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Abstract.

In the van der Waals - Cahn - Hilliard theory of phase transitions the
energy depends not only on the density, but also on the aensity gradient a
dependence introduced to account for the interface between phases.
Within this theory the stable density-distributions u(x) for a fiuid
confined to a container O are characterized by the variational problem:
(P,) minimize

E, (U} = [{W(u(x)) + h2lgradu(x)I?)dx
Q

subject to the constraint

[ulx))dx = m.

0
Here W(u) is the coarse-grain energy, assumed nonconvex, h is a
constant which characterizes capillary effects, and m is the tota! fluid
mass.

In this paper we discuss recent results and conjectures for Problem P,
in particular, those relating P, to the classical problem with h=0. We
aiso discuss a generalization of P,, which includes contact energy
between the fiuid and the container walls.




1. Classical theory.

Consider a fiuid confined to a container which occupies a bounded, open
region (0 in R" Assume that the energy W(u), per unit volume, is a
smooth function of the density u, and that the total mass of fluidin Q 15
m, so that the admissible density-distributions satisfy the constraint

{ulxNdx =m. (1.1)
Q
Then, if there are no other contributions to the energy, the total energy
E (U} inany distribution u(x) is given by the functional

Eolu) = [Wu(x))dx. (1.2)
0

We seek those density distributions that render the body stable in the
sense of Gibbs and hence seek solutions of the variational problem:

(P,) minimize E (u), subject to (1.1), over all u with
“both u and W(u in LY(Q).

For this and other variational problems, we will always use the term
sotution to mean g/oba/ minimizer.

We assume that W is sonconvex of a form capable of supporting two
phases. Precisely, we assume that W consists of two convex sections
separated by a concave segment (cf. Figure 1). We also assume that the
twominima u, and u, have equal energy with

wlu,) = Wu,) = 0. (1.3)

The assumption (1.3) involves no loss of generality; indeed, because of the
constraint we can always add an affine function of u to the integrand in
(1.2) without changing the solution set of P,

Problem P, is easily solved. Choose length scale so that!

vol() = 1,
and define
V= (u, - my/{u, - u,). (1.4)

we write “vol” and "grea”, respectively, for n- and (n-1)}-dimensional Hausdorff measure.
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Figure 1. Coarse-grain energy w(u)
as a function of density u



Then:
(1) for m<u, or m2uy, the solution by of P, is single phase with

Uy (%) = m;
(i) for U <m <u, all solutions of P, are two phase, the solution set
consisting of fields of the form

UO(X)=U], X in F, (15)
Upx) =u,, X in OVF,

where F is any (measurable) subset of () with volume
vol(F) = V. (1.6)

A problem with the two-phase solution (ii) is the drastic /gct of
uniqueness, as modulo the volume constraint (1.6) the set F is completely
arbrtrary This lack of uniqueness arises because /mterfaces ( jumps in u)
are allowed to form without a concomitant increase in energy.

One might ask: Which of the infinity of solutions (1.5) are pAysically
prererred? if the physically-preferred solutions are those that arise as
limiting cases within a theory which includes interfacial energy, then one
might expect the preferred solutions U, tobe those which minimize the

“area”

a(u,) = area(s) (1.7)

of the interface
2 =3FN0
(cf. (1.5) and recall that Q is open). We are therefore led to the following

Definition. A two-phase solution u, of PO has minimal interface if
alu,) < alu)

for any other solution u (corresponding to the same value of m).

The variational problem associated with this definition, namely finding
asubset F of Q that minimizes area(Z) subject to vol(F) =V, hasa
large literature.! There is existence, but not uniqueness, and solutions are
analytic, at least for n < 8. In fact, solutions are surfaces of constant
mean-curvature.

ter, e .q., Massari and Pepe [ 1]; Giusti {2]; Gonzalez, Massari, and Tamanini [3}.
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2. The gradient theory.

In a paper (4 51! now classic, van der Waals considered fluids whose
energy is determined not only by the density, but also by the density
~gradient.? A simple but physically reasonable extension of the classical
theory, within van der Waals' framework, is based on the energy3

E, (u) = [(wW(u(x)) + h2lgradu(x)I?)ax. (2.1
Q

Here W(u), still assumed of the form shown in Figure 1, represents the
coarse-grain energy, that is, the energy, per unit volume, when the density
is uniform; while h> O is a small parameter. Note that van der Waals'
theory allows for interfacial energy - or more precisely for an increase in
energy over regions in which the density undergoes rapid changes.

As before, we seek stable density distributions and hence consider the
variational problem:

(P,) minimize E,(u) over the set of all u in HYO)
that satisfy the constraint {1.1).

The Euler-Lagrange equation and naturai boundary condition for
this problem are:

2hAu = W) - | in 0, (2.2)
au/an =0 on 26, (2.3)

where |1 (= constant) is the Lagrange multiplier corresponding to the
constraint (1.1). We will refer to { as the chemical potential of u
(This definition is standard for the l1imiting case h=0.)

Note that for m<u, or m2u,, Problem P, has only the single-phase

solution u(x} =m; for that reason we henceforth restrict our discussion
to

u|<m<u:,,

! Cahn and Hilliard (6], apparently unaware of van der Waals' paper, rederived whal is essentially van
der Waals' theory and, using this theory, obtained several important resuits concerning the interfacial
energy between phases. Since then gradient theories have been used to analyze phase transitions,
spinodal decomposition, and other physical phenomsna (cf_[5.7] for selected references).

A theory which directly penalizes a sharp interface is given by Gurtin {8].

e use the following notation: grad is the gradient: A is the Laplacian; 3/3n is the outward normal
derivative on 30; W'(u) = dwlu)/du.



For W sufficiently reguiar the direct method of the calculus of
variations and elementary regularity theory lead to the conclusion that
Problem P, possesses a (not necessarily unique) solution,! so existence

is not at issue here. The goai instead is to identify the minimizers of P,

and, what is more important, to study the asymptotic behavior for
small h.

Ter. Morray {9], Theorems 1.9.1 and 1.10.1,



3. Results.
et n=1 andlet (O pe the interval (0,1). Then the solutions of Py

with minimal interface are the two solutions involving a single transition
between phases; namely, the function

Upl¥) =y, 0 <XV, (3.1
uo(x)=u2, Voax <t

and its reversa/ u(1-x). (Here V is given by (1.4)) Inview of our

previous discussion (Section 1), we expect these solutions to be physically
preferred in the sense that they, and only they, are limits of solutions Uy

of P,. The following results (a) - (d) of Carr, Gurtin, and Slemrod [10]

show, among other things, that this ts indeed the case:
(a) All loca! minimizers of P, are strictly monotone.

(b} For h small, P, has exactly two solutions, and one is the reversal of

the other.
() if u, denotes the increasing solution, and if u, is defined by (3.1),

then, for x =V, 4 (x) approaches uy(x) as h approaches zero.2
(d)For h small,

E,(u) =€, + Olexp(-C/h)), e, = Kh, (3.2)

i, = Olexp(-C/hD),

where CK> 0 are constants with K the integral of 24W from u, to
Uy, while p, is the chemical potential corresponding to Uy

One possible definition of interfacial energy is the difference between
the actual energy E,(u,) and the energy E (u,) whichneglects interfacial

effects. Since our normalization ¢(1.3) renders Eo(uo) zero, (3.2) allows us
to interpret e, as interfacial energy,” at least asymptotically.

For n> 1, Gurtin and Matano [16] have obtained theorems analogous
to (a), one of the simpler results being:
(e) For a (not necessarily circular) cytinder all iocal minimizers are
monotone in the axial direction.

1¢f. Chafee [ 11}, Casten and Holland {12}, and Matano [13}; the first three authors prove that for
n =1 all unconstrained local minimizers are constant; Matano gensralizes this result to arbitrary n,

but convex Q.
2Cf aiso Novick-Cohen and Segel [ 14]. Alikakos and Shaing { 15).

SCahn and Hilliard {6] show that &, gives the interfacial energy exactly when Q is the entire real
line.
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They also show that:

(f)For ©=DXG (or O =D) with D convex and sufficiently small, the
solutions of the Euler-Lagrange equation and natural boundary condition
are constant on each cross-section parallel to D.

Questions.
(1) What can be said about /oca/ minimizers of Ph as h approaches zero.

(2) Suppose the term h?Igradul? in (2.1) is replaced by the more general’
‘regularization” glu,hgradu), g(u,0) = 0. To what extent does the
asymptotic behavior (for h small) depend on g?

ter. Maddocks and Parry [17], who intreduce a regularization of this form for the unconstrained
problem.
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4. Conjectures for n> L.

Guided by the results discussed in Section 3, | recently' offered the
conjectures {C1) - (C3) listed below.
(C1) The limits, as h approaches zero, of soiutions of Ph are exactly

the minimal interface solutions of Po.

To state (C2) and (C3) succintly:
(i) Let u, denote a minimal-interface solution of P,, andlet alu,)

denote the interfacial area (cf. {1.7)) and k the sum of principal
curvatures of the associated interface, with k counted positive when the
center of curvature lies toward the phase 1 region.

(i1) For each h, let u, be a solution of P, that converges to u,

approaches zero, and let j, denote the chemical potential of u,.
(iti) Let e denote the (one-dimensional) interfacial energy (3.2).
Then the remaining conjectures are, for h small:
3 ~
(C2)°  E(u)= aluye,.
(C3)  yy = -ke /U, -uy) {4.1)
The formula (4.1), often referred to as the Gibbs-Thompson relation?,
asserts that the chemical potential differs from the coarse-grain
chemical potential (g = 0) by an amount proportional to the mean curvature
of the interface.
The motivation behind (C3) is contained in the following strict/y
forma/ argument (which hopefully might form the basis of a proof).
Consider Q in RZ Then granted (C1), for small h the transition from u

to u, should occur over thin interfacial regions lying between concentric

s h

1

circular arcs. (in R2Z minimal interfaces are arcs of circles.) Near such a
region, but away from 20, the soiution should be approximately
cylindrically-symmetric. Assuming it is, then the Euler-Lagrange equation
(2.2) becomes

Wy =W - 2n%u s ), (4.2)

where r denotes the radial coordinate and u.= au/ar, etc. Llet r=R

Y€1) is contained in [18] and (C2) with (C 1) were given at the American Mathematical Society mesting
in Minneapotis in Novenber 1984; (C3) was presented at the workshop on Metastability and
incompletely Posed Problems in Minneapalis in May, 1984. Subsequently., Kohn and Sternberq, and
Modica, in private communications, have asserted proofs of (C1) and {C2) using as a basis work of
Modica and Mortola {cf. [19] ). The conjecture (C3} remains open.
2C\" [8] for an analogous result within a theory that directiy penalizes & sharp interface.

3van der Waals himself asserted thet (cf. [5], p. 201): "It will not be without interest to show that the
two apparently contradictory hypotheses lead to values of the same order of magnitude for the
capillary tension and energy.” (The contradictory hypotheses being the classical assumption of an
abrupt interface and the smooth transition of van der Waals.)
“Cf.. 8.0.. Mullins and Sekerka (201, eqt. (8).
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denote the approximate location of the interfacial region. Away from the
interface u should be approximately constant. Granted this, choose
ry,r, such that

ur(ri) = (, u(ri) % U,

and assume that r, <R <r, (The analysis for r, <R<r, issimilar.)
Then, if we multiply (4.2) by u. and integrate from r, to ry we
conclude, using (1.3), that

Mp(uy = U = = (2h2/R)Hu 12,

with 1111 the L%(r,,r,) norm. We estimate this norm using the
corresponding estimate of [10] (p. 350) for O an interval:

Hu 112 = K/(2h).

Since R=R"', the last two estimates lead to the desired conclusion (4.1).
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2. Inclusion of boundary energy.
Problem P, neglects the contact energy between the fluid and the

container wails. For this energy Cahn [21]' proposes adding the boundary
term

fblu), (5.1)
a0
with b(z) the contact energy, per unit area, between the fluid and the
vessel when the density is z. Without contact energy the interfacial
energy between phases is? O(h) for small h, and this suggests repiacing
b by hw with w fixed. We are therefore led to the functional

T (W) = [(W(u) + h2lgradul®) + hjw(w), (5.2)
9 1Y

and to the problem:

(PB,) Minimize T, (u) over the class of all sufficiently regular
density distributions u that satisfy the constraint (1.1).

This problem is completely open. One would generally not expect
existence,3 but it would be important to answer the fol!owing:;:“l

Questions:
(1) What is the Jower semi-continuous envelope of the functional T, over

an appropriate space of constrained density fields?

(2} In situations for which PB, has a solution for ali smati h, do
solutions have 1imits as h tends to zero, and if so do the limits satisty
an associated variational principle?

| have a conjecture appropriate to Question 2. Given any subset F of
0, let A(F) and A,(F), respectively, denote the areas of the sets

oFnQ,  aFnsQ,
let [3 be a given constant, let

G(F) = A(F) + BA (F),

1For‘ n=1i.
2Cf.(4.2) and Foolnote 1 of Section 5.
Cf. Gurtin (22] for a discussion of this issue within a slightly diferent theory.

Buttazzo (private communication) has investigated (1) for Problem PBy, with the term h:‘!!grardul2 in
{5.2) replaced by higradul.
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and for each fixed V, 0 <V <1, consider the variational problem:
(LD) Minimize G(F) subject to the constraint vol(F) = V.
Remark. LD, known in the literature as the liquid-drop problem,! may

be stated physically as follows: determine the region F occupied by an
incompressible liquid drop of voiume V inacontainer Q with

3 - contact energy between drop and container walls ‘
surface tension of the fluid

Definition. Let U, be atwo-phase solution of P0 of the form (1.5).
Then u, solves the liquid-drop problem if F isasolution of LD
with V given by (1.4) and

B = (wlu))-wlu)l/K.

(Recall that, by (3.2), Kh is the asymptotic form of the interfacial energy
between phases.)

Conjecture. Let W and w be such that PB, has a solution for all small
h. Then as h approaches zero the Himits of solutions of PB, are exactly
those solutions of P, that solve the liquid-drop problem.

Remark. For IB1> 1, one can show, using results of Massari and Pepe [1],
that the liquid-drop problem does o/ have a solution for general (O and
atl vV, 0 <V < 1. This leads me to conjecture that for

Iw(ug)-wlui > K

and h sufficiently small Problem PBh does nof have a solution for
general Q and all m.?

- Acknowledgment. This work was supported by the Army Research Office
and the Nationail Science Foundation.

Tee., .9, Massari and Pepe { 1], Giusti [2].
2cf. (221,
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