtracts” the noisy
version of the key and obtain (with high probability) the reconstruction
Vi = U 0

i 	 Z 0

i; i = 1; 2; . . ., where Z 0

i is the corresponding noisy
version of Zi. Now, since Vi 	 Ui = Zi 	 Z 0

i , for all i, then for a
difference distortion measure d(Ui; Vi) = �(Vi 	 Ui), the distortion
between Ui and its reconstruction Vi is identical to the distortion
between the original key Zi and its noisy version Z 0

i .
A somewhat more sophisticated version of this scheme generates

Z1; Z2; . . . from the key bits using a simulator of a certain (memory-
less) process (see, e.g., [10] and references therein), and then applies a
good source–channel code to encode (Z1; . . . ; Zn) across the channel.
The reconstructed version at the receiver side, Z 0

1; Z
0

2; . . ., would then
have the minimum possible distortion relative to (Z1; . . . ; Zn), given
by the distortion–rate function of fZig computed at the channel ca-
pacity, and therefore so would be also the distortion between fUig and
fVig. Moreover, there is an additional degree of freedom with regard
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