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a, a a
ABSTRACT. If the natural number n has the canonical form pllp2 ...prr then
b1 b2 b
d = PPy ...prr is said to be an exponential divisor of n if bilai for i=1,2,...,r.
(e)

The sum of the exponential divisors of n is denoted by © (n). n is said to be an

e-perfect number if c(e)(n) = 2n; (m;n) is said to be an e-amicable pair if

c(e)(m) = mtn = G(e)(n); n

0(e)

0,nl,nz,... is said to be an e-aliquot sequence if

h = (ni)-ni. Among the results established in this paper are: the density

i+l
of the e-perfect numbers is .0087; each of the first 10,000,000 e-aliquot sequences

is bounded.
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1. TINTRODUCTION.
If n is a positive integer greater than one whose prime-power decomposition is
given by
a, a a
_ 1 72 r
=P, Py .- P (1.1)

r
b, b br
then d is said to be an "exponential divisor" of n if d = Py Py +eeP, where bi|ai

for i = 1,2,...,r. The sum of all of the exponential divisors of n is denoted by
G(e)(n). This function was first studied by Subbarao [1] who also initiated the
study of exponentially perfect (or e-perfect) numbers.

The positive integer n is said to be an e-perfect number if G(e)(n) = 2n. If
c(e)(n) = kn, where k is an integer which exceeds 2, n is said to be an e-multi-
perfect number. The properties of e-perfect and e-multiperfect numbers have been
investigated by Straus and Subbarao [2] and Fabrykowski and Subbarao [3]. It has
been proved, for example, that all e-perfect and e-multiperfect numbers are even.
Also, if n is an e-perfect number and 3fn then ZIIOI n and n > 10618.

While it is easy to show that there are an infinite number of e-perfect numbers,
whether or not any e-multiperfect numbers exist is still an open question. Subbarao,
Hardy and Aiello [4] have conjectured that there are no e-multiperfect numbers. They
have proved that any which exist are very large.
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In Section 2 of the present paper the density of the set of e-perfect numbers is
investigated. Section 3 is devoted to a study of e-amicable pairs, integers m and n
such that c(e)(m) = mtn = c(e)(n). Finally, e-aliquot sequences LPFLIRL PR where
n s c(e)(ni)—n:.L for i = 0,1,2,... are studied in Section 4.

2. THE DENSITY OF THE e-PERFECT NUMBERS.

By definition, o(e)(l) = 1 and it is easy to see that o(e)(n) is multiplicative.
Therefore, since o(e)(p) = p if p is a prime, we see that c(e)(m) =m if m is square-
free.

Now suppose that n, as given by (1.1), is a powerful e-perfect number (so that
a, 22 fori=1,2,...,r and o(e)(n) = 2n). Then if (m,n) = 1 and m is squarefree
then c(e)(mn) = 2mn so that mn is an e-perfect number. Therefore, if x is a (fixed)
positive number and n, < n, < ... < n_ are the powerful e-perfect numbers which do
not exceed x then E(x), the set of (all) e-perfect numbers less than or equal to x,
is given by E(x) = .31 Ai where

i=

= . = <
Ai {mni'(m’ni) 1, m = x/ni and m is squarefreel (2.1)

Let N be a positive integer and let X be a positive real number. If Q(N,X) is
the number of positive, squarefree integers which do not exceed X and which are

relatively prime to N, then E. Cohen (Lemma 5.2 in [5]) has shown that
1/2
Q(N,X) = B(N)*X + 0(O(N)*X" %) (2.2)

where B(N) = (£(2) ]ll (1+1/p))—1 and 0(N) is the number of squarefree divisors of
pPIN
N. It is easy to see that O(N) = l] 2. t(k) is the Riemann Zeta function, so that
pIN
£(2) = 12/6, and the constant implied by the O-term is independent of N and X.
If Q(e,x) is the number of e-perfect numbers which do not exceed x (so that

Q(e,x) is the cardinality of E(x)) it follows from (2.1) and (2.2) that

3 1/2 ¢ 1/2
Q(e,x) =x } B(n,)/n, + 0(x Yy o8, /a9,
s 1774 5 1'%
Therefore,
g -1/2 ¢ 1/2
Qe,x)/x = | B(m)/n; + 0(x I oetmpm’. (2.3)
i=1 i=1

The following results concerning powerful numbers will be needed in what follows.

Proofs may be found in Golomb [6].

©

LEMMA 1. If T ST, < ... is thesequence of powerful numbers then Z 1/r

2 i=1 i

is convergent.
LEMMA 2. If P(X) is the number of powerful numbers not exceeding x then
P(x) < 2.2)(1/2

Now let € be a given positive number and let P

for large x.

i denote the ith prime. There

exists a positive integer k such that

1

z/Pk <e + (2.2K) /3 (2.4)

where K is the constant implied by the O-term in (2.3).
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Since there are only a finite number of powerful e-perfect numbers which are
divisible by fewer that k distinct primes (see Theorem 2.3 in {2]) there exists a
positive integer J such that if n; < n, < ... is the sequence of powerful e-perfect

numbers then for all i > J ng has at least k distinct prime factors and n, has a

i
prime factor, say Qi’ such that Qi 2 Pk' Since n, is powerful, ni”2 z NIip where the

product is taken over the distinct prime factors of ng, and it follows from (2.4)

that if 1 > J then

1

e(ni)/ni* s TT 2/p <2/q = 2/p < e+ (2.2K) /3. (2.5)

pln,
Splitting the sum in the O-term in (2.3) at i = J (with J held fixed) we can
/2

J
take x large enough so that x-l/z-K Y S(ni)/ni1 < g¢/3. At the same time, since
i=1

every n, is powerful, we see from (2.5) and Lemma 2 that we can also take x large

enough so that

s s -
k- ) emp/miffexMroce ) el

i=J+1 1=J+1

SV

< 12 RGO e 2.7 Y3 < e/3.

Finally, since B(ni) < 1 and every 0, is powerful we see from Lemma ! that

izl B(ni)/ni is convergent. (This series may be finite since whether or not the set
of powerful e-perfect numbers is finite or infinite is an open question). It follows
that we can take x (and consequently s) large enough so that the tail of this series

is less that £/3. Therefore, from (2.3)wehave for all large values of x,
lae.)/x - I Bap/myf <e . (2.6)
i=1

We have proved
THEOREM 1. Let Q(e,x) denote the number of e-perfect numbers which do not

exceed x and let n, <n, <ng < ... be the sequence of powerful numbers. Then

©

lim Q{e,x)/x = z B(ni)/ni =C

X+ i=1
where B(n) = 6n_2 T_T (1+1/p)-1. Correct to ten decimal places, C = .0086941940.
pin

(There are eight powerful e-perfect numbers less than 1010: 36; 1800; 2700;
17,4245 1,306,800; 4,769,856; 238,492,800; 357,739,200. The approximate value of C
given above was calculated using these eight numbers).

The "theoretical" density of the e-perfect numbers as given in Theorem 1 agrees
very nicely with the following exact computational results: Q(e,105)/105 = .00871;
Qe 10)/10% = .008690; Q(e,107)/107 = .0086940; Q(e,10%)108 = .00869417.
3. EXPONENTIALLY AMICABLE NUMBERS.

We shall say that m and n are exponentially amicable (or e-amicable) numbers 1if

o(e)(m) =m+n= a(e)(n). (3.1)
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LEMMA 3. If (m;n) is an e-amicable pair and p is a prime, then plm if and

only if pln.

(e) (e)

PROOF. Suppose that pallm where a 2 1. Then plc (m) since pIo (pa) and
o(e) is a multiplicative function. It is now obvious from (3.1) that p]n. By the
same argument, if p|n then pim.

COROLLARY 3.1. If (m;n) is an e-amicable pair then mZn(mod 2).

If (m;n) is an e-amicable pair and there is no prime p such that p|jm and p||n
we shall say that m and n are primitive e-amicable numbers. It is easy to see that
if (m;n) is a primitive e-amicable pair and r is a squarefree positive integer such
that (m,r) = 1, then (rmjrn) is an amicable pair.

A search was made for all primitive e-amicable pairs (m;n) such that m < n and
m < 107. The search required about 1.5 hours on the CDC CYBER 750 and three pairs

were found. They are as follows: (22327 . 192; 22337219); (22327 . 612; 22347261);

(2°3%527 . 19% 2333523219,

This list suggests the following questions. Are there any odd e-amicable
numbers? Are there any powerful e-amicable numbers? 1Is every e-amicable number
divisible by at least four distinct primes? (It is easy to show that every e-amicable
number has at least three different prime factors).

The following result can sometimes be used to generate new e-amicable pairs from
known pairs.

THEOREM 2. Suppose that (aM;aN) is an e-~amicable pair such that (a,M) = (a,N) =1.
If (b,M) = (b,N) = 1 and o(e)(a)/a = c(e)(b)/b then (bM,bN) is an e-amicable pair.

prOOF. o M) = 6 ) + 0P ) = ahbe(® @) + @ an = a7bo ) (am) =0
a"'b(aM + aN) = bM + bN. Similarly, o) (bN) = bM + bN.

The results of a computer search for powerful numbers a and b such that
4 2a<b s 10000 and c(e)(a)/a = o(e)(b)/b are given in Table I.

TABLE 1

% (a)/a a b

3/2 22 2352 or 2*11?

4/3 3 35

2 2232 233552 o 223352
39/32 28 2’s?

5/3 2332 2233 or 23332
1277 272 235272

65/48 273 2533

40/21 233272 223372
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EXAMPLE. Since (22 . 32 o 7 - 192; 22 . 33 . 72 = 19) is an e-amicable pair and

since o(e)(22)/22 = c(e)(z4 . 112)/24 . 112 it follows from Theorem 2 that

2
@ - 112 3% o7 w105 2% - 112 - 33 - 72 - 19) is an e-amicable pair.
4, EXPONENTIAL ALIQUOT SEQUENCES.

(e)

The function s is defined by s(e)(n) = d(e)(n) - n, the sum of the exponential

aliquot divisors of n. s(e)(l) = s(e)(r) = 0 for every squarefree number r and we

define s(e)(O) = 0. A t-tuple of distinct natural numbers (no;nl;...; nt—l) with

ni = s(e)(ni_l) for i = 1,2,..., t-1 and s(e)(nt_l) = n0 is called an exponential

t-cycle. An exponential l-cycle is an e-perfect number and an exponential 2-cycle
is an e-amicable pair. A search was made for all exponential t-cycles with smallest
member not exceeding 107. None with t > 2 was found.

The exponential aliquot sequence (or e-aliquot sequence) { ni} with leader n is
defined by n

= n,n, = s(e)(no), n, = S(e)(ni-l)"" . Such a sequence is said to

0 1
be terminating if o, is squarefree for some index k (so that n, = 0 for 1 > k). An
exponential aliquot sequence is said to be periodic if there is an index k such that
(Myimyppiee s Pppeog
neither terminating nor periodic is unbounded.

) is an exponential t-cycle. An e-aliquot sequence which is

An investigation was made of all aliquot sequences with leader n s 107. About
2.3 hours of computer time was required. 9,896,235 were found to be terminating and
103,765 were periodic (103,694 ended in l-cycles and 71 ended in 2-cycles).

The fact that the first ten million expomential aliquot sequences are bounded
might tempt one to conjecture that the set of unbounded e-aliquot sequences is empty.
However, the following theorem shows that e-aliquot sequences exist which contain
arbitrarily long strings of monotonically increasing terms. Therefore, whether or
not unbounded e-aliquot sequences exist would seem to be a very open and difficult
question.

THEOREM 3. Let N be a positive integer which exceeds 2. Then there exist
infinitely many exponential aliquot sequences such that 0, <mny < n, € e Sy o

PROOF. Let 9795505 dy be a sequence of N primes such that q; = 2, 9, = 3 and
qil(q1+1 + 1) for 1 = 2,3,..., N-1. (Infinitely many such sequences exist since, by

Dirichlet's theorem, the arithmetic progression aqi - 1 contains an infinite number

of primes.) We shall write 941 + 1= Ki q;-
Now let LIRS TRPERR be the exponential aliquot sequence with leader n, given by
2

nO = ql q2 o qN. Then

N N
(e) 2, _ 4, .
0" (ng) H (q +a)) =3+ qa, -.. q E (1 +qp)

N-1 )
= 3 qeeeay T T Kags
i=1
and

n, =0 @) -n = @3- L K T
1 o) Mo SRR L B S VAR

)=1fori=12,..., N-1.

N-1
Therefore, n, = M [ ‘ q2 where (M. ,q
17 N 19
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Since n0/36 is not squarefree, n, = o(e)(no) -0y = o(e)(36) 4 a(e)(n0/36) -n
- . (e _ . -
=72 0 (n0/36) n, > 72 n0/36 ng 0°

Similarly, we find that for k = 2,3,..., N-2

0
=n

=]
"

-k
S M E qi where (M ,q;) =1 for 1 =1,2,..., N-k

and

=0 @ ) - =06 - oD@ /36 - n

k-1 k-1

>72 +n, ./36 -n =n
k-

1 k-1

Therefore, n < n; < i0e < Dy

REMARK 1. gy = 36MN_2 where (6’MN-2) =1, If MN—Z is not squarefree, then

=72 - 5@ - - -
Nop T 72t 00 T (My ) - 36My o > T2My p - 36My, = 36My, =y,
REMARK 2. The proof of Theorem 3 is modeled on that of Theorem 2.1 in [7].

Our next objective is to determine M(o(e) (n)/n), the mean value of c(e)(n)/n.

-1
The mean value of an arithmetic function f is defined by M(f) = lim N L. f(n).

n=1
Now
We shall need the following lemma due to van der Corput (See Theorem A in [8].)
LEMMA 4. If f and h are arithmetic functions such that f(n) = % h(d) and
d|n

z h(n)/n is absolutely convergent then M(f) = Z h(n)/n.
n=1 n=1
We wish to apply this lemma to the function f(n) = o(e)(n)/n. By the Moebius

inversion formula, h{(n) = % u(n/d)o(e)(d)/d. h is multiplicative and h(l) = 1.
d|n
If p is a prime and a is a positive integer then h(pa) =c(e)(pa)/pa-o(e)(pa—l)/pa—l.
If a < 6 it is easy to verify that lh(pa)l < p—a/4.
3 -1 =2 -1 -3/4

[h(p)| =p7 - p < P <p .) Suppose that a 2 6. Then

Ihe® 1 = o 6™ /5% - 0@ > H % or M| = o2 %l (2 %) 152,
Since c(e)(pm)/pm <1+ p/(p-l)pm/2 (see [2] or {4])and c(e)(pb)/pb 21

/4

Ih(pa)| < p/(p—l)p(a_l)/z. Since a 2 6 it follows easily that ih(pa)| < p—a .
Since h is multiplicative, Ih(n)[ s n-l/a for every positive integer n. It follows
that z h(n)/n is absolutely convergent so that Lemma 4 applies if f(n) = o(e)(n)/n.
n=1
From Theorem 286 in [9] we have

(For example,

Z h(n)/n = T_T {1 + h(p)/p + h(pz)/p2 + ...}
n=1 P

=TT {14-p-1(0(e)(p)/p-1)-+p°2(o(e)(pz)/p2-u(e)(p)/p) +...}
P

STTCY o®@ehn?d - ot T 0@ 00
p j=0 i=0

=TTta-pYH T o).
p j=0

Now the last infinite series can be "split up" by first taking all the terms

o oo
with numerator pJ to form the series Z pJ/p2J = Z l/pj; then taking the remaining
j=0 j=0
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00 . _ -] -2 .
terms with numerators p to form the series .22 p/p?‘J =p 3 'ZO (p )J; then taking
1= © 3= ©
-6 =4.j
=p .z (p )J; then
j=0

LS

2 ;
the terms with numerators pz to form the series ’22 P /p[‘J
J= ©

- j - -6
taking the terms with numerators p3 to form the series .22 p3/p6J =p 9 'ZO (p )J;
1= i=
etc. It follows that
s - -1,-1 , -3 -2.-1
I ny/m =TTt - e hea -pH™ +p7a - 9™
n=} P
- ~4 - - -6,-1
+p a1 - P 4) Ly p *a - p )+ ..}

TTia-pH@w=-2HTt+ 62 -mt+ 6°-H)
P

+ (p9 - 1)3)—1 + ...}

TTu+a-9h
P

From Lemma 4 we have
THEOREM 4. M(o'®) (m)/n) = TT {1 + (1 - p~ 3_phh -c.

—
~
.
Ne~18

(p

Correct to 6 decimal places, C = ?.136571.

(This approximate value of C was calculated using all primes less than 106 in
the infinite product.)

Since s(e)(n) = c(e)(n) - n we have

COROLLARY 4.1. M(s'®) (n)/n) = .136571.

Finally, since ni+1/ni = s(e)(ni)/ni we see that, in some sense, the average
value of the ratio of two consecutive non-zero terms of an e-aliquot sequence is

about .136571.
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