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SOME RESULTS FROM THE COMBINATORIAL 

APPROACH TO QUANTUM LOGIC* 

The combinatorial approach to quantum logic focuses on certain inter 

connections between graphs, combinatorial designs, and convex sets as 

applied to a quantum logic (<?, ?f), that is, to a a-orthocomplete ortho 

modular poset if and a full set of <r-additive states Sf on S?. Combina 

torial results of interest in quantum logic appear in Gerelle et al. (1974), 
Greechie (1968,1969,1971a, b), Greechie and Gudder (1973), and Greechie 

and Miller (1970, 1972). In this article I shall be concerned only with 

orthomodular lattices 5? and associated structures. 

I derive a class of complete atomic irreducible semimodular ortho 

modular lattices which may not be represented as linear subspaces of 

a vector space over a division ring. Each of these lattices is a proposition 

system of dimension three. Moreover each of them admits a state a which 

violates the following condition: 

a(a) 
= 

a(b)=l implies a(aAb)=l. 

This answers a question posed by Jauch (this volume). These proposition 

systems form orthocomplemented non-Desarguesian protective geom 

etries. Knowledge of the existence of such structures is apparently new. 

Roughly, the construction proceeds as follows: given any cubic (all 
maximal Boolean subalgebras have cardinality eight) orthomodular lat 

tice L, we consider the associated structure space (X, S) where X is the 

set of atoms of L and ? is the set of all blocks or bases (maximal orthogonal 

sets of atoms) of L. We call a subset {x, y}<^X bad in case no element 

zeX is orthogonal to both x and y. We then augment (X, ?) by adding 
to X enough elements to eliminate all bad subsets of X and by adding 

enough new blocks to maintain orthomodularity in the extended lattice 

Lx; an infinite iteration of this process yields the desired proposition 

system L^. L may or may not be a quantum logic 
- 

depending on L. 

We show that, under a mild assumption, the automorphism group 

of L^ is isomorphic to that of L. Finally, we associate to each semi 
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modular atomistic lattice a cubic orthomodular lattice L and thus a non 

Desarguesian proposition system L . In particular every lattice of (closed) 

subspaces of a Hilbert space 2fC 
- 

of dimension ^ 3 
- 

may be associated 

with a non-Desarguesian proposition system L^. Although the initial 

structure is needed (at present) for computations, any group represent 

able on ̂  is representable on L^. 

I. THE STRUCTURE SPACE GESTALT OF 

ORTHOCOMPLEMENTED PROJECTIVE PLANES 

In this part I review some basic definitions such as graph, orthomodular 

lattice, semimodular lattice, projective geometry and projective plane, 
as well as introduce the notions of cubic, wide and tight structure spaces. 

I associate to each graph (X, R), or equivalently to each structure space 

(X, $), an orthocomplemented lattice <?(X, S) of all ^-closed sets. For 

wide cubic structure spaces (X, S), ^(X, S) is an orthomodular lattice. 

If (X, S) is tight and cubic, then ^(X, S) is an orthocomplemented pro 

jective plane with atoms {{x} | xeX} and conversely. 

A space is a pair (X, si) where X is a nonempty set and si is a set of 

nonempty subsets of X. A graph is a pair (X, R) where X is a nonempty 

set and jR is a symmetric irreflexive relation on X (that is, R c= X x X, 

(x, y)eR implies (y, x)eR, and (x, x)$R for all xeX). An R-set of a graph 

(X, R) is a subset Y<=X such that if x, ye y and x^y then (x, y)eR. R 

sets which are maximal under set theoretic inclusion are called ?-blocks 

or simply blocks. Let SR, or simply S, denote the set of all R-blocks of 

the graph (X, R). (X, SR) is called the structure space of the graph (X, R). 

Clearly R may be recaptured from SR by noting that (x, y)eR if and 

only if x^y and there exists EeSR with {x, y} czE. 

A space (X, S) is a structure space if there exists a (unique) graph (X, R) 
such that S = 

SR. Such spaces were characterized in Gerelle et al. (1974). 
For convenience we define R' = 

{(x, y)eX xX 
\x^y 

and (x, y)$R}. If M 

is any set, the cardinality of M is denoted by \M\. 

A minimal cycle in a graph (X, R), or in a structure space (X, SR) is 

an ordered n-tuple (a0, al9...9an--?) such that a(eX, (ah a^eR 
if and only 

if \i?j\ 
= 

l(modn), and n^4; n is called the order of the minimal cycle 

(a0, ?!,..., a^J. 

Let (X, R) be a graph. If MczX, define 
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MR = 
{xeX | (x, m)eR for all meM} and 

MRR = 
(MR)R. {x}R is usually written xR. 

Let 

<g(X,?R) 
= 

<#(X,R) 
= 

{M X\M 
= 

MRR} 

be the set of all R-closed subsets of X. Then, partially ordered under 

set-theoretic inclusion, ^(X, R) is a complete lattice. The join and meet, 

respectively, of a family {Mj <=#(X, R) are given by the formulas 

and 

/\Ma=C)Ma. 

Recall that a lattice L is orthocomplemented in case there exists a func 

tion \L-*L such that (i) x" = 
(x')' 

= x, (ii) x^y implies y'^x', and (iii) 
x v x' = 1 and x a x' = 0. 

An orthocomplemented lattice (L, ^, ') is orthomodular in case x ^ y 

implies y 
= 

xv(yax'), or equivalently x^y and yAx'=0 imply x = 
y. 

The lattice ^(X, R) is orthocomplemented by the function M-+MR. It 

is orthomodular if and only if for each Me^(X9 R) and each maximal 

R-subset D of M9DRR 
= M. 

An orthomodular lattice is cubic when every maximal Boolean sub 

orthomodular lattice has eight elements. 

If R = 
{(x, y)eXxX | x^y} then <$(X, R) is the set of all subsets of 

X and MR = 
X\M. If (?f, <,? is a Hilbert space, X=^\{?} and 

R = 
{(x,y)eXxX\(x,y} 

= 
0} then #(X, R) is the lattice of all closed 

linear subspaces of Jf and MR is the usual 'orthogonal complement' 

of the subspace M. Because Hilbert space 'orthogonality' is, in some 

sense, a prototypical example of the relations R that we have in mind 

we shall frequently use _L for R and J_' for R'. 

A structure space (X, S) is called cubic if \E\ 
= 3 for all EeS\ it is called 

wide if \xR O yR\ ̂  1 for all distinct x, y eX; it is called ?ig/i? if |x* O yR\ 
= 1 

for all distinct x, yeX. A cubic structure space (X, <?) is called nontrivial 

if H <? = 
</>, that is, no xeX is in every Ee?\ otherwise it is called trivial 

LEMMA 1. Let (X9 S) be a cubic structure space. These are equivalent: 

(i) (X9 S) is wide, 

(ii) all minimal cycles of (X, S) have order at least 5, 
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(iii) ^(X, S)is an orthomodular lattice with atoms {{x} | xeX). 

Proof. See Greechie (1971a), Theorem 3. 

Let L be a lattice with 0, i.e., O^x for all xeL. For x, y eh we say 

that x covers y, written x>y or y<x, in case x>y and if x^z^y then 

z = x or z = 
y. Elements which cover 0 are called atoms. L is atomic if 

for all xeL with x#0, there exists an atom aeL with a^x. L is atomic 

in case every element is the supremum of some set (possibly empty) of 

atoms. An atomistic lattice L is upper semimodular in case xeL and a 

an atom of L with a^x imply x v a>x. If L is of finite height (i.e., all 

maximal chains in L are finite), then L is upper semimodular if and only 

if xvyH y whenever x, y>x Ay. Recall that a lattice L is modular 

if (x 
v 

y) 
a z = x v (y a z) for all x9y9zeL with x< z. For an orthocom 

plemented lattice of finite height the concepts 'upper semimodular', 'semi 

modular', and 'modular' coincide. 

A lattice L is reducible if it may be written as a nontrivial Cartesian 

product of lattices L1xL2; otherwise, it is called irreducible. A lattice 

with 0 and 1 is complemented if for each xeL there exists yeL such that 

xvy=l and xAy 
= 0. (Clearly an orthocomplemented lattice is com 

plemented.) A projective geometry is an irreducible complemented mod 

ular lattice of finite height. A projective plane is a projective geometry 

of height 3. An essentially equivalent and more classical definition of 

a projective plane is a pair (P, if) together with a notion of incidence 

such that (for 'points' in P and 'lines' in 5?) 

(a) two distinct points lie on exactly one line, 

(b) two distinct lines meet in exactly one point, 

(c) each line contains at least three points, and 

(d) there exist at least three noncollinear points. 

Let (L, <) be a lattice which is a projective plane. Assume that L is 

orthocomplemented by '.L^L. Let A be the set of atoms of L and, 

for x, ye A, define xly in case x^y' so that (A, J_) is a graph. Let S be 

the set of all maximal 1-sets of atoms so that (A, S) is the structure space 

of the graph (A, 1). Note that (L, ^, ') is isomorphic to (%(A, _L), cz, x) 

under the mapping x -* 
{aeA | a^x} (for each xeL). 

Note also that (A, S) is a nontrivial, tight cubic structure space. It 

is nontrivial because L is irreducible, tight because L is semimodular 
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and cubic because L is cubic. The following theorem shows that every 

such space gives rise to an orthocomplemented projective plane. 

THEOREM 1. let (X, S) be a structure space. (X, S) is nontrivial cubic 

and tight if and only if(?(X, S) is an orthocomplemented projective plane 

with atoms Xt 
= 

{{x} | xeX}. 
Proof. Let (X, S) be the nontrivial tight cubic structure space cor 

responding to the graph (X, 1), let xeX and EeS with xeE. If yGx11\{x} 

then, since (X9 S) is cubic, |xx n yx\ ^2 contradicting the fact that (X9 S) 
is tight; therefore x11 = 

{x} and Xx is the set of atoms of %(X9 S). If 

(?(X9S) 
= L1xL2 where Lx and L2 are nontrivial then there exists 

Me< (X9 S) withLx^{Ne( (X9 S) \ (?>czN M} and L2^{Ne<#(X9 S) \ 
<?)czNc: M1}. Since (X, S) is cubic either M or M1 is an atom of #(X, S), 

say M is an atom; then M 
? 

{m] and it follows that me ? for all EeS, 

contradicting the nontriviality of (X, S)\ therefore ^(X, S) is irredu 

cible. 

To see that ^(X, S) is semimodular we need only check that, for any 

x, yeX with x#y, {x,y}11>{x}, {y}; but there exists zeX such that 

{z} 
= 

x1ny-L 
= 

x1Ay1, X^z? 
= 

{x9 y}11, and since (X9 S) is cubic z1 

= 
{x} v {y}>{*}, {y}. *?(X9 S) is therefore semimodular and of height 

three (since (X9 S) is cubic) so that ^(X, S) is modular. Thus %>(X, S) is an 

orthocomplemented projective plane. The detailed proof of the converse, 

sketched above, is left to the reader. 

COROLLARY 1. There exist no nontrivial tight cubic structure spaces 

(X, S) such that\X\ is finite. 

Proof There exist no finite orthocomplemented projective planes. 

I now show that every nontrivial wide cubic structure space (X, S) 

may be embedded in a nontrivial tight cubic structure space n(X, S), 

%>(n(X, S)) is called the free orthocomplemented projective plane over 

(X, S)', it is Desarguesian if and only if (X, S) is itself tight and Desar 

guesian. To my knowledge these are the first known non-Desarguesian 

orthocomplemented projective planes. 

DEFINITION 1. Let (X, S) be a wide cubic structure space and let 

x,yeX. The set {x, y} is called bad in case xLr\yL 
= 

<j>, that is \xLr\yL\ 
= 0. 

Let Bad(X, S) be the set of all bad sets in (X, 8). If {x, y}eBad(X, 8) 
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let Ayx={x, (x, y), {x, y}} and note that AyxnA* 
= 

{{x, y}}. Let d(X) 
= 

Xv\J{A'x | {x,y}eK&d(X, ?)},d(?)=?u{Ax \ {x,y}eBad{X,?)}and 
d(X>S)=(d(X\d(^)). 

For obvious reasons we assume throughout that, for all x, yeX9 
neither the set {x, y} nor the ordered pair (x, y) are elements of X. 

Let (X0,S0) 
= 

(X,S), (X1,Si) 
= 

d(X0,S0) and, inductively, (Xn, Sn) 
= 

d(Xn_l9 Sn-x) for all integers n^ 1 ; let 

oo co 

XX=U X?,^ =U /, and n(X,*)=(Xa,*?). 
n=0 n=0 

THEOREM 2. // (X, S) is a wide cubic structure space then n(X, S) is a 

tight cubic structure space. If (X, S) is also nontrivial then ^(n(X, 8)) is 

an orthocomplemented projective plane. 

Proof. Let (X, 8) be a wide cubic structure space. Note that d(X, 8) 
is again such a space so that (Xn, 8n) is one such for each n^O. Let 

x, yeX^, then xeXn and yeXm for some n, m^O; we may assume n^m 

so that {x, y}c:Xn and there exists zeXn+1czXOD with {z} 
= 

x?ny1 (in 

Xi9 for ? = n +1, n + 2,..., oo); it follows that n(X, 8) is tight. 

Clearly n(X, 8) is a cubic structure space. The rest follows from The 

orem 1. 

COROLLARY 2. Let (X, 8) be a wide cubic structure space, (i) (X, 8) 
is tight if and only if (X, 8) 

= 
n(X, 8). (ii) (?(n(X, 8)) is a Desarguesian 

projective plane if and only if ̂ ((X, 8)) is a Desarguesian projective plane. 

Proof, (i) is evident. For (ii) 
one must show that a non-Desarguesian 

configuration always exists if (X, 8)^n(X9 8). We leave the translation 

of a non-Desargues configuration (that is, a configuration which violates 

Desargues' 'Theorem') into a wide cubic structure space (A9 si) to the 

reader. (Hint: if a point P is on a line 1 then P<1 and PI? where 

{?} 
= 

l1; thus there exists a point R with {P, g,R}esi9 neither Q nor 

R need appear in the non-Desargues configuration.) 

Let (X, 8) be a structure space. By a substructure of (X9 8) we mean 

a structure space (A9 si) such that ici and siaS. We say that (A9 si) 
is a confined configuration of (X9 8) in case (A9 si) is a substructure satis 

fying \{Besi | xe?}|^2 for all xeA. 
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If xeX^ we define the level of x, X(x)9 to be the smallest integer n 

such that xeXn. A confined configuration (A9 si) of n(X9 8) is called 

bounded in case there exists neN such that icIM, i.e., ?(x)^n for all 

xeA. 

PROPOSITION 1. Any bounded confined configuration of n(X9 8) is 

contained in (X09 80). 

Proof. Let (A9 si) be a confined configuration in n(X9 8), N 

= 
max{/l(x) | xeA} < oo (since A is bounded), and x0eA with X(x0) 

= N. 

Suppose iV>0, then there exist y,zeXN_1nA such that x0e{(y, z), 

(z,y),{y,z}}. 
Whichever element equals x0, it follows that (y,z)eA; but |{2?e<s/ | (y, 

z)eB}\ 
= 

\, contradiction. Hence A X0. 

II. STATES ON NON-DESARGUESIAN PROPOSITION SYSTEMS 

One reason that non-Desarguesian orthocomplemented projective planes 

may be of interest in the foundations of quantum mechanics is that they 

are proposition systems (Jauch, 1968). Recall that a proposition system 

is an irreducible complete atomic semimodular orthomodular lattice. 

(For orthomodular lattices 'atomic' is equivalent to 'atomistic'.) The non 

Desarguesian orthocomplemented projective planes are precisely the 

proposition systems which may not be represented by subspaces of a 

left vector space over a division ring. 

In this part I define quantum logics, weights, and states. I show that 

a (non-Desarguesian) proposition system 5? may or may not be a quan 

tum logic and, even if it is, there exists a state /?: j??->[0, 1] and a,beSe 

such that ?(a) 
= 

?(b) 
= 1 but fi (a a b) 

= 0. 

A quantum logic (Greechie and Gudder, 1973) is a pair (Se, Sf) where 

Se is a c-orthocomplete orthomodular poset and Sf is a full set of states 

on 5?. In order to facilitate the exposition in this article I consider only 

orthomodular posets Se which are, in fact, complete lattices. A state on 

SB is a function <t:JS?-*[0, 1]cR such that <t(0)=0, or(l)=l and if 

{xt | ieN} is a countable family of mutually orthogonal (xf<x} if i^j) 
elements of Se then oC\? x^ 

= 
Y^a(x^. 

A weight on a structure space 

(X, 8) is a function :X - [0, 1] 
c R such that 
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? co(x) 
= l for each Ee8. 

xeE 

Let Se=c {X9 8) be an orthomodular lattice. For each state g on Se 

<t|x 
is a weight on (X9 8). If each EeS is finite then every weight co on 

(X9 8) induces a unique state on Se by defining ?3(M) 
= 

?deD (d) for 

any Z)czX such that DczE for some ?e<f, DczM = M11 and D11 = M. 

(See Greechie and Miller, 1970, Theorem 1.6.) 

Let Sf<e be the set of all states on Se=<?(X, S) and let Q(X, 8) be 

the set of all weights on (X, 8); the mapping 
-+ from Q(X, 8) onto 

Sf & is a convex bijection between the two convex sets Q(X, 8) and Sf # 

(when each EeS is finite). Any set ?2 of weights on (X, 8) is said to be 

full in case, for all x, yeX with x=?y, {x, y}c:? for some EeS if and 

only if co(x) + co(y)<l for all a>e?. Any set Sf of states on Se is said 

to be full in case, for all x, yeSe, x<y if and only if (r(x)^<j(y) for all 

aeSf. The mapping a> -> ?3 defined above corresponds full sets of weights 

with full sets of states (Greechie and Miller, 1970); Q is full if and only 

if {co | coeQ} is full. Se (respectively, Q) is said to satisfy the projection 

postulate if for all xeSe\{ti) (respectively, X) there exists ereSf (coeQ) 

witho(x)=l(co(x)=l). 
A set of states Se on Se=<%(X, 8) is said to be strong in case x<y 

in if if and only if <x(x) 
= 1 implies <r(y) 

= 1 for all <re Sf\ a set ? of weights 
on (X, <?) is strong in case, for all x, yeX with x^y, xJ_'y if and only 

if there exists \ieQ with /?(x)=l, ?i(y)>0. A correspondence, similar 

to that for full sets, exists between strong sets of weights and strong sets 

of states. 

Any state (or weight) is called dispersion free if its image is a subset 

of the two-element set {0,1}, that is, it takes on no value other than 

Oorl. 

Remark 1. Let (X, 8) be a wide cubic structure space, x, yeX with 

x-Lny-^0. Let I{xj} 
= 

Iu{(xj), (y, x), {x,y}} and 8{Xiy)=S\j{{x, 

(x, y), {x, y}}, {y, (y, x), {x, y}}. If jue?(X, ^) define p,\Xty}:X{Xty}-> [0,1], 
for i = 

1, 2 as follows 

//(z) if zeX 

max(/i(y)-/x(x),0) if z=(x,y) 

max(/i(x)-/x(y), 0) if z=(y,x) 
^ min(l -ju(x), 1 -fi(y)) if z = 

{x, y} 

0<*. *>(*)=' 
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??(z) if zeX 

l-p(x) if z = 
(x,y) 

1?/i(y) if 2 = 
(y,x) 

0 if z = 
{x, y}. 

Then 

/4x, y}G ̂ W*. y)' ̂ i*. y>) 
* 

Note: if fi(z)=i for all zeX then /?^({x, y})=f and ̂  y)((x, y))=f. 
Also if beX and there exists \i, a weight on 

(X{JC>y}, 8{x>y}), 
with ju({x, y}) 

-h/i(i>)>l then there exists a weight on 
X{Xfy} with /?((x, y))+??(b)>l. 

LEMMA 2. Lei (X, <?) be a wide cubic structure space and ? a strong 

convex set of weights on (X, 8). Then Q induces a full convex set of weights 
on d(X, 8). 

Proof. We need only show that if {x, y}eBad(X,<?) then ? induces 

a full set of weights on 
(X{x>y}, 8{x>y)). 

The statement of the lemma then 

follows by transfinite induction and Remark 1. 

To show that (X{x>y), S{Xty]) 
is full, let a, beX{Xjy} with aL'b, we must 

prove that there exists 
tieQ(X{Xiy), 8{Xjy}) with fi(a) + iJi(b)>l. We may 

assume that a = 
{x, y}. 

If bl'x, y then there exist xl9yxeX with b?'xl9 b?'yl9 xxlx, and 

yi-Ly. There exist ?xl9p2eQ such that Hi(b)=p,2(b)~\9 Mi(xi)>0 and 

ju2(yi)>0. Let M=i(Mi + M2)so triat ju(f>) 
= 

1, p(x1)>0 and /i(yj)>0; then 

p\x y}(z)=min(l 
? 

ju(x), 1 ? 
p(y))>0 since ju(x)< 1 and ju(y)< 1. It remains 

to consider the case in which bJLx or b?y. By symmetry we may assume 

that blx. liblx then bL'y since x1ny1nX 
= (fi. There exists yl?y with 

b?'yv Let veQ with o(b) 
= 1 and v(yi)>0. Again v{^y}({x, y})>0. 

LEMMA 3. Let x,yed(X9S)-=(XuS1) with {x,y}eBad(Xl,Si) and 

assume that Qisa strong set of weights on (X, 8), then Q induces a full set of 

weights on 
((Xj^, (/i){,,y>). 

Proof. Let a, be(X1){Xty) 
with a?'b. We may assume a = 

{x, y}, beX^ 

b^x,y and xeXt\X. If y?X then there exists fieQ with /i(i>) 
= 1 ; /1 may 

be extended so that /?(x) 
= 

^(y)=0 and therefore //({x, y}) 
= l. Thus we 

may assume yeX. If y Lb any /x with ti(b)? 1 can be extended to p({x, y}) 
= 1. 

If yl'b there exists ^ly, yi?'i>. Select p. from ? so that ju(b)= 1 and 
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/x(y1)>0, extend so that ^(x)=0, p?xy)({x, y})>p(yi)>0. Therefore ? 

induces a full set of weights on (Xlf ? 81( A 

THEOREM 3. IfQ is a strong set of weights on (X, 8), then ? induces a 

full set of weights on n(X, 8). 

Proof. From Lemma 3 it follows that ? induces a full set of weights 

on (X2, 82). Induction and a proof similar to that of the lemma provides 

a full set of weights on ?(Xf, S), for each i>0, and therefore on n(X, 8). 

COROLLARY 3. If^(X, 8) has a strong set Sf of states, then <#(n(X, 8)) 

has a full set Sf' of states. 

Thus there exist non-Desarguesian proposition systems which are also 

quantum logics. For example, let X={a, b, c, d, e, f) and let 8 

= 
{{a, b, c], {d, e,f}} then (X, S) is a wide cubic structure space; it is 

easy to see that there is a strong set of dispersion-free weights (there are 

nine of them) 
on 

(X, 8). 
Let us single out of them, say fi0 : X-> [0, 1] defined by /x0 (a) 

= 
p,0 (d) 

= 1 

and jUo(x)=0 if x/a, d. Extend p0 to a weight \i on n(X, 8); then \i 

defines a state Ji on ^(n(X, 8)). Note that, since a a b = 
0, 

Ji(a) 
= 

Ji(b)=\ but Ji(aAb) 
= Q. 

Recently, Jauch (this volume) has asked if the condition 

(4?) c(a) 
= 

o(b) 
= \ implies a(aAb) 

= \ 

is necessarily true for any state on a proposition system of dimension at 

least three. The answer is evidently 'no'. However, for dimension at least 

four the question remains unanswered. 

Before leaving this example we should note that by Corollary 3, there 

exists a full set of states on ^(n(X, 8)) and this set satisfies the projection 

postulate. However, there does not exist a full set of dispersion-free states 

on #(7r(X, 8)) 
- even though each dispersion-free state on (X, 8) extends 

to infinitely many different dispersion-free states on ^(n(X, 8)). 

Remark 2. n(X, 8) never admits a full set of dispersion-free weights, 

provided that (X, S)^n(X, 8). 
Proof. The idea of the proof is given by Figure 1. In this structure it is 

easy to see that no weight maps both {x, y} and {xl9 yj to 1 ; moreover, 

Figure 1 is always a substructure of n(X, 8) if (X, S)^n(X, 8). 
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{*V/|} 

Fig. 1. A cubic structure space which does not admit a full set of dispersion 

free weights. 

PROPOSITION 2. IfQ(X, S) is not full then Q(n(X, 8)) is not full. Thus 

there exist proposition systems #(7u(X, 8) which are not quantum logics. 

Proof If Q(n(X, S)) were full then the restrictions of these weights to 

(X, 8) would be full. 
For example, let (X, 8) be given by Figure 2. This space does not admit 

a full set of weights (Bennett, 1970). Thus #(7u(X, 8)) is not a quantum 

logic. 

Fig. 2. A structure space which does not admit a full set of weights. 
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III. AUTOMORPHISM GROUPS 

In this part let us consider the automorphism group of n(X, 8). If each 

point xeX is in at least two blocks EeS then the automorphism group 
of n(X, 8) is isomorphic to the automorphism group of (X, 8). This 

insures that the automorphism group o?<^(n(X, 8)) is isomorphic to the 

automorphism group of #(X, S). By taking the structure space (X, 8) 
to be, say, that of Figure 2 one may exhibit a proposition system # (n (X, 8)) 

with an interesting finite group of automorphisms. I conclude the part 

by showing that to each Hilbert space Jf one may assign a non-Desar 

guesian projective plane n such that the unitary group on JC is a sub 

group of the automorphisms of n and therefore of the corresponding 

(non-Desarguesian) proposition system ^(n). 
Let (X0, R0) be a graph. An element xeX is called an isolated point in 

case 
{x}eSRo. (X0, R0) is a triangleless graph in case EeSR implies \E\ ̂  2. 

If (X0, R0) is a triangleless graph with no isolated points we define 

<5(X0, R0) to be the graph (X, R) where X = 
X0U{{{*, y}} \ (x, y)eR} 

andR = 
R0uU{{(*, {{x, y}})9({{x9y}}9 x)} \(x,y)eR0}. 

(This construction appears elsewhere in graph theory. I use the symbol 
? because it corresponds to a special case of a construction on general 
structure spaces due to J. C. Dacey, Jr.) 

Recall that a graph (X0, R0) is a bigraph relative to the partition {Xl9 X2} 
in case X0 

= 
X1uX2, X1nX2 

= 
0 and R0cz(X1xX2)kj(X2xX1). A 

bigraph is a graph which is a bigraph relative to some partition. Note 

that every bigraph is triangleless. 

Remark 3. Let (X0, R0) be a bigraph with no isolated points. The 

space (X, 8) corresponding to d(X0, R0) is a wide cubic structure space 

if and only if there are no minimal cycles of order 4 in (X0, R0). 

EXAMPLE 1. Let L be a semimodular atomistic lattice of height at 

least 3 and let A~{xeL | ht(x) 
= 

i) for i'=l, 2. Let X0=A1vA29 R0 
= 

{(x, y)eX0 xX0 | x<y or y <x} be the 'strict comparability' relation 

restricted to X0 and let (X, 8) be the structure space associated with the 

graph S(X0, R0). Since L is a lattice there are no minimal cycles in 

(X0, R0) of order 4. Hence (X, 8) is a wide cubic structure space. 

EXAMPLE 2. Let (X0, S0) be a wide cubic structure space and let 
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L=%(X0, 80). Let ^1 
= 

{{x} |xeX0} 
be the atoms of L and let A2 

= 
{x1 | xeX0} be the 'coatoms' of L As in Example 1 let R0 be the 'strict 

comparability' relation restricted to Y0 
= 

A1uA2. Then, by Lemma 1 

and Remark 3, the structure space (X, 8) associated with the graph 

(Y0, R0) is wide and cubic. The process may be iterated. 

We now review the definitions of automorphisms of some of the 

various structures with which we are concerned. An automorphism of a 

graph (X, R) is a bijection <p:X-?X such that (x, y)eR if and only if 

(q>(x), (p(y))eR. Every bijection (p.X->X from a set X onto itself induces 

a bijection q>:2x-+2x defined by q>(E) 
= 

cp(E) for all EeS (where q>(E) 
= 

{(p(x) | xe?}). An automorphism of a space (X, 8) is a bijection (p.X^X 

for which (f>(8) 
= 8. 

Let Aut(X, R) and Aut(X, 8) denote the group of all automorphisms 

of the graph (X, R) and the space (X, 8), respectively. It is easy to see that 

if 8 = 
8R then Aut (X, R) 

= Aut (X, 8). If (X, R) is a bigraph relative to the 

partition {Xl9 X2} of X, we define Aut^X, R) 
= 

{q>e Aut(X, R) \ (p(Xx) 
= 

X1}; thus Autx (X, R) is the subgroup of Aut (X, R) which maps Xx to 

itself; note that the elements of Xt need not be fixed-points of the auto 

morphism. 

If L is an orthomodular lattice Aut?(L) is the group of all 'ortho 

automorphisms', that is lattice automorphisms which also preserve the 

orthocomplementation. If (X, 8) is a wide cubic structure space, it is 

easy to see that 

Aut(X, 8)^ Aut?(^(X, 8)). 

Let (X, 8) be a finite wide cubic structure space with weights 

? = 
?(X, 8). Every automorphism cp on (X, 8) induces an affine bijection 

<p:?->? such that q>(e) 
= e where e(x)=j for all xeX. Let Aut(?, e) be 

the group of all affine bijections on ? which fix e. If ? is strong then 

Aut(X9S)^Aut(Q9e). 

For a proof of this fact, see Theorem 5.2. of Gerelle et al (1974). 

PROPOSITION 3. Let (X, 8) be a wide cubic structure space. Then 

Aut (X98) is a subgroup of Aut(7u(X,<?)). If \{Ee8 \xeE}\^2 for each 

xeX, then 

Aut(X9 8)^Aut(n(X9 S)). 
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Proof By a simple induction every automorphism on (X, 8) extends 

uniquely to an automorphism of n(X, 8). If (X, 8) is a confined config 
uration then, by Proposition 1, cpeAut (n (X, 8)) implies q> |xeAut(X, 8) 
since (X, 8) is bounded in n(X, 8). The result follows. 

Let Ai9 L, (X0, R0) and (X, 8) be defined as in Example 1. Then every 

lattice automorphism q> of L induces, by restriction, an automorphism 

?peAut^Xo, R0). The map (p-+q> is an injection since L is atomistic. It 

follows that Aut(L) is isomorphic to a subgroup of Aut (X, 8). 
Now specify L to be the lattice of all closed linear subspaces of a Hil 

bert space tf of dimension at least 3. Aut?(L) is a subgroup of Aut L and 

Aut(X, 8) is a subgroup of Aut(;r(X, ̂ ))^Aut?^(7r(X, 8)). It follows 
that the general quantum mechanical group on ^f is a subgroup of 

AutL(^(n(X, 8))). Thus any group representable on 3tf is representable 
on the proposition system <?(n(X, 8)). 

iv. CONCLUSION 

The construction for free non-Desarguesian projective planes n is a 

variant of the standard construction of free non-Desarguesian projective 

planes (Hartshorne, 1967). Just as there are non-Desarguesian projective 

planes other than the free ones there are likely to be other non-Desargues 
ian orthocomplemented projective planes. The corresponding proposi 
tion systems could prove to be interesting from the point of view of logic 
and probability in the foundations of quantum mechanics. Perhaps more 

important 
- 

although certainly speculative 
- 

is the fact that it is not in 

conceivable that there is some real world physics modeled by these or 

related structures. 

One interesting class of related structures is that of cr-orthocomplete 
semimodular atomistic orthomodular posets P. An investigation of such 

posets was begun in Haskins et al. (1974) where it was proved that if P 

is of finite height then perspectivity is transitive. A more detailed investi 

gation of this class of structures is in progress. I wish to point out here 

only that the construction of the free non-Desarguesian projective planes 
carries over for cubic posets. Instead of working with the complete 
lattice #(X, 8) one works with Se(X, 8) 

= 
{D11^X \ 

D is a 1-set}. 
Call a structure space (X, 8) a partial plane in case EeS implies \E\ ̂ 3 



THE COMBINATORIAL APPROACH TO QUANTUM LOGIC 127 

and E^E1 implies \E n Ex\ ^ 1. The logic Se (X, 8) of a partial plane is an 

orthocomplete orthomodular poset (Gerelle et al., 1974). If (X, 8) is 

cubic then the process of eliminating 'bad sets' developed in the con 

structions of the free projective planes yields a semimodular ortho 

modular poset JSf(7c(X, 8)). 

Kansas State University 

NOTE 

* 
This paper was written while the author was on sabbatical leave at the University of 

Geneva. 
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