
Some results in group-based

cryptography

Ciaran Mullan

Technical Report
RHUL–MA–2012–1
10 January 2012

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

Some Results in Group-Based

Cryptography

Ciaran Mullan

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

2011

for Noel and Sheelah

Declaration of Authorship

I, Ciaran Mullan, hereby declare that this thesis and the work presented in

it is entirely my own. Parts of this thesis are based on the following papers:

– S. R. Blackburn, C. Cid, C. Mullan, Group theory in cryptography, in:

C. M. Campbell, M. R. Quick, E. F. Robertson, C. M. Roney-Dougal,

G. C. Smith and G. Traustason (editors), Proceedings of Groups St An-

drews 2009 in Bath Volume 1, Cambridge University Press, 133–149,

2011.

– S. R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of the MST3 public

key cryptosystem, J. Math. Crypt. 3 (2009) 321–338.

– C. Mullan, Cryptanalysing variants of Stickel’s key agreement proto-

col, J. Math. Crypt. 4 (4) (2011) 365–373.

– S. R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of three matrix-based

key establishment protocols, J. Math. Crypt. 5 (2) (2011) 159–168.

In the case of joint authorship, all authors contributed equally. Some results

of Chapter 3 were discovered jointly with Boaz Tsaban. All computer exper-

iments were performed by the author.

Signed:

Ciaran Mullan

Date: 8 January 2012

Abstract

Group-based cryptography is concerned with the role of nonabelian groups in

cryptography. Since its origins in the 1980s, there have been numerous crypto-

graphic proposals based on nonabelian groups, many of which have been broken.

This thesis adds to the cryptanalytic literature by demonstrating the insecurity of

several group-based cryptosystems. We cryptanalyse several key establishment

protocols based on matrix groups, due to (i) Baumslag, Camps, Fine, Rosenberger

and Xu, (ii) Habeeb, Kahrobaei, and Shpilrain, (iii) Romanczuk and Ustimenko,

and (iv) a modified version of a scheme by Stickel. We also cryptanalyse the MST3

public key cryptosystem and treat the Tillich–Zémor hash function.

4

Acknowledgments

My deepest thanks to Carlos and Simon, for shining a light on my path; I have

learned so much from you both. Thanks to Boaz, a constant source of inspiration.

Thanks to everyone at Royal Holloway, especially Martin, for Sage advice, Gary,

for the epigrams, and Ami, for all the coffee and cake.

5

Contents

1 Introduction 9

1.1 Cryptography using Groups . 11

1.2 From Exponentiation to Conjugacy . 13

1.3 Replacing Conjugation . 16

1.4 Symmetric Schemes . 16

1.5 Cryptanalysis . 17

1.6 Discussion . 19

2 Matrix-Based Key Establishment Protocols 20

2.1 The BCFRX Scheme . 21

2.2 The HKS Scheme . 28

2.3 The RU Scheme . 30

2.4 Stickel’s Scheme . 31

3 Tillich–Zémor Hash Function 40

3.1 Previous Work . 42

3.2 Collision-Finding Algorithms . 44

3.3 Short Collisions for TZ-Type Hash Functions 48

3.4 Summary . 53

4 MST3 Public Key Cryptosystem 54

4.1 Definitions, Constructions, Examples 54

4.2 Logarithmic Signatures in Cryptography 57

4.3 Elementary Abelian 2-Groups . 59

6

CONTENTS

4.4 The MST3 Cryptosystem . 62

4.5 A Revised Version of MST3 . 80

5 Closing Remarks 83

A Computer Code 86

A.1 BCFRX Scheme . 86

Bibliography 91

7

List of Tables

2.1 Finding an Invertible Matrix X . 37

2.2 Statistics of q(x). 38

3.1 Collision-Finding Algorithms . 53

4.1 Experimental Results for Case 1 . 76

4.2 Experimental Results for Case 3 . 79

8

Chapter 1

Introduction

In recent times numerous cryptographic protocols have emerged based on group

theoretic concepts. Such protocols have not yet led to practical schemes to rival the

likes of RSA and Diffie–Hellman, but the ideas are interesting and have led to some

rewarding group theory.

With the realisation that quantum computers can efficiently solve both the Inte-

ger Factorisation Problem and standard variants of the Discrete Logarithm Prob-

lem [79], the search for alternative cryptosystems has become more important.

Cryptosystems, including group-based examples, that are not necessarily vulnera-

ble to quantum adversaries have become known as post-quantum cryptosystems.

A well-known example is the McEliece cryptosystem based on the difficulty of de-

coding error-correcting codes. Other examples include lattice-based cryptosystems

and cryptosystems based on large systems of multivariate polynomial equations.

This thesis is concerned with group-based cryptography: the design and anal-

ysis of cryptographic schemes based on nonabelian groups. More specifically, we

explore the role of matrix groups as a platform for group-based cryptosystems. If

one is to implement a group-based cryptosystem, one needs an efficient method of

representing, storing and manipulating group elements. For these reasons matrix

groups are an attractive source of nonabelian groups: matrices are easy to store

and represent on a computer, and linear algebra provides an efficient tool to ma-

nipulate elements. But linear algebra is also a powerful tool for the cryptanalyst.

Indeed, the focus of this thesis is on cryptanalysis. We demonstrate the insecurity

of several group-based cryptosystems that employ matrix groups as a platform,

rendering them unfit for use in the real world. We treat several key establishment

9

protocols, a public key cryptosystem, and a group-based hash function. With the

exception of the hash function (where we will be concerned with collision resis-

tance) we work in the passive adversary model. Thus we assume that an adversary

has the power only of an eavesdropper who knows everything about the system

being used except for secret keys and random choices made by individual parties.

An outline of this thesis is as follows. In this introductory chapter we give a

short account of the emergence of group-based cryptography. In Chapter 2 we

cryptanalyse several matrix-based key establishment protocols [9, 41, 76, 86]. In

Chapter 3 we study the Tillich–Zémor hash function [92], and in Chapter 4 we

cryptanalyse the public key cryptosystem MST3 [50]. We close with some remarks

and directions for future work in Chapter 5.

We assume the reader has some familiarity with basic concepts from abstract

algebra and cryptography. All the necessary prerequisites may be found, for exam-

ple, in Fraleigh [29] and Stinson [88].

The rest of this chapter is structured as follows. In Section 1.1 we provide some

background material and describe two well-known key establishment protocols:

the Diffie–Hellman Protocol and Shamir’s ‘no-key’ Protocol; this serves as moti-

vation for the ensuing discussion on group-based protocols. In Section 1.2 we de-

scribe the two most widely studied schemes in group-based cryptography, and in

Section 1.3 we discuss variants of these schemes. In Section 1.4 we mention some

symmetric schemes involving nonabelian groups. We sketch some successful at-

tacks on group-based schemes in Section 1.5, and close in Section 1.6 with a brief

discussion.

We remark that this introductory chapter is based on the survey paper [11].

More detailed surveys of group-based cryptography are given by Dehornoy [26],

Garber [30], and Myasnikov et al. [67].

10

1.1 CRYPTOGRAPHY USING GROUPS

1.1 Cryptography using Groups

The first proposal to use nonabelian groups in public key cryptography is due to

Wagner and Magyarik [94] in 1985. The cryptosystem is based on the hardness of

the Word Problem (or more accurately the Word Choice Problem) for finitely pre-

sented groups. However, the scheme is rather theoretical with several unresolved

issues: critiques are given by González Vasco and Steinwandt [39] and Levy-dit-

Vehel and Perret [52, 53].

The importance of Wagner and Magyarik’s scheme lies in its novelty, which

commenced an interplay between cryptography and combinatorial group theory.

Let G be a group given by a finite presentation. In 1911, Max Dehn [27] posed the

following problems:

– The Word Problem: given a word w on the generators of G, decide if w = 1 in

G.

– The Conjugacy Problem: given words u, v on the generators of G, decide if u

and v represent conjugate elements in G.

– The Isomorphism Problem: given two finite presentations, decide if they

present isomorphic groups.

The study of these problems has proven remarkably fruitful. For example, a fa-

mous result due (independently) to Novikov [69] and Boone [16] states that there

exists a finitely presented group with recursively unsolvable word problem. The

introduction of group-based cryptography has put a twist on some of these well-

studied decision problems. Suppose one is given two elements g, h 2 G, together

with knowledge that they are conjugate in G. The task is to find some x 2 G

such that g = x�1hx. This is not a decision problem, rather it is a search problem,

known as the Conjugacy Search Problem. It forms the basis for two high profile

group-based key agreement protocols due to Anshel, Anshel and Goldfeld [3] in

1999 and Ko, Lee, Cheon, Han, Kang and Park [49] in 2000. Ko et al. also describe a

11

1.1 CRYPTOGRAPHY USING GROUPS

public key encryption scheme, the security of which is also based on the Conjugacy

Search Problem.

The key agreement scheme of Ko et al. may be seen as a generalisation of the

Diffie–Hellman Protocol to nonabelian groups, with the Conjugacy Search Problem

acting as a group-theoretic analogue of the Discrete Logarithm Problem. Thus prior

to discussing the schemes of Anshel et al. and Ko et al. we recall the Diffie–Hellman

Protocol [28] and the Discrete Logarithm Problem. Later, in chapter 2, we will

discuss a group-theoretic analogue of Shamir’s ‘no-key’ Protocol [61, Page 500], so

we also describe this protocol here.

Diffie–Hellman Key Agreement Protocol

Let G = hgi be a cyclic group, with both g and its order d publicly known. To create

a shared key, Alice and Bob proceed as follows:

1. Alice selects uniformly at random an integer a 2 [2, d � 1] and sends ga to

Bob.

2. Bob selects uniformly at random an integer b 2 [2, d�1] and sends gb to Alice.

3. Alice computes k
a

= (gb)a 2 G. Bob computes k
b

= (ga)b 2 G.

4. The shared key is k
a

= k
b

2 G.

Shamir’s ‘no-key’ Key Transport Protocol

Let G = hgi be a cyclic group, with both g and its order d publicly known. To create

a shared key, Alice and Bob proceed as follows:

1. Alice selects uniformly at random a key k = gr 2 G, an integer a 2 [2, d� 1],

and sends ka 2 G to Bob.

2. Bob selects uniformly at random an integer b 2 [2, d � 1], and sends (ka)b =

kab 2 G to Alice.

3. Alice computes (kab)a
�1

= kb 2 G and sends kb to Bob.

12

1.2 FROM EXPONENTIATION TO CONJUGACY

4. Bob computes (kb)b
�1

= k.

The security of the Diffie–Hellman Protocol relies on the assumption that know-

ing g 2 G and having observed both ga and gb, it is computationally infeasible for

an adversary to compute gab. This is known as the Diffie–Hellman Problem. The

Diffie–Hellman Problem is related to the well-known Discrete Logarithm Problem

(DLP): given h 2 G = hgi, find an integer t such that gt = h. If one can efficienty

solve the DLP then one can efficiently solve the Diffie–Hellman Problem and thus

break the Diffie–Hellman Protocol. Similarly Shamir’s ‘no-key’ Protocol relies on

the hardness of the DLP. Thus as a minimum requirement one is interested in find-

ing difficult instances of the DLP. The difficulty of the DLP depends heavily on the

way the group G is represented, not just on the isomorphism class of G. For ex-

ample, the DLP is trivial if G = Z/dZ is the additive group generated by g = 1.

However, if G is an appropriately chosen group then solving the DLP is considered

computationally infeasible. In practice one often uses G = F

⇤
p

l for an appropriately

selected prime p and exponent l, or the group of points of a properly chosen elliptic

curve over a finite field.

1.2 From Exponentiation to Conjugacy

Let G be a nonabelian group. For g, x 2 G write gx for x�1gx, the conjugate of g by

x. At first sight, the notation suggests that conjugation might be used instead of ex-

ponentiation in cryptographic contexts. Assuming that we can find a group where

the Conjugacy Search Problem is hard, and assuming the elements of this group

are easy to store and manipulate, one can define cryptosystems that are analogues

of cryptosystems based on the DLP.

Ko et al. [49] proposed the following analogue of the Diffie–Hellman Protocol.

Ko–Lee–Cheon–Han–Kang–Park Key Agreement Protocol

Let G be a nonabelian group and let g be a publicly known element of G. Let A,B

be commuting subgroups of G, that is ab = ba for all a 2 A, b 2 B. The groups A,B

13

1.2 FROM EXPONENTIATION TO CONJUGACY

and G are public. To create a shared key, Alice and Bob proceed as follows:

1. Alice selects an element a 2 A and sends ga = a�1ga to Bob.

2. Bob selects an element b 2 B and sends gb = b�1gb to Alice.

3. Alice computes k
a

= (gb)a 2 G. Bob computes k
b

= (ga)b 2 G.

4. Since ab = ba, we have k
a

= k
b

2 G.

An important subtlety of the protocol is that although k
a

= k
b

as group elements,

their bitstring representations might be different. But for many groups, a shared

key may be derived from k
a

and k
b

. For example, if G has an efficient algorithm to

compute a normal form for a group element, then the shared key can be extracted

from the normal form of k
a

and k
b

. We can summarise the minimum security re-

quirements on the platform group G:

– The group G should have two large commuting subgroups (i.e. of exponen-

tial size in some appropriate security parameter, word length with respect to

some normal form, for example).

– The group G should have an efficient normal form algorithm.

– The Conjugacy Search Problem in G should be generically hard.

Interest in Ko et al.’s proposal centred on their choice for G and subgroups A and B.

The group G is taken to be the braid group B
n

on n strings which has presentation

B
n

=

*
�1,�2, . . . ,�n�1

���
�
i

�
j

�
i

= �
j

�
i

�
j

for |i� j| = 1

�
i

�
j

= �
j

�
i

for |i� j| � 2

+
.

Let l and r be integers such that l + r = n, and define subgroups

A = h�1,�2, . . . ,�
l�1i , B = h�

l+1,�l+2, . . . ,�l+r�1i .

The braid group is an attractive choice of platform, since there is an efficient normal

form for group elements and group multiplication and inversion can be carried out

efficiently.

14

1.2 FROM EXPONENTIATION TO CONJUGACY

However, the cryptosystem is not fully specified: besides choosing the values

of n, l and r, one must decide how to sample elements g 2 G, a 2 A and b 2 B.

Since the groups G, A and B are infinite, it is not obvious how this should be done.

The following key agreement protocol due to Anshel, Anshel and Goldfeld [3]

has an advantage over the Ko et al. protocol: commuting subgroups A and B are

not needed.

Anshel–Anshel–Goldfeld Key Agreement Protocol

Let G be a nonabelian group, and let elements a1, . . . , a
l

, b1, . . . , bm 2 G be public.

To create a shared key, Alice and Bob proceed as follows:

1. Alice selects a word x in a1, . . . , a
l

and sends bx1 , . . . , bxm to Bob.

2. Bob selects a word y in b1, . . . , bm and sends ay1, . . . , a
y

l

to Alice.

3. Alice computes xy. Bob computes yx.

4. The shared key is the commutator [x, y] := x�1y�1xy.

Note that Alice and Bob can both compute the shared commutator: Alice can pre-

multiply xy by x�1 and Bob can premultiply yx by y�1 and then compute the in-

verse: [x, y] = (y�1yx)
�1. Anshel et al. also proposed using braid groups as a plat-

form for the protocol. Note again that the scheme is not fully specified: one needs

to state how elements a
i

, b
j

are chosen and how Alice and Bob generate words x, y.

Picking Elements at Random

The two aforementioned schemes leave open specification details as to how one

samples elements from an infinite group such as a braid group. Note that the pro-

tocols work equally well for finite groups, in which case one can choose elements

uniformly at random. But for infinite groups, the meaning of the word random is

unclear, and one needs to specify precisely how group elements are sampled. Let

G = hX|Ri be a finitely presented group. One common method to select elements

from G is to choose at random a sequence of integers j1, . . . , j
l

(from some finite

15

1.3 REPLACING CONJUGATION

subset of Z) and for each 1 i l, select uniformly at random a generator x
i

2 X .

The ‘random’ element xj11 · · ·xjl
l

is then output.

The process of selecting group elements for both the Ko et al. scheme and the

Anshel et al. scheme, turns out to be critical for their security. We elaborate on this

point in Section 1.5.

1.3 Replacing Conjugation

The Ko et al. scheme uses conjugation in place of exponentiation in the Diffie–

Hellman Protocol, but there are many other alternatives. For example, one can

define ga = �(a)ga and gb = �0(b)gb for any fixed functions � : A ! A and

�0 : B ! B (including the identity maps) and the scheme would work just as

well. More generally, we may replace a and �(a) by unrelated elements from A.

Since the papers of Ko et al. and Anshel et al. there have been many proposals

based on variants of the Conjugacy Search Problem, such as the Decomposition

Search Problem and the Twisted Conjugacy Search Problem. Myasnikov et al. [67]

provide a discussion on these problems.

1.4 Symmetric Schemes

Group theory has mainly been used in proposals of public key cryptosystems and

key establishment schemes, but has also been used in symmetric cryptography.

One example is the block cipher PGM based on the symmetric group; we discuss

the scheme in Chapter 4. In general, a block cipher (such as DES or AES) may be

regarded as a set S of permutations on the set of all blocks, indexed by the key. The

question as to whether S is in fact a group has an impact on the cipher’s security in

some situations: if the set is a group, then encrypting a message twice over using

the cipher with different keys would be no more secure than a single encryption.

However, computing the group generated by a block cipher is often very difficult.

For instance, it is known that the group generated by the DES block cipher is a

16

1.5 CRYPTANALYSIS

subgroup of the alternating group A264 [95], with order greater than 256 (and thus

S for DES is not a group [18, 25]); however little more is known about its structure.

Block ciphers are often built as iterated constructions of simpler key-dependent

permutations known as round functions, and one can study properties of the per-

mutation groups generated by these round functions. It has been shown, for in-

stance, that the round functions of both DES and AES block ciphers are even per-

mutations; furthermore it can be shown that these generate the alternating groups

A264 and A2128 , respectively [83, 95, 96].

Hash function design is another area of symmetric cryptography where groups

have been used in an interesting way. Zémor [98] proposed using walks through

Cayley graphs as a basis for hash functions; the most well-known concrete proposal

from this idea is a hash function of Tillich and Zémor [92]. We discuss this hash

function in Chapter 3.

1.5 Cryptanalysis

In this section we outline techniques developed to demonstrate the insecurity of

many group-based schemes.

In 1969, Garside [32] gave the first algorithm to solve the Conjugacy Problem in

the braid group B
n

. The question of efficiency of Garside’s method laid dormant

until the late 1980’s. Since then there has been a great deal of research, significantly

motivated by cryptographic applications, into finding a polynomial time solution

to the Conjugacy Problem. Given two braids x, y 2 B
n

, Garside’s idea is to con-

struct finite subsets (so called summit sets) I
x

, I
y

of B
n

such that x is conjugate to

y if and only if I
x

= I
y

. An efficient solution to the Conjugacy Problem via this

method would also yield an efficient solution to the Conjugacy Search Problem

(and hence render protocols based on the braid Conjugacy Search Problem theo-

retically insecure). However, for a given braid x, Garside’s summit set I
x

may be

exponentially large. The challenge has thus been to prove a polynomial bound on

the size of a suitable invariant set associated with any given conjugacy class. Re-

17

1.5 CRYPTANALYSIS

finements to the summit set method (such as the super summit set, ultra summit set,

and reduced super summit set methods) have been made over the years, but a poly-

nomial bound remains elusive. Recent focus has been on an efficient solution to

each of the three types of braids: periodic, reducible or pseudo-Anasov, according

to the Nielsen–Thurston classification [5, 6, 7].

For the purposes of cryptography however, one need not efficiently solve the

Conjugacy Search Problem in order to break a braid-based cryptosystem: one is

free to use the specifics of the protocol being employed. An algorithm need work

only on a significant proportion of cases, and heuristic algorithms have proven

quite successful.

Indeed, Hofheinz and Steinwandt [43] used a heuristic algorithm to solve the

Conjugacy Search Problem for braid groups with very high success rates. Their

attack is based on the observation that representatives of conjugate braids in the

super summit set are likely to be conjugate by a permutation braid, which has a

particularly simple structure. Their attack demonstrates inherent weaknesses of

both the Ko et al. protocol and the Anshel et al. protocol for random instances,

under suggested parameters. Around the same time, several other powerful lines

of attack were discovered, which we now mention.

Length Based Attacks. Introduced by Hughes and Tannenbaum [45], length based

attacks provide a neat probabilistic way of solving the Conjugacy Search Problem

in certain cases. Suppose one is given an instance of the Conjugacy Search Problem

in B
n

. So one is given braids x, y�1xy and want to find y. Let l : B
n

! Z be a

suitable length function on B
n

(for example, the length of the normal form of an

element). If one can write y = y0�
i

for some i, where y0 has a shorter length than y,

then l(�
i

y�1xy��1
i

) should be strictly smaller than l(�
j

y�1xy��1
j

) for j 6= i. So i can

be guessed, and the attack repeated for a smaller instance y0 of y. The success rate

of this probabilistic attack depends on the specific length function employed. For

braid groups, there are a number of suitable length functions that open up this line

of attack. Garber et al. [31] and Myasnikov and Ushakov [65] provide convincing

18

1.6 DISCUSSION

attacks on both the Ko et al. and Anshel et al. protocols using this approach.

Linear Algebra Attacks. The idea behind this attack is quite simple: take a lin-

ear representation of the braid group and solve the Conjugacy Search Problem us-

ing linear algebra in a matrix group. There are two well-known representations

of the braid group: the Burau representation (unfaithful for n � 5) and the faith-

ful Lawrence-Krammer representation. Hughes [44] and Lee and Lee [46] provide

convincing attacks on the Anshel et al. protocol using the Burau representation,

and Cheon and Jun [19] provide a polynomial time algorithm to break the Ko et al.

protocol using the Lawrence-Krammer representation.

1.6 Discussion

Many suggestions have been made to improve the security of the schemes dis-

cussed in this chapter. Themes range from changing the underlying problem (and

instead investigating problems such as the Decomposition Problem, the Braid Root

Problem, the Shifted Conjugacy Problem and more) to changing the platform group

(Thompson’s group, polycyclic groups and others have been suggested). Further-

more, cryptographers have created other cryptographic primitives based on the

Conjugacy Search Problem, such as authentication schemes and signature schemes.

However, there are no known cryptographic primitives based on any of these ideas

that convincingly survive the aforementioned attacks.

On the bright side, group-based cryptography has motivated some natural ques-

tions for the group theorist, in particular the study of generic properties of groups.

For example, Myasnikov and Ushakov [66] proved that pure braid groups PB
n

satisfy the strong generic free group property: for any generating set of PB
n

, when

any k elements are chosen ‘randomly’ (as discussed above) they freely generate a

free group of rank k generically.

We will see more examples of this interplay between cryptography and group

theory throughout this thesis.

19

Chapter 2

Matrix-Based Key Establishment

Protocols

This chapter is concerned with the security of key establishment protocols using

matrix groups. There have been many such proposals made over the years, some

of which may be seen as generalisations of protocols based on cyclic groups to

a matrix group setting. The first such example is due to Odoni, Varadharajan and

Sanders [68], who suggested generalising the Discrete Logarithm Problem to matrix

groups and proposed a matrix version of the Diffie–Hellman Protocol. However,

Menezes and Wu [63] demonstated a probabilistic polynomial time reduction for

the DLP for GL
n

(F
q

) to the DLP over small finite extension fields of F
q

. More recent

examples include proposals by Alvarez et al. [2] and Climent et al. [22], which were

successfully cryptanalysed by González Vasco et al. [34] and Climent et al. [23]

respectively. In this chapter we add to the cryptanalytic literature by cryptanalying

several matrix-based key establishment protocols. Our exposition is based on the

papers [13, 64].

We begin with a matrix-based key transport protocol by Baumslag, Camps,

Fine, Rosenberger and Xu from 2006 [9]. In fact, their proposal is more general and

several platform groups were suggested, but we consider only their matrix group

proposal. We cryptanalyse this scheme in a very strong sense. We show that for

practical parameter sizes a passive adversary can feasibly recover the session key

after observing just one run of the protocol. We find a better attack if two or more

runs of the protocol are observed. Our techniques reduce the problem of breaking

the scheme to a sequence of feasible Gröbner basis computations.

20

2.1 THE BCFRX SCHEME

Next we cryptanalyse two recently proposed matrix-based key agreement pro-

tocols, due to Habeeb, Kahrobaei and Shpilrain [41], and due to Romanczuk and

Ustimenko [76]. These schemes both fail due to straightforward linear algebra at-

tacks.

Finally we discuss Stickel’s key agreement scheme [86], which was successfully

cryptanalysed by V. Shpilrain when GL
n

(F
q

) is used as a platform [80]. Shpil-

rain suggested the algebra of all (not necessarily invertible) n⇥ n matrices defined

over some finite ring R would make a more secure platform. He also suggested a

more general method of generating keys, involving polynomials of matrices over

R. When R = F

q

, we show that these variants of Stickel’s scheme are susceptible

to a linear algebra attack. We discuss other natural candidates for R, and conclude

that until a suitable ring is proposed, the variant schemes may be considered inse-

cure.

The chapter is organised as follows. In Section 2.1 we cryptanalyse the scheme

of Baumslag et al. In Sections 2.2 and 2.3 we cryptanalyse the schemes of Habeeb,

Kahrobaei and Shpilrain, and Romanczuk and Ustimenko. In Section 2.4 we crypt-

analyse variants of Stickel’s scheme.

2.1 The BCFRX Scheme

We begin by describing a matrix-based key transport protocol by Baumslag, Camps,

Fine, Rosenberger and Xu from 2006 [9], which we refer to as the BCFRX scheme.

The protocol assumes that Alice and Bob a priori share some secret information,

namely their long-term secret key. The goal of the protocol is for Alice and Bob

to establish a session key for subsequent cryptographic use. To achieve this, Bob

selects the session key and sends it to Alice in three passes, as follows.

Let G be a finitely presented group. Let A and B be two commuting subgroups

of G (so AB = BA for all A 2 A and B 2 B). The group G is made public and the

subgroups A and B form Alice and Bob’s long-term secret key. Then:

1. Bob selects a session key K 2 G and elements B,B0 2 B. He sends C :=

21

2.1 THE BCFRX SCHEME

BKB0 to Alice.

2. Alice selects elements A,A0 2 A and sends D := ACA0 = ABKB0A0 to Bob.

3. Since A and B commute, we have that ABKB0A0 = BAKA0B0. Bob sends

E := B�1DB0�1 = AKA0 to Alice.

4. Alice computes K = A�1EA0�1.

One can think of this protocol as Shamir’s ‘no-key’ Protocol (see Chapter 1),

with the operation of multiplying on the left and right by a group element replacing

the exponentiation operation.

There was no detailed discussion of security of the protocol in [9], but we need

to specify a security model and what it means to break the protocol, in order to

cryptanalyse it. We will consider the weakest possible notion of security: the pas-

sive adversary model. So we will regard the protocol as broken if we can demon-

strate the existence of an adversary that can feasibly compute the session key, after

eavesdropping on one or more runs of the protocol.

Baumslag et al. suggested several platform groups to serve for G. But we con-

centrate on their only matrix group proposal: G = SL4(Z), the group of invertible

4⇥4 matrices of determinant 1 over the integers. It was proposed that the commut-

ing subgroups A and B should be constructed as follows. Writing I2 for the 2 ⇥ 2

identity matrix, define the subgroups U and L of G by

U =

0

@SL2(Z) 0

0 I2

1

A and L =

0

@I2 0

0 SL2(Z)

1

A . (2.1.1)

Let M 2 SL4(Z) be a secret matrix known only to Alice and Bob. Then we define

A = M�1UM and B = M�1LM. (2.1.2)

We may thus view the long-term secret key as the matrix M .

The protocol is not yet fully specified. It remains to specify how the long-term

secret key M is chosen, and how Alice and Bob select elements from A and B. It was

stated in [9] that elements are chosen randomly from A and B, and we presume that

22

2.1 THE BCFRX SCHEME

the matrix M is chosen in a similar fashion from G = SL4(Z). But since the group

G and its subgroups A,B are infinite, the meaning of the word random is unclear

in this context. Any practical cryptanalysis will depend on the details of how these

random choices are made; however the cryptanalysis we give below will work for

any efficient method for making these random choices that we can think of.

In any fully specified implementation of the protocol, there exists an integer

⇤ such that the entries of all matrices generated in the protocol lie in the interval

(�⇤/2,⇤/2). Since the standard way to represent a 4 ⇥ 4 integer matrix of this

form uses approximately 16 log2 ⇤ bits, it is natural to think of log2 ⇤ as the security

parameter of the scheme.

A Cryptanalysis

Our cryptanalysis proceeds in three stages. In Stage 1, we argue that integer com-

putations may be replaced by computations modulo p for various small primes p.

In Stage 2 we show that knowledge of a matrix N of a restricted form allows a pas-

sive adversary to compute any session key transmitted under the scheme. Finally,

in Stage 3, we show that this matrix N may be computed in practice. None of these

stages is rigorous (though Stage 2 may be made so), but the stages all work well in

practice.

Stage 1: Working Modulo p

Suppose an adversary wishes to discover a session key K. Since the entries of K lie

in the interval between �⇤/2 and ⇤/2, it is enough to find K mod n for any n > ⇤.

Indeed, this is how we approach our cryptanalysis. We will show that in practice

one may efficiently compute K mod p
i

for small primes p
i

of our choice. (We are

thinking of p
i

as a prime of between 80 and 300 bits in length: in some sense quite

large, but in general smaller than ⇤.) We run this computation for several different

primes p
i

until
Q

p
i

> ⇤. Setting n =
Q

p
i

, we can then appeal to the Chinese

remainder theorem to calculate K mod n = K.

23

2.1 THE BCFRX SCHEME

We write this more precisely as follows. Let T be a fully specified version of the

BCFRX protocol, with SL4(Z) as a platform. For a prime p, let Z
p

be the integers

modulo p. Let T
p

be the BCFRX protocol under the platform group G = SL4(Zp

),

defined as follows. We identify the subgroups U and L defined by (2.1.1) with their

images in SL4(Zp

). Let the subgroups A and B be chosen to be of the form (2.1.2)

for some matrix M 2 G chosen uniformly at random. Let Alice and Bob select all

elements from A and B uniformly and independently at random. This makes sense

since G is finite. We use T
p

to model the protocol T taken modulo p. This model

is not quite accurate: for example, it is almost certain that when M 2 SL4(Z) is

chosen according to the method specified in T , the distribution of M mod p will

not be quite uniform in SL4(Zp

). But for all ways we can think of in which T can be

specified, the protocol T
p

is a good model for T taken modulo p (in the sense that

an adversary that succeeds in practice to recover the session key generated by T
p

will also succeed in practice to recover K mod p when presented with the matrices

from a run of the protocol T). Note that an adversary has great freedom in choosing

p, which makes the reduction to T
p

difficult to design against. The fact (see below)

that the session key for T
p

can be feasibly computed in practice shows that T is

insecure.

Stage 2: Restricting the Long-Term Key

We consider the protocol T
p

over SL4(Zp

) defined above. From now on, let us write

an arbitrary 4 ⇥ 4 matrix Z in block form as Z =
⇣

Z11 Z12
Z21 Z22

⌘
, for the obvious 2 ⇥ 2

submatrices Z
ij

of Z.

The following lemma shows that there are many equivalent long-term keys for

the protocol T
p

.

Lemma 2.1. Let M 2 SL4(Zp

) be the long-term key shared by Alice and Bob, and define

subgroups A and B by A = M�1UM and B = M�1LM . Let N 2 GL4(Zp

) be any

matrix such that N�1UN = A and N�1LN = B. If N is known, then any session key

can be efficiently computed by a passive adversary.

24

2.1 THE BCFRX SCHEME

PROOF. An adversary is presented with matrices C, D and E that are transmitted

as part of the protocol. We have that C = BKB0, D = ABKB0A0 and E = AKA0

for some unknown matrices A,A0 2 A and B,B0 2 B. Suppose that the adversary

is also able to obtain a matrix N satisfying the conditions of the lemma. Since

A,A0 2 A we may write A = N�1RN and A0 = N�1R0N for some unknown

matrices R,R0 2 U . Similarly we may write B = N�1SN and B0 = N�1S0N for

some unknown matrices S, S0 2 L.

Define a matrix K 0 by K 0 = NKN�1. Define matrices C 0, D0, E0 by

C 0 := NCN�1 = NBKB0N�1 = SK 0S0,

D0 := NDN�1 = NABKB0A0N�1 = RSK 0S0R0 and

E0 := NEN�1 = NAKA0N�1 = RK 0R0.

Note that the adversary can compute C 0, D0 and E0.

Using the fact that S, S0 2 L and R,R0 2 U , we may write

C 0 =

0

@ K 0
11 K 0

12S
0
22

S22K
0
21 S22K

0
22S

0
22

1

A ,

D0 =

0

@R11K
0
11R

0
11 R11K

0
12S

0
22

S22K
0
21R

0
11 S22K

0
22S

0
22

1

A and

E0 =

0

@R11K
0
11R

0
11 R11K

0
12

K 0
21R

0
11 K 0

22

1

A .

Clearly K 0
11 is known to the adversary, since K 0

11 = C 0
11. Moreover, K 0

22 is known

since K 0
22 = E0

22.

To compute K 0
12, compute a matrix X such that XD0

12 = C 0
12 (note there may

be more than one such X if K 0
12 is noninvertible). This implies XR11K

0
12 = K 0

12,

since S0
22 is invertible. Thus an adversary can compute XE0

12 = K 0
12. Similarly, to

compute K 0
21, compute a matrix Y such that D0

21Y = C 0
21. This implies K 0

21R
0
11Y =

K 0
21 and an adversary can compute E0

21Y = K 0
21.

Once K 0 is known, the session key K may be recovered since K = N�1K 0N .

This completes the proof.

25

2.1 THE BCFRX SCHEME

Let Mat2(Zp

) be the set of 2⇥ 2 matrices over Z
p

. Let I ✓ Mat2(Zp

) be defined

by

I =

8
<

:

0

@1 0

0 1

1

A ,

0

@1 0

0 0

1

A ,

0

@0 0

0 0

1

A

9
=

; .

We say that N 2 GL4(Zp

) is of restricted form if N11, N22 2 I.

Lemma 2.2. For any long-term key M used in the protocol T
p

, there is a matrix N of

restricted form satisfying the conditions of Lemma 2.1. Moreover, for an overwhelming

proportion of long-term keys M , we may impose the condition that N11 = N22 = I2, where

I2 is the 2⇥ 2 identity matrix.

PROOF. Let f : Mat2(Zp

) ! GL2(Zp

) be a function such that f(X)X 2 I for all

X 2 Mat2(Zp

). Such a function f certainly exists: it can be derived from a standard

row reduction algorithm.

Define

H :=

0

@f(M11) 0

0 f(M22)

1

A and N := HM.

The definition of H means that N11, N22 2 I, and so N is of restricted form.

Also, any matrix

H 2
0

@GL2(Zp

) 0

0 GL2(Zp

)

1

A

has the property that H�1UH = U and H�1LH = L. So

N�1UN = M�1H�1UHM = M�1UM = A

and similarly B = N�1LN . So the main statement of the lemma is proved. To see

why the last statement of the lemma holds, note that for an overwhelming propor-

tion of long-term keys M we have that M11 and M22 are invertible. The function f

maps any invertible matrix to its inverse, and so N11 = N22 = I2 in this case.

Stage 3: Computing the matrix N

We may compute an equivalent long-term key N of restricted form as follows. After

eavesdropping on a run of the protocol, we know the matrices C,D, and E. Also,

26

2.1 THE BCFRX SCHEME

the matrix N of restricted form must satisfy the equations

NDN�1 = RNCN�1R0, (2.1.3)

NDN�1 = SNEN�1S0, (2.1.4)

NN�1 = I4, (2.1.5)

for unknown matrices R,R0 2 U , S, S0 2 L. Since N is of restricted form we have

N11, N22 2 I. There are thus only 9 possibile combinations for N11 and N22, so we

may perform a trivial exhaustive search to find the right combination. (In practice

we would first try N11 = N22 = I2, since this holds with overwhelming probabil-

ity.) We assign variables x1, . . . , x8 for the remaining unknown entries of N , and

x9, . . . , x24 for the unknown entries of N�1.

Expanding (2.1.3) and (2.1.4), we find

(NDN�1)22 = (NCN�1)22, (NDN�1)11 = (NEN�1)11. (2.1.6)

This gives us 4 + 4 = 8 quadratic equations in the x
i

, i = 1, . . . , 24. Adding the 16

quadratic equations from (2.1.5), we have a system of 24 quadratic equations in 24

unknowns and expect a Gröbner basis calculation to reveal N . If we eavesdrop on

a second run of the protocol, we learn 8 new equations (from (2.1.3) and (2.1.4)) and

expect to compute N more easily.

Experimental results

Over 1,000 trials in Magma on a Intel Core 2 Duo 1.86GHz desktop, it took roughly

12 seconds to compute each Gröbner basis for a random 300-bit prime. In all our

experiments, twenty three of the basis elements had the form x
i

+ f
i

(x24) for i =

1, . . . , 23, where f
i

is a polynomial of degree 5. The final basis element was a degree

6 polynomial in x24. Thus in all our cases we had a maximum of six possibilities

for a matrix N of restricted form satisfying the conditions of Lemma 2.1.

If we eavesdrop on a second run of the protocol, we can add 8 new equations

to our system. A Gröbner basis calculation then reveals a unique value for N . We

27

2.2 THE HKS SCHEME

can run the attack for different primes p
i

of our choice until
Q

p
i

> ⇤ and use the

Chinese remainder theorem to calculate K.

We conclude that the BCFRX scheme is insecure when SL4(Z) is used as a plat-

form. Implementation details of our attack are given in the Appendix.

2.2 The HKS Scheme

Next we turn our attention to a key agreement protocol proposed by Habeeb,

Kahrobaei and Shpilrain [41], which we refer to as the HKS scheme.

Let H and Q be two groups and let � : Q ! Aut(H) be a homomorphism, where

Aut(H) denotes the automorphism group of H . The semidirect product H o

�

Q of H

and Q is defined as the group {(h, q) : h 2 H, q 2 Q} with group operation

(h, q)(h0, q0) = (h�(q)h0, qq0).

For the HKS scheme we let A be a group and let B be an abelian group. Let

A,B,Aut(B), a 2 A, b 2 B,n 2 N be public. To create a shared key, Alice and Bob

proceed as follows:

1. Alice selects an embedding : A ! Aut(B) and sends to Bob

(x1, x2) := (b (a)(b) (a2)(b) . . . (an�1)(b), an) = (b, a)n 2 B o

A.

2. Bob selects an embedding � : A ! Aut(B) and sends to Alice

(y1, y2) := (b�(a)(b)�(a2)(b) . . .�(an�1)(b), an) = (b, a)n 2 B o

�

A.

3. Alice computes b�1y1 := y, followed by

k
A

=
n�1Y

i=1

 (ai)(y) =
n�1Y

i=1

n�1Y

j=1

 (ai)�(aj)(b).

4. Bob computes b�1x1 := x, followed by

k
B

=
n�1Y

i=1

�(ai)(x) =
n�1Y

i=1

n�1Y

j=1

�(ai) (aj)(b).

28

2.2 THE HKS SCHEME

We require that Alice and Bob pick and � so that (a)�(a) = �(a) (a). If this is

done, Alice and Bob have computed a shared key k = k
A

= k
B

.

Before discussing the choice of platform group, we note the following simpli-

faction to the scheme. Alice does not need to send (x1, x2) to Bob, but only x, since

Bob uses only x to derive the key. Moreover an adversary can easily compute x

from (x1, x2), since b is public. Likewise Bob only need send y to Alice. We suppose

from now on that this simplification is in place.

The proposal [41] suggests to let A to be a p-group and B to be an elementary

abelian p-group of order pm. Thus B may be viewed as an m-dimensional vector

space over F
p

, and so Aut(B) = GL
m

(F
p

). With this choice of platform groups, we

can view the protocol as follows.

Define f(x) = x+x2+· · ·+xn�1. Let b be an m-dimensional column vector over

F

p

. Alice and Bob choose private m⇥m matrices J and K respectively, using some

method so that f(J) and f(K) commute. In general, and a little more formally,

J = M
A

(r
A

) and K = M
B

(r
B

) where M
A

and M
B

are public algorithms which

take as input random sequences of coin tosses r
A

and r
B

respectively (in addition

to the public parameters of the scheme). The algorithms must have the property

that the matrices f(M
A

(r
A

)) and f(M
B

(r
b

)) commute for all input sequences r
A

and r
B

respectively. The paper [41] suggests some candidates for M
A

and M
B

, but

we do not make use of the details of these algorithms in this cryptanalysis.

Alice transmits the column vector w
A

= f(J)b to Bob. Bob transmits the column

vector w
B

= f(K)b to Alice. The common key k is the column vector defined by

k = f(J)f(K)v = f(J)w
B

= f(K)w
A

,

the last equality following since f(J) and f(K) commute.

A Cryptanalysis

Suppose an adversary Eve knows the public parameters of the scheme and ob-

serves w
A

, w
B

during transmission.

29

2.3 THE RU SCHEME

Let X be any matrix such that Xb = w
A

, and X commutes with f(L) for all

matrices L that can possibly be generated by Bob. Such a matrix exists since X =

f(J) satisfies these conditions.

Note that the conditions on the unknown entries of X are linear. This is clear

for the condition that Xb = w
A

. The commutator condition can be expressed as

Xf(L) = f(L)X , for matrices L output by the algorithm M
B

. To compute the

commutator condition on X , Eve can run M
B

on some random inputs r
E

to find

suitable matrices f(L) and impose the necessary conditions Xf(L) = f(L)X on X .

Since these conditions are linear, the number of random inputs r
E

that is required

before these necessary conditions become sufficient to imply the commutator con-

dition (at least for an overwhelming proportion of runs of the protocol) is very

small.

Since all the conditions on X are linear and easy to find, a suitable matrix X can

be computed efficiently.

We claim that k = Xw
B

. To see this, observe that

Xw
B

= Xf(K)b = f(K)Xb = f(K)w
A

= f(K)f(J)b = f(J)f(K)b = k.

This means that the adversary can generate the shared key, and the scheme is bro-

ken.

2.3 The RU Scheme

We now cryptanalyse a recent key agreement protocol proposed by Romanczuk

and Ustimenko [76], which we refer to as the RU scheme. The protocol works as

follows.

Let GL
n

(F
q

) denote the group of invertible n⇥n matrices over a finite field F

q

of

order q, and let F
q

[x, y] denote the polynomial ring over F
q

in two variables x and

y. Let C,D 2 GL
n

(F
q

) be two commuting matrices and let d 2 F

n

q

. The matrices C

and D and the vector d are made public.

To agree on a shared key, Alice picks a polynomial f
A

(x, y) 2 F

q

[x, y] and sends

w
A

= f
A

(C,D)d to Bob. Likewise Bob picks a polynomial f
B

(x, y) 2 F

q

[x, y] and

30

2.4 STICKEL’S SCHEME

sends w
B

= f
B

(C,D)d to Alice. Alice computes k
A

= f
A

(C,D)w
B

, Bob computes

k
B

= f
B

(C,D)w
A

. Since C and D commute, the same is true for f
A

(C,D) and

f
B

(C,D), and so their shared key is the vector k := k
A

= k
B

.

It was not fully specified how the matrices C,D and the polynomials f
A

, f
B

are

generated. However, the following cryptanalysis applies to any method of genera-

tion.

A Cryptanalysis

Suppose a passive adversary Eve observes w
A

, w
B

during transmission, and knows

the public quantities C,D and d. Let X be any matrix such that

XC = CX, XD = DX, Xd = w
A

.

Note that such a matrix exists, since X = f
A

(C,D) satisfies these conditions. Since

the conditions on X are all linear, such a matrix is easily found. Eve can then

compute the key as:

Xw
B

= Xf
B

(C,D)d = f
B

(C,D)Xd = f
B

(C,D)w
A

= k.

2.4 Stickel’s Scheme

In 2004, E. Stickel [86] proposed a key agreement scheme using matrices in a cer-

tain subgroup of GL
n

(F
q

). However, M. Sramka demonstrated weaknesses in the

scheme [84], and a full cryptanalysis that works for all of GL
n

(F
q

) was provided by

V. Shpilrain [80]. Shpilrain suggested that a more secure platform for the scheme is

Mat
n

(R), the algebra of all (not necessarily invertible) n⇥ n matrices defined over

some finite ring R. He also suggested a more general method of generating keys,

involving polynomials of matrices in Mat
n

(R).

In this section we show how, when R = F

q

, Shpilrain’s modifications of Stickel’s

scheme are susceptible to a linear algebra attack. We begin in Subsection 2.4.1

by describing Stickel’s scheme and Shpilrain’s original attack on the scheme. We

31

2.4 STICKEL’S SCHEME

then discuss Shpilrain’s modifications of the scheme in Subsection 2.4.2. In Sub-

section 2.4.3 we offer a cryptanalysis of these modifications when R = F

q

. We do

this by modifying Shpilrain’s original linear algebra attack on the scheme, and run

some computer experiments to demonstrate the feasibility of this attack. Our ex-

periments demonstrate that a passive adversary can feasibly compute the shared

key for practical parameter sizes. We close in Subsection 2.4.4 with a discussion on

working over other finite rings R 6= F

q

, and conclude that until a suitable ring R is

proposed, the scheme may be considered insecure.

2.4.1 Stickel’s Key Agreement Scheme

Stickel’s key agreement scheme is as follows. Let Z denote the centre of GL
n

(F
q

),

and let A,B,W 2 GL
n

(F
q

) be fixed public matrices such that AB 6= BA. To agree

on a shared key, Alice and Bob perform the following:

1. Alice randomly picks l,m 2 N, C1 2 Z and sends U = C1A
lWBm to Bob.

2. Bob randomly picks r, s 2 N, C2 2 Z and sends V = C2A
rWBs to Alice.

3. Alice computes K
A

= C1A
lV Bm. Bob computes K

B

= C2A
rUBs.

Alice and Bob have agreed on a common key K, for

K
A

= K
B

= C1C2A
l+rWBm+s.

A simpler key agreement scheme with C1 = C2 = 1 was also proposed by Stickel,

but we will consider the more general version. As a secure parameter for the

scheme, Stickel proposed n = 31. The parameter q was left unspecified, but Sh-

pilrain inferred in his paper that q = 2k for some k 2 [2, 31] (we will also consider

k = 1). In fact, Stickel proposed that elements A,B,W lie in a particular subgroup

of GL
n

(F
q

). But as we will see, Shpilrain’s attack applies to all matrices in GL
n

(F
q

).

We remark that Sramka’s attack [84] on the scheme concentrated on recovering

a private exponent l,m, r or s, whereas Shpilrain’s more efficient attack works to

compute the key without knowledge of any private exponents.

32

2.4 STICKEL’S SCHEME

Shpilrain’s Attack

Shpilrain noted that for an adversary to compute the key, it suffices upon intercept-

ing the transmitted messages U and V to find invertible matrices X and Y such

that

XA = AX, Y B = BY, U = XWY. (2.4.1)

One can then compute the key as

XV Y = XC2A
rWBsY = C2A

rXWYBs = C2A
rUBs = K

B

.

The matrix equations (2.4.1) define a nonlinear system of 3n2 equations in 2n2 un-

knowns. But since X is invertible, and XA = AX if and only if X�1A = AX�1,

one can instead set X1 = X�1 and solve the following overdetermined system of

linear equations for X1 and Y :

X1A = AX1

Y B = BY (2.4.2)

WY = X1U.

The key can then be computed as XV Y = K
B

. A solution to (2.4.2) is guaranteed,

since the equations are always satisfied by X1 = (C1A
l)
�1 and Y = Bm, and may

be efficiently found via Gaussian elimination.

2.4.2 Shpilrain’s Modifications

Shpilrain suggested a couple of modifications to Stickel’s scheme to avoid his linear

algebra attack. We describe these modifications now, and name them the power

version and the polynomial version of Stickel’s scheme.

Power Version

Shpilrain first suggested that the public elements A,B,W be noninvertible matri-

ces in Mat(n,R), for some finite ring R. The ring R was not specified, but we will

consider the case R = F

q

. The rest of the protocol remains unchanged. As a valid

33

2.4 STICKEL’S SCHEME

attack on the scheme, one can still attempt to find matrices X,Y 2 Mat
n

(F
q

) sat-

isfying (2.4.1) by solving a system of nonlinear equations. However, Shpilrain’s

trick of transforming this into a system of linear equations no longer works in gen-

eral. That is, if one restricts X to be invertible with inverse X�1 = X1 and tries to

solve (2.4.2) (note that in this case Y need not be invertible), one typically finds no

solutions.

Polynomial Version

Stickel’s scheme uses the fact that all powers Al of a matrix A commute. The same

is true of all polynomials
P

c
i

Ai in A, for c
i

2 R, where we now assume R is a

finite commutative ring. Again, we consider the case R = F

q

. This suggests a

generalisation of the power version of Stickel’s scheme, whereby Alice and Bob

choose polynomials (instead of powers) of the public noninvertible matrices A and

B. Shpilrain suggested that the polynomials chosen by Alice and Bob have zero

constant term, to ensure the resulting matrices are noninvertible (and hence his

linear algebra attack fails).

Note that for any k � n one can express Ak as Ak =
P

n�1
i=0 c

i

Ai, since by the

Cayley–Hamilton theorem, A satisfies its own characteristic equation (see e.g. [48],

Page 86). Thus it suffices to consider polynomials of degree at most n � 1. To

fully specify the scheme we therefore assume polynomials are picked uniformly at

random from the set of all polynomials of degree at most n � 1 with zero constant

term. In detail, we have the following scheme.

Let Z denote the centre of Mat
n

(F
q

), and let A,B,W 2 Mat
n

(F
q

) be fixed public

noninvertible matrices such that AB 6= BA. To agree on a shared key, Alice and Bob

perform the following:

1. Alice randomly picks a matrix C1 2 Z and polynomials l(x),m(x) 2 F

q

[x] of

degree at most n� 1 with zero constant term. She sends U = C1l(A)Wm(B)

to Bob.

2. Bob randomly picks a matrix C2 2 Z and polynomials r(x), s(x) 2 F

q

[x] of

34

2.4 STICKEL’S SCHEME

degree at most n � 1 with zero constant term. He sends V = C2r(A)Ws(B)

to Alice.

3. Alice computes K
A

= C1l(A)V m(B). Bob computes K
B

= C2r(A)Us(B).

Alice and Bob have agreed on a common key K, for

K
A

= K
B

= C1C2l(A)r(A)Wm(B)s(B).

2.4.3 A Cryptanalysis

We now offer a cryptanalysis of the power variant and polynomial variant of Stickel’s

scheme. Note that the power version is a special case of the polynomial version

with l(x) = xl,m(x) = xm, r(x) = xr, s(x) = xs. We thus concentrate on crypt-

analysing the polynomial version.

There are two main stages of our attack. The first stage involves guessing a

polynomial q(x). We then use this polynomial to construct a system of linear equa-

tions similar to (2.4.2), from which the key may be derived.

Let m
A

(x) denote the minimum polynomial of A. The polynomial q(x) of inter-

est to an adversary is:

q(x) := gcd(l(x),m
A

(x)).

We will see later how q(x) is typically easy to guess for an adversary. We first show

how knowledge of q(x) is sufficient to perform a linear algebra attack to recover

the key.

Once q(x) is Found

Suppose an adversary has knowledge of q(x). We begin with a lemma.

Lemma 2.3. Let A 2 Mat
n

(F
q

) and let p(x) 2 F

q

[x]. If gcd(p(x),m
A

(x)) = 1 then

p(A) is invertible.

PROOF. Since gcd(p(x),m
A

(x)) = 1, there exist polynomials r(x), s(x) 2 F

q

[x] such

that p(x)r(x)+m
A

(x)s(x) = 1. Since m
A

(A) = 0, we have p(A)r(A) = I . Thus p(A)

is invertible. This completes the proof.

35

2.4 STICKEL’S SCHEME

Suppose an adversary has correctly guessed q(x) := gcd(l(x),m
A

(x)). Note that we

can write l(x) as l(x) = p(x)q(x), where gcd(p(x),m
A

(x)) = 1, for some polynomial

p(x) 2 F

q

[x]. By the lemma, p(A) is invertible. Now it suffices for an adversary to

find matrices X,Y 2 Mat
n

(F
q

) such that:

XA = AX (2.4.3)

Y B = BY (2.4.4)

q(A)WY = XU (2.4.5)

X is invertible. (2.4.6)

A solution to (2.4.3)–(2.4.6) is now guaranteed, since the equations are always sat-

isfied by X = (C1p(A))�1 and Y = m(B). Note that an adversary does not need to

know l(x) or p(x) to perform this attack. The key may be computed as:

X�1q(A)V Y = X�1q(A)C2r(A)Ws(B)Y

= C2r(A)X�1q(A)WY s(B)

= C2r(A)Us(B)

= K.

One way to find a solution to (2.4.3)–(2.4.6) is to first solve the system of linear

equations defined by (2.4.3)–(2.4.5). Performing Gaussian elimination will yield

a number of free variables, from which one can search, by running over the free

variables, for an invertible matrix X .

To investigate this attack in more depth, we performed computer experiments

for some reasonable parameters (n, q) = (80, 2), (40, 4), (20, 8). For (n, q) = (80, 2)

we used Sage [78], version 4.3, and for the remaining parameters we used (for ef-

ficiency reasons) Magma [59], version 2.16. For completeness, we ran our experi-

ments on both variants of the scheme; experiments were performed on a 2.6 GHz

dual core Opteron 885 Sun server. Over 100 trials, we recorded the average/maxi-

mum number of free variables found by solving the linear system of equations de-

fined by (2.4.3)–(2.4.5). We also recorded the average/maximum time taken to find

36

2.4 STICKEL’S SCHEME

an invertible matrix X , by naive exhaustive search over the free variables. (This is

clearly not optimal, but sufficient for our purposes.) The results are displayed in

Table 2.1.

#free var. time (mins)
version n q avg max avg max

power
80 2 3 13 407 455
40 4 2 5 9.97 10.18
20 8 2 4 0.41 0.43

poly
80 2 4 13 403 434
40 4 2 7 9.84 10.24
20 8 2 6 0.41 0.44

Table 2.1: Finding an Invertible Matrix X .

It is clear from the results in Table 2.1 that once an adversary has correctly

guessed q(x), it will not take long (for any reasonable parameters) to derive the

key.

Finding q(x)

An adversary needs to know q(x) to perform the above linear algebra attack. We

now show that q(x) is typically easy to guess.

First suppose the power version of the scheme is used. Then q(x) = xi for some

i, 1 i n. There are thus only n choices for q(x). (If q(x) = xn then the matrix

A is nilpotent: Ak = 0 for all k � n, and Alice and Bob will agree on the key

K = 0.) A good cryptanalytic strategy is as follows. First guess that q(x) equals x

and attempt to solve (2.4.3)–(2.4.6). If we find an invertible matrix X , we are done.

Else, we have made an incorrect guess for q(x); instead, keep guessing q(x) = xi, for

i = 2, 3, . . . and attempt to solve (2.4.3)–(2.4.6), until we find an invertible matrix.

In experiments, q(x) has low degree (typically 1 or 2), and over 10,000 trials, the

maximum degree of q(x) found was 13 for (n, q) = (80, 2), 8 for (n, q) = (40, 4), and

5 for (n, q) = (20, 8). Thus after only a small number of guesses, an adversary can

discover q(x) and compute the key.

37

2.4 STICKEL’S SCHEME

Now suppose the polynomial version of the scheme is used. Since x divides

l(x), and A is noninvertible, an adversary knows that x divides q(x). Over 10,000

trials, we recorded the most frequent values for q(x), for the same parameters as

before. The results are displayed in Table 2.2 (a is a generator of F⇤
q

).

(n, q) = (80, 2) (n, q) = (40, 4) (n, q) = (20, 8)

polynomial freq. polynomial freq. polynomial freq.
x 5548 x 7619 x 8748

x(x+ 1) 2280 x(x+ 1) 622 x(x+ a) 171
x(x2 + 1) 598 x(x+ a) 600 x(x+ a5) 166

x(x2 + x+ 1) 479 x(x+ a2) 599 x(x+ a3) 157
x(x3 + 1) 179 x(x2 + x+ 1) 63 x(x+ a4) 157

x(x3 + x2 + x+ 1) 161 x(x2 + ax+ a2) 49 x(x+ 1) 153
x(x3 + x+ 1) 114 x(x2 + a2x+ a) 43 x(x+ a2) 143
x(x3 + x2 + 1) 100 x(x2 + a2) 39 x(x+ a6) 141

Total: 9459 Total: 9634 Total: 9836

Table 2.2: Statistics of q(x).

Experiments indicate that after 8 guesses an adversary has a good chance of

discovering q(x) (94.59% for n = 80, the worst case scenario in our experiments).

In fact, the situation is better than this. Besides q(x), there are 3 other polyno-

mials of interest to an adversary, namely gcd(m(x),m
B

(x)), gcd(r(x),m
A

(x)), and

gcd(s(x),m
B

(x)). Since m(x), r(x), s(x) are picked independently, they are guessed

just as l(x) is guessed. From knowledge of any one of these polynomials, one

can set up the obvious system of linear equations to derive the key. Moreover,

in our experiments the maximum degree of q(x) was 15 for (n, q) = (80, 2), 7 for

(n, q) = (40, 4), and 5 for (n, q) = (20, 8). Since the matrix A is public, an adversary

can compute its factorised characteristic polynomial, and run over combinations of

its irreducible factors to find q(x).

2.4.4 Discussion

The key to avoiding Shpilrain’s attack is to ensure that gcd(l(x),m
A

(x)) is nontriv-

ial. Thus in the polynomial version, instead of picking polynomials divisible by x

at random, one could pick polynomials at random until one has a nontrivial factor

38

2.4 STICKEL’S SCHEME

in common with m
A

(x). However, typically (as one might expect) this nontrivial

factor will be small and hence feasibly guessed.

Instead of working over a finite field, Shpilrain suggested working over some

finite ring R. Two obvious candidates for R are R1 = Z

n

where n = pq is a product

of two primes, and R2 = Z2n . For R1, assuming the factorisation of n is known,

we may compute K mod p and K mod q and use the Chinese remainder theorem

to compute K. Likewise the Chinese remainder theorem applies if one considers

the polynomial ring F

q

[x]/(f(x)). For R2 we may compute K mod 2, followed by

K mod 22, and so on all the way up to K = K mod 2n, and derive, at the very least,

partial information about the key.

We conclude that until a suitable ring R is proposed, the variant schemes may

be considered insecure.

39

Chapter 3

Tillich–Zémor Hash Function

A hash function h : A⇤ ! G is a function from the set of all strings over some

finite alphabet A to a finite set G. Hash function design is an important and active

area of research; applications include digital signatures, message authentication

codes, and efficient password storage. There are three standard notions of security

for a hash function, namely preimage resistance: given g 2 G, find a string s such

that h(s) = g, second preimage resistance: given a string s, find a string t such that

h(s) = h(t), and collision resistance: find two strings s and t such that h(s) = h(t).

In 1994, Tillich and Zémor [92] designed the following hash function. Let G be

the group SL2(F2n) of 2⇥ 2 matrices of determinant 1 with entries in the finite field

F2n . Let ↵ be an element of F2n not contained in any proper subfield, and define

S = {s0, s1}, where

s0 =

0

@ ↵ 1

1 0

1

A , s1 =

0

@ ↵ ↵+ 1

1 1

1

A .

A binary string b1b2 . . . bm is hashed to the matrix s
b1sb2 · · · sbm 2 G.

Note that it is easy to find a collision for this hash function. For example, the

empty string and the string consisting of |SL2(F2n)| ones both hash to the identity

element. However, the latter string is impractically long (it cannot be written out

in polynomial time), so one is interested in shorter collisions.

The Tillich–Zémor hash function is an example of a more general class of hash

functions based on concepts from group theory, originating in work by Tillich and

Zémor [91] and Zémor [97, 98]. Let A be an alphabet and let G = hSi be a finite

group, with |A| = |S|. Let � : A ! S be a set bijection and define a function

h : A⇤ ! G by sending a string a1 . . . am to the group element �(a1) · · ·�(am). For

40

applications, one is interested in the binary alphabet, so we assume S = {s0, s1}.

Since its design, several partial cryptanalytic results for the Tillich–Zémor hash

function have been discovered. This culminated in the recent work of Grassl, Ilić,

Magliveras and Steinwandt [40], who devised an efficient method to find short

collisions of length 2n + 2 by constructing certain palindromic bitstings. Based on

this attack, an efficient preimage-finding algorithm was then constructed by Petit

and Quisquater [70].

The cryptanalysis of Grassl et al. crucially depends on the characteristic of the

underlying field and the specific generators s0, s1. It is natural to explore the fol-

lowing questions. Can we produce a secure hash function, that in particular avoids

the attack of Grassl et al. by replacing the underlying finite field F2n by another

finite field F

q

? We say any such hash function is of TZ-type. Can we produce a

secure hash function by changing our generators s0 and s1, with or without chang-

ing the underlying field? We say any such hash function is of SL2-type. Can we

produce a secure hash function by changing the group G? We say that such hash

functions are group-based. To answer these questions, we need to understand how

far the Grassl et al. attack generalises to these settings. We also need to understand

generic collision-finding algorithms: attacks that can be applied to all group-based

hash functions.

This chapter contains the following results. We first present generic collision-

finding algorithms for SL2-type hash functions. The algorithms work by succes-

sively hashing into smaller and smaller subgroups, until one lands in an abelian

subgroup (which could be the trivial group). Once inside an abelian group, colli-

sions are easily constructed. The algorithms provide collisions of length roughly

2(log2 q)
2 in time and space complexity O(

p
q). Although (to the author’s knowl-

edge) the algorithms have not appeared in print before, they were clearly known to

the designers of the hash function, since the choice of platform group renders the

approach to finding collisions infeasible. Moreover, the algorithms are somewhat

naive, employing a general meet-in-the-middle approach. Having said this, we use

commutator calculus to find a simplification of the algorithms when the underlying

41

3.1 PREVIOUS WORK

field has characteristic 2. This method finds collisions of length roughly 2n(n+ 1),

but still runs in exponential time.

Next we demonstrate that the attack by Grassl et al. does not extend in a straight-

forward manner to TZ-type hash functions over fields of odd characteristic. We

then provide a method for finding short collisions of length roughly 4 log2 q for TZ-

type hash functions that is independent of the characteristic of the underlying field.

However, the algorithm has the same complexity as generic attacks: O(
p
q).

The chapter is organised as follows. In Subsection 3.1 we discuss previous work

on the Tillich–Zémor hash function. In Subsection 3.2 we outline our collision-

finding algorithms. In Subsection 3.3 we discuss Grassl et al.’s attack and provide

a method for finding short collisions for hash functions of TZ-type. We end in

Subsection 3.4 with a summary of collision-finding algorithms.

3.1 Previous Work

There has been a significant amount of research on group-based hash functions. We

provide a brief survey of the literature.

Group-based hash functions date back to work by Tillich and Zémor [91] and

Zémor [97, 98]. There is good motivation for choosing G = SL2(F2n) as a platform

group. In general, one may view the process of computing the hash function as

taking a walk in the Cayley graph C
S

(G) of G with respect to the generating set

S = {s0, s1}. Hence security notions take on a graph theoretical interpretation. For

example, finding a collision in the hash function is equivalent to finding a cycle

in C
S

(G). Thus the security of group-based hash functions depends on (but is not

obviously equivalent to) the hardness of the representation problem: given a finite

group G with generating set S, find a short word w on S such that w = 1 in G.

The Cayley graph C
S

(G) displays some nice security properties. For exam-

ple, one can show that the distribution of hashes of length l tends to uniformity

as l tends to infinity. Also, the (directed) girth of C
S

(G) is larger than n, which

protects against small modifications of a bitstring. Another reason for choosing

42

3.1 PREVIOUS WORK

G = SL2(F2n) is efficiency: computing a hash amounts to fast arithmetic in F2n . A

detailed discussion is given in [92].

Prior to the choice of G = SL2(F2n), Tillich and Zémor considered the platform

group SL2(Zp

) with generators
0

@ 1 1

0 1

1

A ,

0

@ 1 0

1 1

1

A .

However, the hash function was shown to be insecure due to a so called density

attack. The attack works by efficiently finding a matrix U 2 SL2(Z) that reduces to

the identity matrix modulo p, and can also be expressed as a short word on s0, s1;

details are given in [98]. The choice of platform group G = SL2(F2n) avoids this

attack. Charles and Pieprzyk [21] derived conditions on the polynomial defining

F2n which lead to short collisions, but Abdukhalinov and Kim [1] showed that

the conditions hold with very low probability if a randomly chosen irreducible

polynomial is selected to define the field. Abdukhalinov and Kim also introduced a

generalisation to arbitrary finite fields (what we are calling TZ-type hash functions)

by letting G = SL2(Fq

) and using the generators

t0 =

0

@ ↵ �1

1 0

1

A , t1 =

0

@ ↵+ 1 �1

1 0

1

A .

Moreover, they demonstrated that this hash function displays similar security prop-

erties to the original Tillich–Zémor construction. Geiselmann [33] considered a dis-

crete logarithm approach to finding collisions, but his method produces imprac-

tically long collisions. Steinwandt et al. [85] considered a particular subgroup at-

tack, but this may be avoided by a suitable parameter choice. Petit et al. [73] con-

structed a generic collision-finding algorithm (and also considered finding preim-

ages). However, their algorithm runs in exponential time. Thus prior to the attack

of Grassl et al. (which we discuss later) and Petit and Quisquater’s follow up work

to find preimages [70], the hash function remained essentially unbroken.

We mention briefly a couple of notable variants of the Tillich–Zémor hash func-

tion. They work similarly to the Tillich–Zémor hash function, and are based on

43

3.2 COLLISION-FINDING ALGORITHMS

taking walks in certain expander graphs. Charles, Goren and Lauter [20] con-

sidered basing a hash function on LPS expander graphs, and Petit, Lauter and

Quisquater [71] investigated Morgenstern expander graphs as a suitable platform.

However, the underlying representation problem turned out not be as difficult as

first thought [72, 93].

3.2 Collision-Finding Algorithms

We now describe our generic collision-finding algorithms for SL2-type and group-

based hash functions.

3.2.1 Collisions for SL2-Type Hash Functions

Let G = SL2(Fq

), and let h be the associated hash function (using any generators).

We present two algorithms, Algorithm A and Algorithm B, for finding collisions for

SL2-type hash functions that work for any parameter choice. They do not depend

on the generators used or the characteristic of the underlying field. In Algorithm

A we fix a particular subgroup chain of G and use a meet in the middle approach

to hash into successive subgroups. Collisions may be formed once we hash into an

abelian subgroup of G. This approach may be seen as a straightforward extension

of Petit et al.’s generic attack [73], which we first describe. In Algorithm B we do

not fix a subgroup chain ahead of time.

Petit et al. attack. The most successful completely generic attack to date is that of

Petit et al. [73]: a preimage to the identity is found as follows.

1. Find N strings m
i

such that (1 0)h(m
i

) = �
i

(1 0).

2. Find {e
i

} such that
Q
�ei
i

= 1 and
P |e

i

| is not too large.

3. Let m0
i

be the concatenation of m
i

with itself e
i

times. Construct

d = m0
1|| · · · ||m0

N

.

44

3.2 COLLISION-FINDING ALGORITHMS

4. Let d0 = d||d. Then h(d0) = 1.

We note that although Petit et al. were considering the case p = 2, one trivially ex-

tends this attack to arbitrary characteristic p by concatenating d with itself p times

in step 4 above (and hence their attack is completely generic). How good is this ap-

proach? Step 1 is achieved via a meet in the middle approach with time complexity

O(
p
q). We can approximate the length of the N strings to be roughly log2 q. A solu-

tion to step 2 is provided by fixing a generator g for F⇤
q

and solving N discrete loga-

rithms �
i

= g↵i . One then finds a suitable set {e
i

} by solving
P
↵
i

e
i

⌘ 0 mod q� 1,

using the LLL algorithm. Taking N = n, one expects to find collisions of length

roughly 2np(log2 q).

Algorithm A. Consider the subgroup chain 1 < K < H < G, where

H =

8
<

:

0

@ a b

0 a�1

1

A : a, b 2 F

q

, a 6= 0

9
=

; , K =

8
<

:

0

@ 1 b

0 1

1

A : b 2 F

q

9
=

; .

The first step of our algorithm finds two strings whose hash values lie in the sub-

group H . Note that the index of H in G is q + 1. We use a meet in the middle

approach as follows:

• Generate and store approximately p
q strings v and distinct cosets

h(v)�1H .

• Generate strings u until h(u)H equals some stored value h(v)�1H .

• Return vu.

We repeat this process to obtain two different strings x and y whose hash value lies

in H .

The next step is to hash into the subgroup K. Note that K has index q� 1 in H .

We use h(x) and h(y) as generators of H , and repeat the above process to find two

strings s and t that hash into K. (Note that if h(x) and h(y) do not generate H , then

they generate a proper subgroup H 0 of H . One can then apply the same procedure

to H 0.) A collision is given by h(st) = h(ts), since K is an abelian subgroup of G.

45

3.2 COLLISION-FINDING ALGORITHMS

Heuristically, one expects x and y to have length approximately log2 q. Hence

one expects to find collisions of length roughly 2(log2 q)
2. The time complexity of

this algorithm is O(
p
q). In terms of memory, the algorithm has space complexity

O(
p
q) provided one has an efficient encoding of the cosets. An efficient encoding

of the cosets of H in G is given by the bijection G : H ! F

q

[{1}, where

0

@ a b

c d

1

AH 7!
8
<

:
ac�1 if c 6= 0

1 if c = 0.

Similarly, the cosets of K in H may be encoded via the bijection

H : K ! F

⇤
q0

@ a b

0 a�1

1

AK 7! a.

Algorithm B. Instead of fixing a subgroup chain for G as in Algorithm A, we aim

to hash into any conjugate subgroup of H followed by any conjugate subgroup

of K (note that any conjugate subgroup of K is abelian in G). There are many

conjugate subgroups of H and K in G, so one might expect this approach to find

shorter collisions than Algorithm A.

The first step is to find two elements in a conjugate subgroup of H . An element

g 2 G lies in a conjugate subgroup of H if and only if it has an eigenvalue in F

q

. It

is straightforward to check this condition (e.g. one could check for reducibility of

the characteristic polynomial of g). A birthday attack works as follows:

• Generate and store approximately p
q strings v subject to the condition that

h(v) has an eigenvalue � 2 F

q

. Store the eigenvector associated with � (as a

projective point).

• Generate strings u until an eigenvector of h(u) equals an eigenvector of h(v)

(up to scalar multiples), for some stored v.

• Return u, v.

Thus h(u) and h(v) lie in the same conjugate subgroup of H .

46

3.2 COLLISION-FINDING ALGORITHMS

The next step is to find two strings whose hash value lies in a conjugate sub-

group of K. Suppose h(u) and h(v) have an eigenvalue �1 and �2 respectively (we

assume, as is likely, that h(u) and h(v) do not have the same eigenvalues). To hash

into a conjugate subgroup of K, we seek a short word w on {�1,�2} such that w = 1

in F

⇤
q

. We again employ a meet in the middle attack to solve this:

• Generate approximately p
q words x on {�1,�2}. Store x�1.

• Generate words y on {�1,�2} until y = x�1 for some stored x�1.

• Return xy.

Now we have an element in a conjugate subgroup of K. It is easy to generate more

elements in the same subgroup since we are concerned only with the combination

of �
i

, and not their arrangement in the product of x and y above. One may then

form collisions as in Algorithm A, since we are inside an abelian subgroup.

We note that Algorithm B has the same complexity as Algorithm A.

Remark. We remark that the m
i

satisfying the condition in step 1 of Petit et al.’s

attack are precisely the lower triangular matrices, and if one considers right eigen-

vectors instead, one gets upper triangular matrices, i.e. H . Also note that h(d) in

step 3 lies in an abelian subgroup K 0 of G. Since the order of the concatenation of

the m0
i

is irrelevant, one easily finds a different string d0 6= d such that h(d0) 2 K 0. A

collision is then given by h(d)h(d0) = h(d0)h(d).

3.2.2 A Simplification in Characteristic 2

In characteristic 2, there is a simplification to our algorithms to produce collisions.

We provide an exposition for Algorithm A, but it also applies to Algorithm B and

Petit et al.’s algorithm.

Suppose we have found 2 strings (via the meet in the middle approach) whose

hash values u and v lie in H . We can construct a collision based on certain com-

binations of uv and vu as follows. Let k = u�1v�1uv be the commutator of u and

47

3.3 SHORT COLLISIONS FOR TZ-TYPE HASH FUNCTIONS

v. Then k 2 K. Treating K as the vector space F

n

2 , define a linear map � on K by

�(k0) = (vu)�1k0(vu). Then a collision is determined by the minimum polynomial

m
�

(x) of �. For example, suppose m
�

(x) = x2 + x+ 1. Then a collision is given by

uvuvuv = vukvukvuk

= vuvu�(k)vu�(k)k

= vuvuvu�2(k)�(k)k

= vuvuvu.

In general, since m
�

(x) has degree at most n, we expect to find collisions of length

2(n + 1) log2 q = 2n(n + 1). This method only seems to work in characteristic 2,

since there is no obvious way to deal with non-binary coefficients of m
�

(x).

3.2.3 Collisions for Group-Based Hash Functions

Algorithm A extends in a straigtforward manner to group-based hash functions.

Let 1 = G0 < G1 < . . . < G
d

= G be a chain of subgroups of G, and let k
i

be the index of G
i�1 in G

i

. The goal is to find a preimage of the identity element

of G, from which collisions may be formed. The meet in the middle approach

used in Algorithm A is performed iteratively on the subgroup chain down to the

identity subgroup (provided one has an efficient encoding of the cosets). One finds

a bitstring that hashes to the identity, with expected length approximately
dY

i=1

log2 ki.

The complexity of this approach is governed by the largest index k
i

, so the algo-

rithm has complexity O(
p

max{k
i

}).

3.3 Short Collisions for TZ-Type Hash Functions

In this section we outline Grassl et al.’s attack on the Tillich–Zémor hash function

and show that it does not extend to TZ-type hash functions in a straightforward

manner. We then provide a method for finding short collisions for TZ-type hash

functions.

48

3.3 SHORT COLLISIONS FOR TZ-TYPE HASH FUNCTIONS

3.3.1 Grassl et al.’s Attack

Before describing the attack we need a couple of definitions. Let V denote the set

of finite bitstrings and let h : V ! G be the Tillich–Zémor hash function. The length

of a string v = b1 . . . bm is |v| := m. The reversal of a string v = b1 . . . bm is defined

as vr := b
m

. . . b1. A string v is a palindrome if v = vr.

The attack works as follows. Firstly, the generators s0 and s1 are conjugated by

s0. So we have new generators c0 = s0 and c1 = s�1
0 s1s0, where

c0 =

0

@ ↵ 1

1 0

1

A , c1 =

0

@ ↵+ 1 1

1 0

1

A .

Since conjugation preserves collisions (that is, any collision found based on the

generators c0, c1 is also a collision based on the generators s0, s1), it suffices to find

collisions using the symmetric generators c0 and c1. The next step to their attack

is to consider the lifting map H : V ! SL2(F2[x]), which is defined similarly to h

except that the matrix images lie over the polynomial ring F2[x] instead of F
q

. They

consider the map

⇢ : V ! F2[x]
2⇥2

v 7! H(0v0) + H(1v1),

and show that if v is an even length palindrome then ⇢(v) =

0

@ a2 a2

a2 0

1

A for some

polynomial a. The task of finding collisions is now reduced to finding a such that

a2 ⌘ 0 modulo the polynomial defining F

q

, for then h(0v0) = h(1v1) is a collision.

A very elegant solution to this problem is found by considering maximal length

chains in the Euclidean algorithm, from which short collisions of length 2n+ 2 are

constructed.

We want to know to what extent Grassl et al.’s attack generalises. The follow-

ing lemma shows that their attack does not extend to TZ-type hash functions in a

straightforward manner.

For the remainder of this section, we let G = SL2(Fq

) and work with the nat-

ural generators t0 and t1 defined in Section 2 (note that in characteristic 2 these

49

3.3 SHORT COLLISIONS FOR TZ-TYPE HASH FUNCTIONS

are precisely the generators used by Grassl et al.). We let h be the associated hash

function.

Lemma 3.1. Let v 2 V be a palindrome and let h(v) =

0

@ a b

c d

1

A. Then

(i) h(v) =

0

@ a b

�b d

1

A .

(ii) If F
q

does not have characteristic 2 then h(0v0) 6= h(1v1).

PROOF. For part (i), we proceed by induction on the length of v 2 V . If |v| = 1 then

h(v) is t0 or t1, and by inspection both t0 and t1 have the desired form. Assume the

result holds for odd length bitstrings, so h(v) =

0

@ a b

�b d

1

A and |v| is odd. Then

direct calculation gives

h(�v�) =

0

@ a(↵+ �)2 + 2b(↵+ �)� d �(a↵+ a� + b)

a↵+ a� + b �a

1

A ,

which has the desired form. The case for even length bitstrings is identical. Hence

by induction part (i) of the lemma holds.

For part (ii), since v is a palindrome we have that h(v) =

0

@ a b

�b d

1

A, by part

(i). Note that

h(0v0)� h(1v1) =

0

@ �2a↵� a� 2b a

�a 0

1

A .

Hence for h(0v0) = h(1v1) to hold in odd characteristic, we require a = 0. This in

turn implies b = 0. But this contradicts the fact that h(v) 2 SL2(Fq

).

3.3.2 Short Collisions for TZ-Type Hash Functions

We now illustrate a way to find short collisions for TZ-type hash functions. We

begin with a lemma.

Lemma 3.2. Let v 2 V and let h(v) =

0

@ a b

c d

1

A. Then

50

3.3 SHORT COLLISIONS FOR TZ-TYPE HASH FUNCTIONS

(i) h(vr) =

0

@ a �c

�b d

1

A .

(ii) h(v)� h(vr) =

0

@ 0 b+ c

b+ c 0

1

A .

(iii) h(0vvr1)� h(1vvr0) =

0

@ 0 a2 � c2

a2 � c2 0

1

A .

(iv) h(0vrv1)� h(1vrv0) =

0

@ 0 a2 � b2

a2 � b2 0

1

A .

(v) h(vv)� h(vrvr) =

0

@ 0 (a+ d)(b+ c)

(a+ d)(b+ c) 0

1

A .

PROOF. For part (i), we proceed by induction. If |v| = 1 then h(v) is t0 or t1, and

by inspection both t0 and t1 have the desired form. Assume the result holds for

|v| = k. Then a bitstring of length k+1 may be written as v�. By the inductive step,

v has the desired form, i.e. h(v) =

0

@ a b

c d

1

A and h(vr) =

0

@ a �c

�b d

1

A. Direct

calculation gives

h(v�) =

0

@ a(↵+ �) + b �a

c(↵+ �) + d �c

1

A

and

h(�vr) =

0

@ a(↵+ �) + b �c(↵+ �)� d

a �c

1

A ,

and we see that the matrices have the desired form. Hence by induction part (i)

of the lemma holds. Parts (ii) to (vi) of the lemma may be seen by simple matrix

calculations.

The lemma provides good heuristic reasons to expect to find collisions of length

of the order log2 q. By parts (ii) and (v) of Lemma 3.2, to find a collision it suffices to

find a non-palindrome v such that either b+ c = 0 or a+ d = 0 in h(v). By parts (iii)

51

3.3 SHORT COLLISIONS FOR TZ-TYPE HASH FUNCTIONS

and (iv), to find a collision it suffices to find any bitstring v 2 V such that a = ±b or

a = ±c in h(v) =

0

@ a b

c d

1

A.

The following proposition and corollary show that we can find collisions of

length roughly 4 log2 q.

Proposition 3.3. Let u = b1 . . . br be a bitstring that hashes into H , i.e. h(u) 2 H . Let

v = b1brbr�1 . . . b2. Then h(v) 2 H . Moreover, bitstrings uv and vu hash into K, i.e.

h(uv), h(vu) 2 K.

PROOF. Let h(b1) =

0

@ x+ � �1

1 0

1

A and h(b2 . . . br) =

0

@ a b

c d

1

A, where � = b1.

Then

h(u) = h(b1)h(b2 . . . br) =

0

@ (x+ �)a� c (x+ �)b� d

a b

1

A .

Since h(u) 2 H we have that a = 0 and hence �c = b�1. Thus

h(u) =

0

@ b�1 (x+ �)b� d

0 b

1

A .

Now,

h(v) = h(b1)h(br . . . b2) =

0

@ x+ � �1

1 0

1

A

0

@ a �c

�b d

1

A (by lemma 2.3(i)),

=

0

@ b (x+ �)b�1 � d

0 b�1

1

A (since a = 0 and �c = b�1).

Thus h(v) 2 H . Moreover, one sees that

h(uv) =

0

@ 1 (x+ �)(1 + b�2)� 2b�1d)

0 1

1

A .

h(vu) =

0

@ 1 (x+ �)(1 + b2)� 2b�1d)

0 1

1

A .

Thus h(uv), h(vu) 2 K.

52

3.4 SUMMARY

Corollary 3.4. Let u = b1 . . . br be such that h(u) 2 H . Let v = b1br . . . b2. Then

bitstrings uvvu and vuuv hash to the same value.

PROOF. By Proposition 3.1, h(uv) and h(vu) lie in K. But K is an abelian subgroup

of G. Hence h(uvvu) = h(uv)h(vu) = h(vu)h(uv) = h(vuuv).

3.4 Summary

We close with a summary of the various collision-finding algorithms. The algo-

rithms described in Subsection 3.2.1 are completely generic; they work for any gen-

erators and any finite field. Although they find collisions of reasonable length, the

algorithms have exponential running time. Fixing the natural generators t0 and t1,

we can find shorter collisions, but again the algorithm (call this Algorithm C) is

inefficient, since we cannot efficiently hash into the subgroup H .

We summarise these algorithms in Table 3.1 indicating which algoriths are spe-

cific to characteristic 2 or specific to the natural generators. For completeness in-

clude the trivial collision-finding algorithm of writing down |SL2(Fq

)| ones. Grassl

Algorithm Exp. Coll. Length Cxty (t) gen. spc? char. spc?
Trivial max{q + 1, 2p} O(1) no no

Grassl et al. 2 log2 q O(n3) yes yes
Petit et al. 2np(log2 q) O(

p
q) no no

A 2(log2 q)
2 O(

p
q) no no

B 2(log2 q)
2 O(

p
q) no no

C 4 log2 q O(
p
q) yes no

Table 3.1: Collision-Finding Algorithms

et al.’s attack is specific to both the natural generators and the characteristic of the

underlying field. We do not have much confidence that changing the generators

(but staying in characteristic 2) would lead to an increase in security. Certainly

such a scheme would be less natural (and probably less efficient) than the original

proposal. Moving to odd characteristic naturally avoids Grassl et al.’s attack, as

the results in this chapter indicate. But the loss in efficiency may be too much to

overcome if the design it to rival more traditional hash functions.

53

Chapter 4

MST3 Public Key Cryptosystem

Logarithmic signatures (or group factorisations as they are also known) find applica-

tions in numerous areas of mathematics and computer science, for example cod-

ing theory, combinatorics and cryptography [90]. They first appear in the crypto-

graphic literature in connection with Permutation Group Mappings (PGM), a sym-

metric cipher invented by Magliveras [54]. The ideas behind PGM have inspired

several public key cryptosystems based on logarithmic signatures, most notably

the family of MST cryptosystems [50, 57].

In this chapter we explore the role of logarithmic signatures in cryptography.

Our main result is a cryptanalysis of a public key cryptosystem MST3, proposed

by Lempken, Magliveras, van Trung and Wei [50].

We begin in Section 4.1 with the definition of a logarithmic signature, a gen-

eral method of construction, and a small example. In Section 4.2 we provide an

overview of the use of logarithmic signatures in cryptography, before moving on to

discuss constructions for elementary abelian 2-groups in Section 4.3: this is moti-

vated as they occur as part of the private key for MST3. We provide a cryptanalysis

of MST3 in Section 4.4; our exposition follows [12]. After the publication of [12],

Svaba and van Trung [89] published a paper with modifications to MST3, resulting

in a revised version of the cryptosystem. We close the chapter with some comments

on this paper in Section 4.5.

4.1 Definitions, Constructions, Examples

Let G be a finite group, S ✓ G a subset of G and s a positive integer. For all 1 i
s, let A

i

= [↵
i1, . . . ,↵iri] be a finite sequence of elements of G of length r

i

> 1, and

54

4.1 DEFINITIONS, CONSTRUCTIONS, EXAMPLES

let ↵ = [A1, . . . , As

] be the ordered sequence of A
i

. We say that ↵ is a cover for S if

any g 2 S can be written as a product g = g1 · · · gs, where g
i

= ↵
iki 2 A

i

. If such a

decomposition is unique for every g 2 S, then ↵ is said to be a logarithmic signature

for S. The type of a cover ↵ is the vector (r1, . . . , rs), the sets A
i

are called blocks,

and the length of ↵ is l(↵) :=
P

s

i=1 ri.

Given an element g 2 S and a cover ↵ of S, obtaining a factorisation g =

↵1k1 · · ·↵sks associated with ↵ seems to be a hard problem in general. Indeed,

in some situations the problem is a discrete logarithm problem. For example, let

G be generated by an element g of large order, and define A
i+1 = [1, g2

i
]. Let

S = {ga | 0 a 2s}. Then the ith bit of the discrete logarithm of h 2 S is equal to

1 if and only if k
i

= 2 in the factorisation h = ↵1k1 · · ·↵sks .

If a factorisation can be efficiently computed for every g 2 S, we say that ↵ is a

tame cover for S; otherwise ↵ is a wild cover for S.

Let ↵ be a cover for S of type (r1, . . . , rs), let k
i

be integers, 1 k
i

 r
i

, and let

q =
Q

s

i=1 ri. Consider the maps �
↵

and ✓
↵

defined by

�
↵

: Z

r1 ⇥ . . .⇥ Z

rs �! Z

q

(k1, . . . , ks) 7�! P
s

i=1(ki
Q

i�1
j=1 rj),

and
✓
↵

: Z

r1 ⇥ . . .⇥ Z

rs �! G

(k1, . . . , ks) 7�! ↵1k1 · · ·↵sks .

Note that �
↵

is a bijection, and both �
↵

and ��1
↵

are efficiently computable. Define

the map

↵̆ : Z

q

�! G

k 7�! ✓
↵

(��1
↵

(k)).

Given g 2 S, computing an s-tuple (k1, . . . , ks) such that g = ↵1k1 · · ·↵sks is equiv-

alent to computing an element of ✓�1
↵

(g). It follows that ↵ is tame if and only if an

element of ↵̆�1(g) can be efficiently computed for every g 2 S.

55

4.1 DEFINITIONS, CONSTRUCTIONS, EXAMPLES

Constructing Logarithmic Signatures

A natural way to construct a logarithmic signature for a finite group G is to choose a

subgroup chain 1 = G0 < G1 < · · · < G
s

= G and let A
i

be a complete set of (left or

right) coset representatives for G
i�1 in G

i

. Clearly ↵ = [A1, . . . , As

] is a logarithmic

signature for G. Call such a logarithmic signature a transversal logarithmic signature.

We can construct new logarithmic signatures for G by applying any sequence of

the following operations to ↵:

• Permute elements within a block.

• Replace a block A
i

by a translate g ·A
i

or A
i

· g for some g 2 G.

• Amalgamate blocks, i.e. replace two blocks A
i

and A
i+1 by the single block

A
i

·A
i+1 := {gh | g 2 A

i

, h 2 A
i+1}.

Let B
i

= t�1
i�1Ai

t
i

for some t
i

2 G, and let � = [B1, . . . , Bs

]. Then � is a logarithmic

signature for G. Note that by taking

(t0, t1, t2, . . . , ts) = (1,↵�1
11 , (↵11↵21)

�1, . . . , (↵11↵21 · · ·↵s1)
�1),

we have that the first element in each block of � is the identity (we use this fact to

simplify our cryptanalysis of MST3 in Subsection 4.4.4).

An Example

Let us consider a small example and construct some logarithmic signatures for G =

F

3
2, the elementary abelian 2-group of order 8. We may view the group operation

as XOR, and represent elements as binary vectors of length 3, so

G = {000, 001, 010, 011, 100, 101, 110, 111}.

Consider the subgroup chain

{000} < G1 < G2 < G,

where G1 = {000, 001} and G2 = {000, 001, 010, 011}. We construct a transversal

logarithmic signature ↵ for G as follows. First consider A1, a complete set of coset

56

4.2 LOGARITHMIC SIGNATURES IN CRYPTOGRAPHY

representatives for G0 in G1. Clearly A1 = G1 (and in general A1 will always be a

group for such a construction). We have some freedom in choosing A2 and A3, so

let us pick A2 = [010, 001], A3 = [011, 100]. Then ↵ = [A1, A2, A3] is a transversal

logarithmic signature for G of type (2, 2, 2). Suppose we replace A1 by the translate

A0
1 = A1 · (111) = [111, 110]. Then � = [A0

1, A2, A3] is a logarithmic signature for G

of type (2, 2, 2), but it is not transversal. Suppose we amalgamate blocks A2 and A3

of � to a single block A0
2 = [001, 110, 010, 101]. Then � = [A0

1, A
0
2] is a logarithmic

signature for G of type (2, 4).

4.2 Logarithmic Signatures in Cryptography

Logarithmic signatures were first used in cryptography by Magliveras [54] to con-

struct a symmetric cipher known as Permutation Group Mappings (PGM). The idea

of the cipher is simple. Let G be a permutation group of degree n and let ↵,� be

transversal logarithmic signatures for G of length polynomial in n. Such logarith-

mic signatures are tame [56], hence ↵̆�1 and �̆�1 are efficiently computable. En-

cryption of a message m 2 Z

q

is given by c = �̆�1↵̆(m) and decryption is given by

↵̆�1�̆(c) = m.

Although PGM satisfies some nice algebraic and statistical properties (such as

robustness, scalability and a large key space), fast implementation becomes an is-

sue, making it a rather inefficient cipher compared with more traditional block ci-

phers. An attempt was made to improve PGM by letting the platform group be a

2-group, but again speed remains an issue [17].

However, PGM has inspired much research into designing public key cryp-

tosystems based on logarithmic signatures. Notable proposals include MST1 and

MST2, invented by Magliveras, Stinson and van Trung [57].

The MST1 cryptosystem is theoretical in nature, and relies on efficient genera-

tion of wild logarithmic signatures ↵ for a permutation group G. The main problem

with MST1 is constructing wild logarithmic signatures that are typically hard to in-

vert. Magliveras et al. [57] had the idea of restricting ↵ to be totally non-transversal,

57

4.2 LOGARITHMIC SIGNATURES IN CRYPTOGRAPHY

that is no block of ↵ forms a coset of a non-trivial subgroup of G. However, Bohli

et al. [15] constructed instances of totally non-transversal logarithmic signatures

that are in fact tame. Further weaknesses were pointed out by González Vasco and

Steinwandt [38], and it remains unclear how to generate secure instances of MST1.

Key generation is also a problem for MST2 [57]. This cryptosystem employs

certain covers called meshes. A cover ↵ = [A1, . . . , As

] for S is an [s, r]-mesh if |A
i

| =
r, and, if there are a

g

different factorisations for g 2 S with respect to ↵, then the

probability distribution {a
g

/rs : g 2 S} is approximately uniform.

Let G and H be finite groups and let f : G ! H be a surjective homorphism. Let

↵ be an [s, r]-mesh for G and let � = f(↵) be an [s, r]-mesh for H . The public key

for MST2 is (G,H,↵,�) and the private key is the homomorphism f . Encryption

of a message m 2 H is given by selecting a random R 2 Z

r

s and computing y1 =

↵̆(R), y2 = �̆(R), y3 = my2. The ciphertext is c = (y1, y3). Decryption is given by

computing y2 = f(y1) followed by y3y
�1
2 = m.

MST2 is also theoretical in nature, and suffers from a lack of specification: the

groups G and H were not specified, and secure instances of this scheme are not

known. A critique of MST2 is given in [38].

Related public key proposals based on logarithmic signatures have met similar

fates. For example, schemes by Birget, Magliveras and Wei [10], and Qu and Van-

stone [75] have been cryptanalysed by González Vasco et al. [35] and Blackburn et

al. [14] respectively.

Recently, Lempken, Magliveras, van Trung and Wei [50] designed a new public

key cryptosystem called MST3. A practical instance of the cryptosystem was pro-

posed based on Suzuki 2-groups. Partial cryptanalytic results were discovered by

Magliveras et al. [58] and González Vasco et al. [36]. We will discuss their work

later in Subsection 4.4.3, but we state now that crucial to the security of the scheme

is how one generates logarithmic signatures for elementary abelian 2-groups. Thus

before discussing MST3, we review known constructions of logarithmic signatures

for elementary abelian 2-groups. This constitutes the next section.

58

4.3 ELEMENTARY ABELIAN 2-GROUPS

4.3 Elementary Abelian 2-Groups

Let Z be an elementary abelian 2-group of order 2m. We identify Z with F

m

2 and

view elements as binary vectors of length m, with XOR acting as group operation.

In this section we describe known methods of constucting logarithmic signatures

for Z . We aim to be consistent with notation: ↵ = [A1, . . . , As

] denotes a loga-

rithmic signature or cover for a general group G, and � = [B1, . . . , Bs

] denotes a

logarithmic signature for an elementary abelian 2-group.

Canonical Logarithmic Signatures

The following construction is by Magliveras, Svaba, van Trung and Zajac [58]. Ran-

domly partition X = {1, 2, . . . ,m} into disjoint sets C1, C2, . . . , Cs

. Define integers

d
i

by d
i

= |C
i

|, and let r
i

= 2di . Let B1, B2, . . . , Bs

be subgroups of Z where B
i

consists of the 2di vectors that are all zero except possibly the positions indexed

by integers in C
i

. Clearly � = [B1, B2, . . . , Bs

] is a logarithmic signature of type

(r1, r2, . . . , rs). Call such a construction a canonical logarithmic signature. Note these

logarithmic signatures form a very special class: all blocks B
i

are subgroups of Z .

Further note that canonical logarithmic signatures are attractive in terms of storage

on a computer, as one only need store a minimal generating set for each subgroup.

We have the following.

Lemma 4.1. Let � = [B1, . . . , Bs

] be a canonical logarithmic signatures. Then � is tame.

PROOF. Let z = b1k1b2k2 . . . bsks be any element in Z . We give an algorithm to find

k1, . . . , ks. First scan B1, . . . , Bs

to find the partition sets C1, . . . , Cs

. To determine k
i

set z
i

to be equal to z but with all bit positions X \ C
i

of z set to zero. Then z
i

2 B
i

and k
i

is given by the position of z
i

2 B
i

.

Amalgamated Transversal Logarithmic Signatures

A more general method of construction is as follows. Let

1 = Z0 < Z1 < · · · < Z
s

= Z

59

4.3 ELEMENTARY ABELIAN 2-GROUPS

be a subgroup chain of Z . Let B
i

be a complete set of coset representatives for Z
i�1

in Z
i

. Then � = [B1, . . . , Bs

] is a transversal logarithmic signature for Z .

We can now derive new logarithmic signatures from � by performing the fol-

lowing elementary operations:

1. Permute elements within a block.

2. Permute the blocks.

3. Replace B
i

by a translate B
i

· g for some g 2 G.

4. Amalgamate blocks, i.e. replace two blocks B
i

and B
j

by the single block B
i

·
B

j

:= {gh | g 2 B
i

, h 2 B
j

}.

Clearly applying any sequence of these operations results in a new logarithmic

signature for Z . Call such a construction an Amalgamated Transversal Logarithmic

Signature (ATLS). Note that one obtains a canonical logarithmic signature from an

ATLS by taking B
i

= Z
i

/Z
i�1.

In general, a periodic point of a logarithmic signature ↵ = [A1, . . . , As

] is an ele-

ment a
ij

2 A
i

such that A
i

a
ij

= A
i

. Clearly if the identity element lies in A
i

then it

is a periodic point. A logarithmic signature is nonperiodic if there are no nonidentity

periodic points; otherwise it is periodic. We note the following important properties

that hold for any ATLS.

Lemma 4.2. Let � = [B1, . . . , Bs

] be an ATLS. Then � is periodic.

PROOF. The subgroup Z1 has been amalgamated into one of the subsets B
i

. It is

not difficult to see that Z1 ✓ B
i

and B
i

Z1 = B
i

, and every (nonidentity) element of

Z1 is a periodic point.

Lemma 4.3. Let � = [B1, . . . , Bs

] be an ATLS. Then � is tame.

PROOF. We prove the lemma by induction on the order of Z . The lemma is trivial

when Z has order 1. Assume the lemma holds for all elementary abelian 2-groups

of order smaller than |Z|.

60

4.3 ELEMENTARY ABELIAN 2-GROUPS

Without loss of generality, we may assume that 1 2 B
i

for all i. Let ✏ be a

transversal logarithmic signature, and let ✏ = ✏0, ✏1, ✏2, . . . , ✏
`

= � be the sequence

of logarithmic signatures generated when constructing � (so each ✏
i

is obtained

from ✏
i�1 by applying an elementry operation).

There exists z = b
ij

2 Z such that B
i

b
ij

= B
i

, by Lemma 4.2. Such an element

may be found efficiently by checking at most
P

s

i

|B
i

| elements. Let N = {1, z} be

the subgroup generated by z. Define a logarithmic signature � for Z/N by set-

ting B
k

= B
k

N/N (where we remove the redundant elements from B
i

so that

B
i

has half the size of B
i

). Then � is an ATLS; this is shown by the sequence

✏ = ✏0, ✏1, ✏2, . . . , ✏
`

= � of logarithmic signatures of Z/N defined using the same

sequence of amalgamation and translation operations as in the construction of �.

Since � is an ATLS, it is tame by our inductive hypothesis and so we may effi-

ciently determine �̆
�1

(xN) for any x 2 Z . We may efficiently invert �̆ as there are

only two possibilities for �̆�1(x) once �̆
�1

(xN) is known. So � is tame, as required.

Nonperiodic Constructions

A tiling of Z = F

m

2 is a logarithmic signature of the form � = [B1, B2]. Nonperi-

odic tilings of Z were shown to exist for all m � 6 by Cohen, Litsyn, Vardy and

Zémor [24]. Furthermore, they demonstrate a unique (up to coordinate transfor-

mations) nonperiodic tiling of F6
2, and explicitly construct nonperiodic tilings for

all m � 7. For odd m their construction is as follows.

Let ⌫ = 2n � 1, n � 3, and let h1, . . . , h⌫ be a sorted list of nonzero elements of

F

n

2 . Let ⇡ = (1, 4, 2)(3, 6)(5, 7)(8, 9)(10, 11) · · · (⌫ � 1, ⌫) be the permutation on the

set {1, . . . , ⌫}. Consider A0, A1, B2 ⇢ F

2n+1
2 given by

A0 =

8
>>>><

>>>>:

0 h1 · · · h
⌫

0 0 · · · 0

0 0 · · · 0

9
>>>>=

>>>>;

, A1 =

8
>>>><

>>>>:

0 0 · · · 0

0 h1 · · · h
⌫

1 1 · · · 1

9
>>>>=

>>>>;

,

61

4.4 THE MST3 CRYPTOSYSTEM

B2 =

8
>>>><

>>>>:

0 h1 · · · h
⌫

0 h
⇡(1) · · · h

⇡(⌫)

0 0 · · · 0

9
>>>>=

>>>>;

,

where elements of A0, A1, B2 are represented as column vectors and 0 denotes the

zero vector of length n. Let B1 = A0 [A1. Then � = [B1, B2] is a nonperiodic tiling

of F2n+1
2 . To see that � is a tiling note that a vector z 2 F

2n+1
2 can be written uniquely

as z = b1b2 for some b1 2 B1, b2 2 B2 (if the last bit of z is zero then b1 2 A0, else

b1 2 A1). To see that B1 is nonperiodic, observe that any nonzero vector in A0

summed with any vector in A1 yields a vector not in B1. The nonperiodicity of B2

may be seen by inspection of ⇡. The case for even m is dealt with similarly. Clearly

such logarithmic signatures are tame.

4.4 The MST3 Cryptosystem

We now come to the main result of this chapter: a cryptanalysis of the MST3 pub-

lic key cryptosystem. In Subsections 4.4.1 to 4.4.3 we describe MST3 and make

some initial observations on its security. We also discuss the cryptanalytic results

of Magliveras et al. [58] and of González Vasco et al. [36]. In Subsection 4.4.4 we de-

scribe a simplification of the cryptosystem. Finally we present our attacks against

MST3 in Subsection 4.4.5.

4.4.1 Description

Let G be a finite non-abelian group with non-trivial centre Z , with the property that

G does not split over Z (so G cannot be written as a direct product G = Z ⇥H for

some subgroup H). The MST3 cryptosystem works as follows.

Key Generation:

• Generate a tame logarithmic signature � = [B1, . . . , Bs

] := (�
ij

) of type

(r1, . . . , rs) for Z .

62

4.4 THE MST3 CRYPTOSYSTEM

• Generate a random cover ↵ = [A1, . . . , As

] := (↵
ij

) of the same type as � for

a certain (large) subset J ✓ G.

• Select random elements t0, . . . , ts 2 G\Z and compute ↵ = [A1, . . . , As

] :=

(↵
ij

), where A
k

= t�1
k�1Ak

t
k

for k = 1, . . . , s.

• Compute � := (�
ij

) = (�
ij

↵
ij

).

The pair (↵, �) is the public key, while (�, (t0, . . . , ts)) is the corresponding private

key.

Encryption:

A message p 2 Z|Z| is encrypted as the pair (↵̆(p), �̆(p)) := (y1, y2) (recall that given

covers ↵, �, one can efficiently compute the mappings ↵̆ and �̆).

Decryption:

The plaintext p can be obtained from the ciphertext (y1, y2) as follows:

• Since y2 = �̆(p) = �1j1↵1j1 · �2j2↵2j2 · · ·�sjs↵sjs , and the elements �
ij

are in

the centre of G, we have

y2 = (�1j1�2j2 · · ·�sjs)t�1
0 (↵1j1↵2j2 · · ·↵sjs)ts

= �̆(p)t�1
0 ↵̆(p)t

s

= �̆(p)t�1
0 y1ts.

As a result one can compute �̆(p) = y2t
�1
s

y�1
1 t0.

• Now one can recover p = �̆�1(y2t
�1
s

y�1
1 t0), since � is tame.

We note that Lempken et al [50] require the random cover ↵ to have the prop-

erty that A
k

✓ G\Z for k = 1, . . . , s. We have dropped this requirement, since:

the property is not needed for the encryption and decryption algorithms to work

correctly; the property holds with high probability if the elements ↵
ij

are chosen

uniformly and independently at random; we wish to allow all covers ↵ as valid

private keys for the purposes of our cryptanalysis.

It seems reasonable to assume that the elements of ↵ and the elements t
i

are

chosen uniformly and independently at random. But the cryptosystem is not yet

63

4.4 THE MST3 CRYPTOSYSTEM

completely specified: a suitable platform group G needs to be defined, and we need

to specify how to generate the logarithmic signature �. We discuss these issues

next.

4.4.2 A Realisation of MST3

In [50], the authors propose a practical realisation for MST3 using Suzuki 2-groups.

(See Higman [42] for a description of these groups.) Let m � 3 be a natural number,

not a power of 2. Let ✓ be a non-trivial automorphism of odd order of the finite field

F

q

, where q = 2m. The Suzuki 2-group G of order q2 can be realised as the subgroup

of GL3(q) consisting of the matrices

S(a, b) =

0

BBBB@

1 0 0

a 1 0

b a✓ 1

1

CCCCA
.

Thus G = {S(a, b) : a, b 2 F

q

} with centre Z = {S(0, b) : b 2 F

q

}. Multiplication

and inversion in G are given by

S(a, b) · S(x, y) = S(a+ x, b+ y + a✓x),

S(a, b)�1 = S(a, a✓a+ b).

It follows that all elements in the centre have order 2, while elements not in the

centre have order 4.

Lempken et al [50] impose an extra condition on ↵ when Suzuki 2-groups are

used as a platform for MST3, namely that no two elements of a set A
i

should lie

in the same coset of Z . Since this condition holds for an overwhelming proportion

of keys for interesting parameters (and since the condition is not relevant to our

attacks) we ignore it for the sake of simplicity.

The issue of how to generate � is not discussed in depth in [50], but we will

suppose � is constructed as an ATLS. This is most general yet practical method

we know for generating tame logarithmic signatures for Z . Nonperiodic tilings

of type (r1, r2) are too costly in terms of storage. Moreover, it is not clear how a

64

4.4 THE MST3 CRYPTOSYSTEM

general strategy would work to decompose a nonperiodic tiling into a logarithmic

signature of type (r1, . . . , rs) for s > 2.

Again for storage reasons, the number of amalgamation operations in the ATLS

construction has to be kept small: an amalgamation increases the number of ele-

ments we have to store by |E
i

||E
j

| � (|E
i

|+ |E
j

|), and so an indiscriminate use of

amalgamation could lead to an exponential storage requirement. From the perspec-

tive of efficiency, generating an ATLS of type (2, 2, . . . , 2) is very attractive (though

this would mean that we are unable to use amalgamation to construct them).

4.4.3 Previous Work

In this subsection, we briefly review previous work addressing the security of

MST3, and make some elementary observations on the system’s security.

In [50], the authors of MST3 provide a brief discussion on the security of the

scheme, and give an attack on the cryptosystem in the passive adversary model

with complexity approximately q2 when Suzuki 2-groups are used, where q =

|Z| = |G/Z|. (Note that q is exponential in the security parameter, so attacks that

are polynomial in q in fact have exponential complexity.)

Magliveras et al [58] provide a better attack with complexity O(q). They only

claim that their attack applies when the Suzuki 2-groups are used as the platform,

but in fact their attack works for any platform group. We provide a similar generic

attack in Section 4.4.4 below, as the first step in our cryptanalysis. Magliveras et al

go on to show that MST3 is insecure whenever � is a canonical logarithmic signa-

ture. (In fact their attack does not work in the interesting special case when d
i

= 1

for all i, as they need that the sum of the vectors in a subspace is zero; our crypt-

analysis will cover this special case.) Note that it is easy to avoid the attack in [58]:

either choose d
i

= 1 for all i, or generate an ATLS as described in Subsection 4.3

(which is very unlikely to be canonical).

The authors of MST3 assume [50, Section 1] that a randomly chosen cover ↵ in

a finite group will (with overwhelming probability) induce a one-way function ↵̆.

This is a reasonable assumption, but the authors claim (in Section 4.4 of their paper)

65

4.4 THE MST3 CRYPTOSYSTEM

that this assumption is not actually needed to establish the security of MST3 (in a

passive model). Gonzalez Vasco, Perez del Pozo and Taborda Duarte [36] provide

strong evidence that this last claim is false, by showing that when ↵ does not induce

a one-way function, MST3 is insecure unless the quotient |Z|/|J | is large. They

then provide experimental evidence that |Z|/|J | is usually rather small. Gonzalez

Vasco et al also show that a randomised version of MST3 is insecure in the sense of

indistinguishability, even for passive adversaries.

The papers above still leave open the question of whether MST3 is secure in

practice if canonical transversal logarithmic signatures are avoided in the gener-

ation of the private key. The aim of the next section is to provide a practical

cryptanalysis of the MST3 cryptosystem when private keys are generated using

the ATLS method.

We close this section with two elementary remarks on the security of the scheme:

1. Note that although the private key consists of the tame logarithmic signature

� and the s + 1 randomly generated elements {t0, . . . , ts}, the s � 1 elements

t1, . . . , ts�1 are not actually needed: only � and t0, ts are used in the decryp-

tion procedure.

2. Note that any triplet of the form (�, g · t0, g · t
s

), where g is in the centralizer

of J (in particular, if g 2 Z), can be used to decrypt the ciphertext. Thus there

are many equivalent private keys.

4.4.4 A Simplification

The aim of this section is to simplify the problem of cryptanalysing MST3: we will

show that it is sufficient to consider a much smaller class of public and private keys

than in the original definition. This simplification works for all suitable platform

groups, not just the Suzuki 2-groups considered above.

Let (↵, �) be a public key for MST3, with (�, (t0, t1, . . . , ts)) the corresponding

private key. Recall that ↵ = [A1, A2, . . . , As

] and � = [B1, B2, . . . , Bs

], and define

subsets H
i

by � = [H1, H2, . . . , Hs

]. Note that the algorithm for deriving � from the

66

4.4 THE MST3 CRYPTOSYSTEM

private key implies that

�
ij

= �
ij

t�1
i�1↵ij

t
i

. (4.4.1)

Define elements p
i

, q
i

and z
i

by setting p0 = q0 = z0 = 1 and for i 2 {1, 2, . . . , s}
defining

p
i

=
iY

k=1

↵
k1, qi =

iY

k=1

�
k1 and z

i

=
iY

k=1

�
k1.

Note that (4.4.1) and the fact that the elements �
ij

are central together imply

that

q
i

=
iY

k=1

(�
k1t

�1
k�1↵k1tk) = z

i

t�1
0 p

i

t
i

. (4.4.2)

Define ↵0 = [A0
1, A

0
2, . . . , A

0
s

], �0 = [H 0
1, H

0
2, . . . , H

0
s

] and �0 = [B0
1, B

0
2, . . . , B

0
s

] by

A0
i

= p
i�1Ai

p�1
i

,

H 0
i

= q
i�1Hi

q�1
i

,

B0
i

= z
i�1Bi

z�1
i

.

The following lemma is easy to prove.

Lemma 4.4. We use the notation defined above. For all i 2 {1, 2, . . . , s}, the first elements

↵0
i1, �0

i1, �0
i1 of the sets A0

i

, H 0
i

, B0
i

are all equal to the identity. Moreover,

↵̆0(x) = ↵̆(x)p�1
s

, �̆0(x) = �̆(x)q�1
s

and �̆0(x) = �̆(x)z�1
s

.

In particular, �0 is a logarithmic signature for Z , and ↵0 is a cover for some subset J 0 of G.

Lemma 4.5. Let (↵, �) be a public key for MST3, with (�, (t0, t1, . . . , ts)) the correspond-

ing private key. Define ↵0, �0 and �0 as above, and let t00 = t01 = · · · = t0
s

= t0. Then

(↵0, �0) is a public key for MST3, with corresponding private key (�0, (t00, t
0
1, . . . , t

0
s

)).

PROOF. Suppose we use ↵0, �0 and t00, t
0
1, . . . , t

0
s

to generate a public key (↵0, �),

where � = [D1, D2, . . . , Ds

], so �
ij

= �0
ij

(t0
i�1)

�1↵0
ij

t0
i

. It suffices to show that � = �0.

67

4.4 THE MST3 CRYPTOSYSTEM

But

�
ij

= �0
ij

t�1
0 ↵0

ij

t0

= z
i�1�ijz

�1
i

t�1
0 ↵0

ij

t0

= z
i�1�ijz

�1
i

t�1
0 p

i�1↵ij

p�1
i

t0

= �
ij

z
i�1z

�1
i

t�1
0 p

i�1↵ij

p�1
i

t0

= �
ij

��1
i1 t�1

0 p
i�1↵ij

p�1
i

t0.

Equation (4.4.2) implies that t�1
0 p

i�1 = z�1
i�1qi�1t

�1
i�1 and p�1

i

t0 = t
i

q�1
i

z
i

. So

�
ij

= �
ij

��1
i1 z�1

i�1qi�1t
�1
i�1↵ij

t
i

q�1
i

z
i

= �
ij

q
i�1t

�1
i�1↵ij

t
i

q�1
i

by the definition of z
i

, and since z
i

is central. But

�0
ij

= q
i�1�ijq

�1
i

= q
i�1�ijt

�1
i�1↵ij

t
i

q�1
i

by (4.4.1). Since �
ij

is central, we have that �0
ij

= �
ij

, as required.

We define the Restricted OWE problem for MST3 as follows. The input is a

public key (↵, �) for MST3 and a challenge ciphertext (y1, y2). The public key must

have the extra property that ↵
i1 = �

i1 = 1 for 1 i s; the corresponding private

key must have the property that t0 = t1 = · · · = t
s

and also that �
i1 = 1 for

1 i s. The output is the plaintext p corresponding to the ciphertext (y1, y2).

Theorem 4.6. There is a polynomial time reduction from the OWE problem for MST3

(for general keys) to the Restricted OWE problem for MST3. (Indeed, only one call to the

Restricted OWE oracle is needed.)

PROOF. Let O(↵, �, y1, y2) be an oracle for the restricted OWE problem for MST3.

We show that this oracle can be used to solve the OWE problem for MST3 for gen-

eral keys.

Suppose (↵, �) is an (unrestricted) public key, with corresponding private key

(�, (t0, t1, . . . , ts)). Let (y1, y2) be a challenge ciphertext with corresponding mes-

sage p.

68

4.4 THE MST3 CRYPTOSYSTEM

Suppose we are given (↵, �) and (y1, y2). Define (↵0, �0) as above. Note that ↵0

and �0 can be efficiently constructed from ↵ and � using public information only.

By Lemmas 4.4 and 4.5, (↵0, �0) is a public key with corresponding private key

(�0, (t0, t0, . . . , t0)), and these keys satisfy our restrictions. Define y01 = y1p
�1
s

and

y02 = y2q
�1
s

. Again, we note that p
s

and q
s

are defined using public information, so

y01 and y02 can be efficiently computed from the information we are given.

We call the oracle O on (↵0, �0, y01, y
0
2), and receive a message p such that

(↵0(p), �0(p)) = (y01, y
0
2).

Then p is the message we require, since

↵̆(p) = ↵̆0(p)p
s

= y01ps = y1p
�1
s

p
s

= y1 and

�̆(p) = �̆0(p)q
s

= y02qs = y2q
�1
s

q
s

= y2.

4.4.5 A Cryptanalysis

This subsection is concerned with the cryptanalysis of MST3. We first provide an

(exponential) attack that is independent of the underlying platform group G. Next

we outline an approach that works for platform groups G such that G/Z is abelian.

Finally, we report on our experiments with implementing these attacks in the case

when G is a Suzuki 2-group.

A Generic Attack

From now on, we assume our public key (↵, �) and corresponding private key

(�, (t0, t1, . . . , ts)) are such that

↵
i1 = �

i1 = �
i1 = 1

for 1 i s and there exists t 2 G such that

t0 = t1 = · · · = t
s

= t.

Theorem 4.6 shows that we may do this without loss of generality.

69

4.4 THE MST3 CRYPTOSYSTEM

The secret logarithmic signature � can be obtained from the public key once t is

known, since

�
ij

= �
ij

t�1↵�1
ij

t. (4.4.3)

So we may think of the private key of the cipher as being the single group element t.

Define t 2 G/Z by t = tZ . Let z 2 Z . Replacing t by tz does not change

the value of the right hand side of (4.4.3), and does not change the output of the

decryption algorithm. So once t is known, the cryptosystem is broken as an equiv-

alent private key can be derived efficiently. A search over all |G/Z| possibilities

for t will therefore break the cipher. This cryptanalysis can be regarded as a gen-

eralisation of the ‘attack on t0’ presented by Magliveras et al [58, Subsection 4.1] in

the case of Suzuki 2-groups. Note that this attack will in general be exponential in

the security parameter, but is clearly much more efficient than a naive exhaustive

search over possible private keys.

A More Efficient Approach

We would like to break the cipher much more efficiently than the attack in the

previous subsection. We are most interested in the case when G is a Suzuki 2-group.

However, in this subsection we consider a more general situation that includes

these groups: the case when G/Z is abelian.

Let t0 2 G be a guess for the value of t. (Of course, it is only the coset t0Z that

matters.) Define

b
ij

= �
ij

(t0)
�1
↵�1
ij

t0

for all i and j. (Note that b
ij

can be computed without knowledge of the private

key.) Define a cover b = [B1,B2, . . . ,Bs

] for some subset J of G by

B
i

= [b
i1, bi2, . . . , biri].

Let q = |Z|, and define the map ! : Z
q

! G by

!(x) = �̆(x)t0�1↵̆(x)�1t0

70

4.4 THE MST3 CRYPTOSYSTEM

for all x 2 Z

q

. (Note that ! can also be computed without knowledge of the private

key.)

When t ⌘ t0 mod Z (so our guess for t0 is correct) we have that b = � and

! = �̆ = b̆. In particular, when we have guessed correctly:

1. b is a tame logarithmic signature for Z , and

2. ! = b̆.

Lemma 4.7. If the above two conditions are satisfied for a particular guess t0, then

(b, (t0, t0, . . . , t0)) is an equivalent private key for the cipher.

PROOF. Since b is a tame logarithmic signature for Z , the pair (b, (t0, t0, . . . , t0)) is

a valid private key. Let (y1, y2) be the ciphertext obtained as encryption of the

plaintext p under the public key corresponding to the private key (�, (t, t, . . . , t)).

So y1 = ↵̆(p) and y2 = �̆(p). Decryption using the key (b, (t0, t0, . . . , t0)) gives us

b̆�1(y2t
0�1y�1

1 t0) = !�1(y2t
0�1y�1

1 t0) = !�1(�̆(p)t0�1↵̆(p)�1t0) = !�1(!(p)) = p,

as required.

Lemma 4.8. Suppose that G/Z is abelian. For any choice of t0 we have that b is a cover of

a subset of Z .

PROOF. For any i and j we have that

b
ij

Z = �
ij

(t0)�1↵�1
ij

t0Z = �
ij

↵�1
ij

t0�1t0Z

= �
ij

↵�1
ij

t�1tZ = �
ij

t�1↵�1
ij

tZ = �
ij

Z = Z.

So the elements of the cover b all lie in Z , as required.

Lemma 4.9. Suppose that G/Z is abelian. For any choice of t0 we have that ! = b̆.

PROOF. By an abuse of notation we will identify the sets Z
q

and Z

r1 ⇥ . . .⇥Z

rs via

the map �
↵

defined in Subsection 4.1. So we think of the domain of the functions b̆

and ! as being Z

r1 ⇥ . . .⇥ Z

rs rather than Z

q

.

71

4.4 THE MST3 CRYPTOSYSTEM

We first note that

b
i1 = �

i1(t
0)
�1
↵�1
i1 t0 = (t0)

�1
t0 = 1

for all i. In particular,

b̆(x1, x2, . . . , x
k

, 1, 1, . . . , 1) =

sY

i=1

b
ixi =

kY

i=1

b
ixi .

Moreover, writing x = (x1, x2, . . . , x
k

, 1, 1, . . . , 1), we find that

↵̆(x) =
kY

i=1

↵
ixi and �̆(x) =

kY

i=1

�
ixi ,

since ↵
i1 = �

i1 = 1.

We will prove the lemma by induction. Let P (k) be the following statement:

!(x1, x2, . . . , xs) = b̆(x1, x2, . . . , xs) whenever x
k+1 = x

k+2 = · · · = x
s

= 1.

The first paragraph of the proof shows that b̆(1, 1, . . . , 1) = 1. Moreover, since

�̆(1, 1, . . . , 1) = ↵̆(1, 1, . . . , 1) we find that !(1, 1, . . . , 1) = 1. Hence P (0) holds.

Assume, as an inductive hypothesis that P (k � 1) holds. Our assumption that

G/Z is abelian implies that b
ij

2 Z for all i and j. Let x1, x2, . . . , x
k

be fixed. Define

x and x0 by

x = (x1, x2, . . . , x
k

, 1, . . . , 1) and x0 = (x1, x2, . . . , x
k�1, 1, . . . , 1).

Then

b̆(x) =
kY

i=1

b
ixi = b̆(x0)b

kxk
= !(x0)b

kxk
(by our inductive hypothesis)

= �̆(x0)t0�1↵̆(x0)�1t0b
kxk

= �̆(x0)b
kxk

t0�1↵̆(x0)�1t0 (since b
kxk

2 Z)

=

k�1Y

i=1

�
ixi

!
�
kxk

t0�1↵�1
kxk

t0t0�1

k�1Y

i=1

↵
ixi

!�1

t0

= �̆(x)t0�1↵̆(x)t0

= !(x).

So P (k) is true whenever P (k � 1) is true. By induction, P (s) holds and so the

lemma follows.

72

4.4 THE MST3 CRYPTOSYSTEM

Theorem 4.10. Let G be such that G/Z is abelian. Then (b, (t0, t0, . . . , t0)) is an equiv-

alent private key for MST3 if and only if b̆ : Z|Z| ! Z is a bijection whose inverse is

efficiently computable.

PROOF. It is clear that a private key (b, (t0, t0, . . . , t0)) for MST3 must have the prop-

erty that b̆ : Z|Z| ! Z is a bijection whose inverse is efficiently computable.

To prove the converse, first note that b is a cover for a subset of Z , by Lemma 4.8.

We are assuming that b̆ is a bijection whose inverse is efficiently computable, so in

fact b is a tame logarithmic signature for Z . By Lemma 4.9, we have ! = b̆. Hence,

by Lemma 4.7, we find that (b, (t0, t0, . . . , t0)) is an equivalent private key for the

cipher, as required.

So a general approach to finding a private key for MST3 may be described as

follows. We use the fact that b̆ must be a bijection to derive some conditions on

t0. If applying these conditions leads to a small number of possibilities for t0, we

perform an exhaustive search to find a private key that works. If there are still

many possibilities for t0, we choose one at random and hope that b̆�1 is efficiently

computable: the probability that this will be successful will depend on the way

that the logarithmic signature � has been generated. In the next subsection we will

analyse the performance of this attack for Suzuki 2-groups.

Recovering the Key in Practice

We now describe our computer experiments to verify that the method outlined

above works well in practice. All computer experiments were performed using the

mathematics software SAGE [77].

Let m = 81. Our platform group is the Suzuki 2-group over the field F

q

, where

q = 2m. The generic attack described in Subsection 4.4.5 requires a search of size

q to succeed: we fix m = 81 so that this generic attack is not feasible. Note that

the public key is already rather long when m = 81: in the most efficient case we

consider (Case 1 below), we need over 19 000 bits to store the non-identity elements

73

4.4 THE MST3 CRYPTOSYSTEM

in the logarithmic signatures ↵ and �. Our techniques do not seem to depend sig-

nificantly on the automorphism ✓ in the definition of the Suzuki 2-group, so we fix

✓ to be the squaring automorphism in all our experiments.

We construct our logarithmic signature � using the ATLS method discussed in

Subsection 4.3. We wish to generate logarithmic signatures of type (r1, r2, . . . , rs),

where
Q

s

i=1 ri = 2m. Note that the integers r
i

must be fairly small, as otherwise

the logarithmic signatures we produce cannot be stored efficiently. The precise

method we use to generate � depends on its type: we give explicit details below.

By Theorem 4.6, it is enough to consider logarithmic signatures that have an extra

property: the elements �
i1 are all equal to the identity. Our methods for generating

� always produce logarithmic signatures with this property (and no generality is

lost by generating logarithmic signatures in this way).

We follow the approach in Subsection 4.4.5 in our cryptanalysis. In the notation

of that subsection, we begin by deriving conditions that t must satisfy as a conse-

quence of the fact that � is bijective. We then choose t0 at random subject to these

conditions; our attack is successful if we obtain a valid private key after trying a

small number of guesses t0. In our experiments, our attack was always successful.

Recall the notation S(a, b) for an element in the Suzuki 2-group defined in Sub-

section 4.4.2. Our remark at the end of Subsection 4.4.3 shows that we may assume

that t = S(x, 0) where x 2 F

q

is unknown, and so we restrict our guess t0 to be of

the form S(y, 0) for some y 2 F

q

. The conditions on t that we derive are F2-linear

conditions, so it is easy to choose t0 satisfying these conditions at random. The pre-

cise conditions on t we derive will depend on the number of components r
i

of the

type of � that are equal to 2: when there are many of such components, the con-

ditions we derive are weaker. For this reason, we provide three cases to illustrate

our methods. In Case 1, r
i

= 2 for all i. In this case we find no conditions on t,

but simply randomly choosing a small number of values for t0 leads to a successful

attack. In Case 2, r
i

6= 2 for all i. In this case, we find that every condition we derive

restricts t0 to such a small number of possibilities that a negligible exhaustive search

can be carried out. Case 3, with approximately half of the components of the type

74

4.4 THE MST3 CRYPTOSYSTEM

of � being equal to 2, illustrates an intermediate case. Here, each condition limits

the number of possibilities for t0 significantly (to approximately 240 possibilities).

Very few guesses t0 can satisfy two of these conditions simultaneously, so combin-

ing two conditions allows us to derive an equivalent private key by a negligible

exhaustive search.

Case 1: � has type (2, 2, . . . , 2)

In this case, we assume � consists of 81 blocks of size 2. Such logarithmic signatures

are very attractive from the perspective of efficiency: we only need to store the

81 non-trivial elements in the sets B
i

; moreover these elements form a basis of Z
when Z is considered as a 81-dimensional vector space over F2, and computations

with � can be carried out using straightforward linear algebra. (We note that � is

an example of canonical logarithmic signature as defined in [58]; however the attack

described in that paper does not work in this particular case.)

We derive public and private keys for the MST3 cryptosystem as follows. We

randomly choose a generating set {z1, . . . , z81} for Z . Define elements d
i2 2 F

q

by

z
i

= S(0, d
i2), so the elements d

i2 form an F2-basis for F
q

. Set

� = [B1, . . . , B81], where B
i

= {1, S(0, d
i2)}.

We then generate elements e
i2, fi2 2 F

q

at random, and define

↵ = [A1, . . . , A81], where A
i

= {1, S(e
i2, fi2)}.

Let t = S(x, 0) where x 2 F

q

is chosen at random. We construct � as specified in

the definition of MST3. So we define

�
i2 = �

i2t
�1↵

i2t

= S(0, d
i2)S(x, x

✓x)S(e
i2, fi2)S(x, 0)

= S(e
i2, di2 + f

i2 + e
i2x

✓ + e✓
i2x) =: S(e

i2, gi2),

and set � = [C1, . . . , C81], where C
i

= {1, �
i2}.

75

4.4 THE MST3 CRYPTOSYSTEM

no. guesses t0 1 2 3 4 5 6 7 8 9
frequency 2829 2111 1429 1048 799 490 374 279 181

no. guesses t0 10 11 12 13 14 15 16 17 18
frequency 133 98 66 47 31 26 19 11 5

no. guesses t0 19 20 21 22 23 24 25 26 27
frequency 3 7 7 4 2 1 0 0 0

Table 4.1: Experimental Results for Case 1

Our attack works as follows. Let t0 = S(y, 0) be a random guess for t. We form

b = [B1, . . . ,B81], where B
i

= {1, b
i2} and b

i2 is given by

b
i2 = �

i2t
0�1
↵�1
i2 t0

= S(e
i2, gi2)S(y, y

✓y)S(e
i2, ei2

✓e
i2 + f

i2)S(y, 0)

= S(0, g
i2 + f

i2 + e
i2y

✓ + e
i2
✓y).

If the set {b
i2}81

i=1 is linearly independent, then b̆ is a bijection and it follows from

Theorem 4.10 that we have an equivalent private key. If the set is linearly depen-

dent, we repeat this process with another guess t0.

We have implemented this attack for 10 000 random instances of MST3. The

results of this experiment, which took a few minutes to carry out on a standard

PC, are given in Table 4.1. The average number of guesses for t0 before finding an

equivalent private key, was approximately 3.47. Thus the scheme is insecure in this

case.

Case 2: � has type (8, 64, 64, . . . , 64)

We now consider the case when our logarithmic signatures consist of one block of

size 8 and thirteen blocks of size 64.

We construct � as follows. We generate a random basis {z1, . . . , z81} for Z . We

consider the subgroup chain

1 = Z0 < Z1 < · · · < Z27 = Z,

where Z
i

= hz1, . . . , z3ii for 1 i 27. We form a transversal logarithmic signature

of type (8, 8, . . . , 8) (with 27 blocks in total), whose ith block is a transversal for Z
i�1

76

4.4 THE MST3 CRYPTOSYSTEM

in Z
i

containing the identity as its first element. We then randomly amalgamate 26

blocks of size 8 in pairs to form 13 blocks of size 64. Reordering the blocks we have

constructed an ATLS � = [B1, B2, . . . , B14] of type (8, 64, 64, . . . , 64) for Z . Define

elements d
ij

2 F

q

by �
ij

= S(0, d
ij

).

We generate the element t = S(x, 0), the elements ↵
ij

= S(e
ij

, f
ij

), the elements

�
ij

= S(e
ij

, g
ij

), and the covers ↵ and � as in Case 1. In particular, the equation

g
ij

= d
ij

+ f
ij

+ e✓
ij

x+ e
ij

x✓

holds.

Our attack recovers a private key directly by a small exhaustive search, rather

than guessing an equivalent private key. Lemma 4.2 implies that there exists i and

j such that j � 2 and B
i

· b
ij

= B
i

. There is only a small number of possibilities for

i and j so (using a negligible exhaustive search) we may assume that a valid choice

for i and j are known. We know that

d
ij

= g
ij

+ f
ij

+ e✓
ij

x+ e
ij

x✓. (4.4.4)

Moreover, when B
i

· b
ij

= B
i

, the equation

d
ij

+ d
ik

= d
il

(4.4.5)

holds for at least |B
i

|�2 pairs of indices k, l where 2 k, l |B
i

| and where j, k and

l are distinct. Writing u
ijkl

for u
ij

+ u
ik

+ u
il

, equations (4.4.4) and (4.4.5) combine

to give

g
ijkl

+ f
ijkl

= e
ijkl

✓x+ e
ijkl

x✓. (4.4.6)

Note that the elements e
ijkl

, f
ijkl

and g
ijkl

are all known (forming part of the public

key (↵, �)), but x is unknown. For a fixed e 2 F

q

, the map

�
e

: F
q

! F

q

given by x 7! e✓x+ ex✓

is an F2-linear map. Moreover, when e 6= 0, we have that �
e

has a kernel of size

2. Assuming (as is very likely) that e
ijkl

is non-zero, we find that each equation

of the form (4.4.6) is satisfied by at most two possibilities for x (and these choices

77

4.4 THE MST3 CRYPTOSYSTEM

are easily computed using elementary linear algebra). There are fewer than 218

choices for i, j, k and l. Once these choices are fixed, there are at most 2 values for

x that satisfy equation (4.4.6). So we can recover x by an exhaustive search though

220 possibilities. (For each possibility for x, we can construct b and check to see

whether b̆ is a bijection: this check can be carried out efficiently for an ATLS.)

Note that this attack makes use of the fact that |B
i

| > 2 in an essential way: if

|B
i

| = 2 then there are no valid choices for j and k. Note also that when we have

a correct value for i and j the same element x will occur at least |B
i

|� 2 times as a

solution to (4.4.6) as j and k vary over all possible values: this observation can be

used to recover x more efficiently. Finally, we note that when i is guessed correctly

the set B
i

has the property that the product of its elements must be the identity (as

the same is true for any coset of a subgroup of Z of order 4 or more); this property

can be used to find x without the need to guess j, k or l.

We implemented the attack using SAGE on a standard PC, and in each run the

randomly chosen secret value x was returned correctly within 30 minutes. Thus

the MST3 cryptosystem is also insecure in this case.

Case 3: � has type (2, 2, . . . 2, 16, 16, . . . , 16)

Finally, we consider the case when � consists of 41 sets of size 2 and 10 sets of size

16. In this situation, the analogue of equation (4.4.6) does not restrict the number

of possibilities for x sufficiently, and so we combine two equations to recover x.

We construct � by starting with the subgroup chain

1 = Z0 < Z1 < · · · < Z61 = Z,

where each Z
i

has index 2 in Z
i+1 for 0 i 40 and index 4 for 41 i 60.

We form a random transversal logarithmic signature for this chain (including the

identity as the first element in each transversal): this logarithmic signature will

consist of 41 sets of size 2 and 20 sets of size 4. We then amalgamate the 20 sets of

size 4 in pairs to form 10 sets of size 16, where the pairing of these sets is chosen

78

4.4 THE MST3 CRYPTOSYSTEM

No. possibilities for x 0 1 2 4 8 16
Freq. (correct indices) 0 579 386 33 2 0

Freq. (incorrect indices) 276 543 170 10 1 0

Table 4.2: Experimental Results for Case 3

at random. The result is an ATLS � = [B1, B2, . . . , B41, B42, . . . , B51] of the type we

are seeking. We then choose t and ↵, and construct �, just as before.

Our attack in this case is as follows. Define the subgroup H = hB1, . . . , B41i.
Write �

ij

= S(0, d
ij

), and define V = hd
i2 : 1 i 41i. Note that V has dimension

41 and H = {S(0, v) : v 2 V }. Clearly the image of [B42, . . . , B51] in Z/H is an

ATLS for Z/H with no blocks of size 2. So we may proceed in the same way as

in Case 2, this time working in the quotient Z/H to derive equations that x must

satisfy modulo V . Using the notation from Case 2, we obtain equations of the form

g
ijkl

+ f
ijkl

+ V = �
eijkl(x), (4.4.7)

where �
eijkl is an F2-linear map. On the assumption that e

ijkl

is non-zero, an equa-

tion of this form restricts x to lie in an affine subspace of dimension at most 42, and

so we have reduced the size of an exhaustive search for x to 242 possibilities. But a

correct guess for i means that x satisfies at least |B
i

|� 2 � 2 such equations as j, k

and l vary. If we correctly guess two such combinations of j, k and l, we know that

x lies in the intersection of two affine subspaces of dimension at most 42 (namely

the solution sets corresponding to the two equations), and this reduces the number

of possibilities for x to a negligible number. The validity of each possibility for x

can be determined by checking the bijectivity of b̆ as in Case 2.

Implementing these ideas, we generated 1000 random ATLSs for Z/H . For each

ATLS we picked a random pair of equations (4.4.7) where the indices i, j, k and l

have been guessed correctly, and computed the size of the intersection of the two

solution sets. We did the same when the indices have been guessed incorrectly, to

check that the number of possibilities for x is not too large in this case. We record

the results in Table 4.2.

79

4.5 A REVISED VERSION OF MST3

As Table 4.2 indicates, in either case the number of possibilities for x is small.

There are less than 220 pairs of equations to check, and so we typically expect

(guided by Table 4.2) an exhaustive search for x to be of size 224 at most. (Fur-

thermore, within this search we expect x to occur with a relatively high frequency,

since it appears for every correct pair of equations (4.4.7).) Thus we conclude that

the MST3 cryptosystem is also insecure in this case.

We conclude that until a method for generating secure tame logarithmic signa-

tures is invented, the MST3 cryptosystem is insecure.

4.5 A Revised Version of MST3

After the publication of [12], Svaba and van Trung [89] presented a revised ver-

sion of MST3. The platform group (Suzuki 2-groups) and method of generating

tame logarithmic signatures for Z (ATLS) remain the same, but the encryption and

decryption processes are changed slightly, and there is extra key material. Svaba

and van Trung discuss lower bounds on the workload of known direct atttacks on

the private key, all of which run in exponential time. Methods are described for

efficiently inverting �̆ for an ATLS � for Z , which amount to keeping track of the

elementary operations applied to a canonical logarithmic signature, and reversing

the process.

A chosen plaintext attack (‘Matrix Permutation attack’) is then presented which,

although runs in exponential time, for practical parameter sizes rules out the use of

logarithmic signatures for Z which apply only the elementary operations (1)–(3),

i.e. with no amalgamation. Evidence is then provided that this line of attack is

rather inefficient for general ATLS constructions involving amalgamation. Finally

implementation issues are discussed.

It is natural to ask whether the cryptanalysis described in Section 4.4 of the

original MST3 cryptosystem can be applied to the revised version of MST3, which

we call MSTr

3. In this subsection we describe MSTr

3 and give some preliminary

comments as to what extent the foregoing cryptanalysis of MST3 applies to MSTr

3.

80

4.5 A REVISED VERSION OF MST3

The revised version MSTr

3 works as follows. We indicate with an asterisk the steps

that differ from the MST3 key generation process.

Key Generation:

• Generate a tame logarithmic signature � = [B1, . . . , Bs

] := (�
ij

) of type

(r1, . . . , rs) for Z .

* Generate a homomorphism f : G ! Z .

• Generate a random cover ↵ = [A1, . . . , As

] := (↵
ij

) of the same type as � for

a certain (large) subset J ✓ G.

* Select random elements t0, . . . , ts 2 G\Z and compute ↵ = [A1, . . . , As

] :=

(↵
ij

), where A
k

= t�1
k�1Ak

f(A
k

)t
k

for k = 1, . . . , s.

• Compute � := (�
ij

) = (�
ij

↵
ij

).

The pair (↵, �) is the public key, while (�, (t0, . . . , ts), f) is the corresponding pri-

vate key.

Encryption:

A message p 2 Z|Z| is encrypted as the pair (↵̆(p), �̆(p)) := (y1, y2) (recall that given

covers ↵, �, one can efficiently compute the mappings ↵̆ and �̆).

Decryption:

The plaintext p can be obtained from the ciphertext (y1, y2) as follows:

• Since y2 = �̆(p) = �1j1↵1j1 · �2j2↵2j2 · · ·�sjs↵sjs , and the elements �
ij

are in

the centre of G, we have

y2 = (�1j1�2j2 · · ·�sjs)t�1
0 (↵1j1↵2j2 · · ·↵sjs)f(↵1j1↵2j2 · · ·↵sjs)ts

= �̆(p)t�1
0 ↵̆(p)f(↵̆(p))t

s

= �̆(p)t�1
0 y1f(↵̆(p))ts.

As a result one can compute �̆(p) = y2t
�1
s

f(↵̆(p))�1y�1
1 t0.

• Now one can recover p since � is tame.

81

4.5 A REVISED VERSION OF MST3

The homomorphism f is specified as f(S(a, b)) = S(0, a�), for some (presum-

ably random) � 2 Aut(Z) = GL
m

(2). Note that if f is the trivial homomorphism

then we have a description of the original MST3 cryptosystem.

Following Subsection 4.4.4 it is straightforward to show a reduction for the

OWE problem for MSTr

3 for general keys to the OWE problem for MSTr

3 with key

pairs (↵, �), (�, t
i

, f) satisfying ↵
i1 = �

i1 = �
i1 and t

i

= t0 = t, for 1 i s.

In this restricted setting f induces a cover C 0 = (c0
ij

) = [C 0
1, . . . , C

0
s

] of type

(r1, . . . , rs) for some subset of Z , with c0
i1 = 1 for 1 i s.

Note the workload of the generic attack of Subsection 4.4.5 has increased, as one

has to guess more key material, namely both t and f . However, just as before we

can guess values t0, f 0 for t, f , define

b
ij

= �
ij

(t0)
�1
↵�1
ij

f 0(↵
ij

)�1t0,

and arrive at the following.

Theorem 4.11. Let G be such that G/Z is abelian. Then (b, (t0, t0, . . . , t0), f 0) is an equiv-

alent private key for MSTr

3 if and only if b̆ : Z|Z| ! Z is a bijection whose inverse is

efficiently computable.

This immediately indicates the insecurity of using logarithmic signatures of type

[2, . . . , 2], as picking random values for t0, f 0 will quickly yield a bijection. Fur-

thermore, suppose ↵
ij

= S(e
ij

, f
ij

), where e
ij

lie in a subspace Z1 of Z . It seems

relevant that to avoid some attacks (see Subsections 6.1 and 6.2 of [89]) one requires

|Z|/|Z1| to be ‘large’. Thus one can immediately reduce the search for f by consid-

ering only homomorphisms f 0 : G ! he
ij

i. However, the size of Z1 is unspecified

in [89]. From this preliminary analysis, it is not clear what exact security guaran-

tees MSTr

3 provides. Moreover the revised scheme is somewhat less natural than

the original MST3 cryptosystem.

82

Chapter 5

Closing Remarks

Despite over ten years of strong interest in group-based cryptography, a well stud-

ied candidate for a secure, fully-specified and efficient cryptosystem is yet to emerge.

Can such a platform group be found? We need a candidate group whose elements

can be manipulated and stored efficiently, and an associated problem that is hard

in the overwhelming majority of instances. There has been a great deal of atten-

tion on infinite groups given by a finite presentation (such as braid groups), but

it seems that ‘random’ or ‘generic’ instances of these protocols lead to particularly

simplified atttacks. The case for finite groups is also delicate. Groups with small

linear representations are often problematic, as linear algebra can be used as a line

of attack; groups with many normal subgroups (such as p-groups) are vulnerable

to attacks based on reducing a problem to smaller quotients; groups with permu-

tation representations of low degree are vulnerable to attacks based on the well

developed theory of computational permutation group theory. So great care must

be taken in the choice of group, and the choice of supposedly hard problem.

More generally, we can move beyond the Ko et al. and Anshel at al. schemes,

and ask: is there a secure and efficient key establishment protocol based on group

theoretic ideas? There are regular proposals, but the field is still waiting for a pro-

posal that stands up to long-term scrutiny.

Reflecting on the schemes of Chapter 2, it seems unwise to employ matrix

groups in such key establishment protocols. However, it remains open to explore

other classes of groups for these and similar protocols, for example surface braid

groups as suggested by Baumslag et al. for the BCFRX Scheme.

Concerning the Tillich–Zémor hash function, there are several interesting ques-

83

tions. Can one find secure generators for the scheme in characteristic 2? Can one

find an efficient attack in odd characteristic? Can one find a more suitable plat-

form group? FInally we mention some interesting problems that have arisen from

analysing cryptosystems based on logarithmic signatures.

Let G be a finite group of order
Q

t

j=1 p
aj

j

, with p
j

distinct primes. Let ↵ =

[A1, . . . , As

] be a logarithmic signature for G of type (r1, . . . , rs). The length l(↵) =
P

s

i=1 ri of ↵ is an efficiency measure: it is the number of elements that must be

stored in order to specify a typical logarithmic signature. Naturally one is inter-

ested in minimising l(↵) to reduce the key size of cryptosystems involving loga-

rithmic signatures. Since |G| = Q
s

i=1 ri, we must have that l(↵) � P
t

j=1 ajpj (this

was first observed in [38]). A logarithmic signature for G achieving this bound is

called a minimal logarithmic signature (MLS).

A natural question to ask is: does every finite group admit a minimal logarith-

mic signature? If G has a normal subgroup N with G/N ⇠= H and H and N both

have minimal logarithmic signatures then G has a minimal logarithmic signature.

Moreover, by considering composition series, it is clear that soluble groups admit

MLSs. Hence to answer the question in the affirmative it suffices to consider non-

abelian simple groups.

Magliveras [55] used an inductive argument to show the alternating groups

have MLSs. González Vasco et al. [37] derived the existence of MLSs for all groups

of order less than 175,560, and Holmes [47] proved the sporadic groups J1, J2, HS,

McL, Co3 and He admit MLSs. Lempken and van Trung [51] used a double coset

decomposition method to demonstrate the existence of MLSs for all but 8 simple

groups of order at most 1010. Furthermore, they show that their construction cannot

be applied to the 8 exceptions found. Several families of classical groups have been

shown to admit MLSs by Singhi et al. and Singhi and Singhi [81, 82], notably the

finite projective special linear groups and finite projective symplectic groups. The

question of whether or not all finite (simple) groups admit a minimal logarithmic

signature remains open.

All of the logarithmic signature constructions of an elementary abelian 2-group

84

described in Chapter 4 are tame. Is this true for all constructions? Are there any

qualitatively different methods of constructing logarithmic signatures of an ele-

mentary abelian 2-group? One can ask the same questions for elementary abelian

p-groups, and abelian groups in general. Finally, what nonabelian groups admit

periodic/nonperiodic tilings?

85

Appendix A

Computer Code

We provide illustrative implementation details of our attack on the BCFRX scheme

from Chapter 2. Computations were performed in Magma [59] on an Intel Core 2

Duo 1.66GHz laptop (and hence timings are somewhat slower than those quoted

in Chapter 2).

A.1 BCFRX Scheme

Here is the code for our attack on the BCFRX scheme. Recall we are looking to

compute the matrix N from Chapter 2, Section 2.1.

BCFRX := function(p)

G := SL(2,p);

Key := Random(SL(4,p));

M := Random(SL(4,p));

P<x1,x2,x3,x4,x5,x6,x7,x8,y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,

y14,y15,y16> := PolynomialRing(GF(p),24);

N := Matrix(P,4,4,[1,0,x1,x2,0,1,x3,x4,x5,x6,1,0,x7,x8,0,1]);

Ninv := Matrix(P,4,4,[y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,

y15,y16]);

// Let us store the sixteen equations N

*

Ninv=I_4 in a list S:

T1 := N

*

Ninv - ScalarMatrix(4,1);

S := [];

for i in [1..4] do

for j in [1..4] do

Append(˜S,T1[i,j]);

end for;

86

A.1 BCFRX SCHEME

end for;

// For l runs of the protocol, store the 8l equations˜(2.1.6) in S. For

a single run of the protocol we have:

l := 1;

for k in [1..l] do

a1 := Mˆ-1

*

DiagonalJoin(Matrix(Random(G)),Identity(G))

*

M;

a2 := Mˆ-1

*

DiagonalJoin(Matrix(Random(G)),Identity(G))

*

M;

b1 := Mˆ-1

*

DiagonalJoin(Identity(G),Matrix(Random(G)))

*

M;

b2 := Mˆ-1

*

DiagonalJoin(Identity(G),Matrix(Random(G)))

*

M;

C := b1

*

Key

*

b2;

D := a1

*

C

*

a2;

E := a1

*

Key

*

a2;

T2 := N

*

D

*

Ninv - N

*

C

*

Ninv;

T3 := N

*

D

*

Ninv - N

*

E

*

Ninv;

for i in [1..2] do

for j in [1..2] do

Append(˜S,T2[i,j]);

Append(˜S,T3[i+2,j+2]);

end for;

end for;

end for;

// Now compute the ideal I generated by S, followed by the (lex ordered

) Groebner basis of I:

I := ideal<P|S>;

GB := GroebnerBasis(I);

return GB;

end function;

Let’s take a look at the Groebner basis for a small prime, say p = 97:

BCFRX(97);

[

x1 + 42

*

y16ˆ5 + 49

*

y16ˆ4 + 21

*

y16ˆ3 + 55

*

y16ˆ2 + 63

*

y16 + 18,

87

A.1 BCFRX SCHEME

x2 + 71

*

y16ˆ5 + 89

*

y16ˆ4 + 87

*

y16ˆ3 + 9

*

y16ˆ2 + 15

*

y16 + 52,

x3 + 24

*

y16ˆ5 + 61

*

y16ˆ4 + 75

*

y16ˆ3 + 81

*

y16ˆ2 + 28

*

y16 + 93,

x4 + 13

*

y16ˆ5 + 70

*

y16ˆ4 + 29

*

y16ˆ3 + 85

*

y16ˆ2 + 76

*

y16 + 50,

x5 + 26

*

y16ˆ5 + 50

*

y16ˆ4 + 40

*

y16ˆ3 + 32

*

y16ˆ2 + 69

*

y16 + 86,

x6 + 93

*

y16ˆ5 + 66

*

y16ˆ4 + 37

*

y16ˆ3 + 84

*

y16ˆ2 + 27

*

y16 + 92,

x7 + 76

*

y16ˆ5 + 65

*

y16ˆ4 + 85

*

y16ˆ3 + y16ˆ2 + 62

*

y16 + 3,

x8 + 78

*

y16ˆ5 + 12

*

y16ˆ4 + 79

*

y16ˆ3 + 31

*

y16ˆ2 + 92

*

y16 + 30,

y1 + 23

*

y16ˆ5 + 65

*

y16ˆ4 + 29

*

y16ˆ3 + 39

*

y16ˆ2 + 8

*

y16 + 72,

y2 + 58

*

y16ˆ5 + 39

*

y16ˆ4 + 28

*

y16ˆ3 + 38

*

y16ˆ2 + 46

*

y16 + 7,

y3 + 70

*

y16ˆ5 + y16ˆ4 + 25

*

y16ˆ3 + 64

*

y16ˆ2 + 64

*

y16 + 69,

y4 + 91

*

y16ˆ5 + 2

*

y16ˆ4 + 49

*

y16ˆ3 + 56

*

y16ˆ2 + 35

*

y16 + 80,

y5 + 60

*

y16ˆ5 + 80

*

y16ˆ4 + 67

*

y16ˆ3 + 93

*

y16ˆ2 + 44

*

y16 + 33,

y6 + 92

*

y16ˆ5 + 84

*

y16ˆ4 + 89

*

y16ˆ3 + 25

*

y16ˆ2 + 95

*

y16 + 17,

y7 + 39

*

y16ˆ5 + 49

*

y16ˆ4 + 37

*

y16ˆ3 + 10

*

y16ˆ2 + 3

*

y16 + 80,

y8 + 44

*

y16ˆ5 + 79

*

y16ˆ4 + 68

*

y16ˆ3 + 11

*

y16ˆ2 + 34

*

y16 + 16,

y9 + 79

*

y16ˆ5 + 75

*

y16ˆ4 + 95

*

y16ˆ3 + 52

*

y16ˆ2 + 93

*

y16 + 85,

y10 + 80

*

y16ˆ5 + 36

*

y16ˆ4 + 82

*

y16ˆ3 + 12

*

y16ˆ2 + 41

*

y16 + 2,

y11 + 18

*

y16ˆ5 + 52

*

y16ˆ4 + 21

*

y16ˆ3 + 64

*

y16ˆ2 + 7

*

y16 + 89,

y12 + 33

*

y16ˆ5 + 84

*

y16ˆ4 + 7

*

y16ˆ3 + 86

*

y16ˆ2 + 39

*

y16 + 5,

y13 + 84

*

y16ˆ5 + 20

*

y16ˆ4 + 49

*

y16ˆ3 + 2

*

y16ˆ2 + 14

*

y16 + 95,

y14 + 65

*

y16ˆ5 + 13

*

y16ˆ4 + 49

*

y16ˆ3 + 8

*

y16ˆ2 + 88

*

y16 + 66,

y15 + 20

*

y16ˆ5 + 87

*

y16ˆ4 + 81

*

y16ˆ3 + 25

*

y16ˆ2 + 12

*

y16 + 86,

y16ˆ6 + 17

*

y16ˆ5 + 11

*

y16ˆ4 + 48

*

y16ˆ3 + 71

*

y16ˆ2 + 79

*

y16 + 84

]

Note the particular form of these equations: once y16 is known the system is deter-

mined. We see that the final basis element is a degree six polynomial in y16. Thus

computing the zeros of this polynomial yields at most six values for N :

Factorisation(GB[24]);

[

<y16 + 8, 1>,

<y16 + 15, 1>,

<y16 + 18, 1>,

<y16 + 20, 1>,

<y16 + 71, 1>,

<y16 + 79, 1>

88

A.1 BCFRX SCHEME

]

Observing another run of the protocol (executing the for k in [1..l] do loop

again to add 8 new equations to our system) reveals a unique value for N :

GB;

[

x1 + 25, x2 + 37, x3 + 87, x4 + 53, x5 + 21, x6 + 23, x7 + 80, x8 +

29, y1 + 76, y2 + 6, y3 + 94, y4 + 26, y5 + 70, y6 + 49, y7 + 96,

y8 + 46, y9 + 5, y10 + 89, y11 + 10, y12 + 52, y13 + 59, y14 + 58,

y15 + 22, y16 + 18

]

To explore the feasibility of this attack, we return to the l = 1 case and run some

trials for larger values of p. To test that the Groebner basis elements typically take

the form of the above example, we create a function which on input a prime p runs

the above attack and verifies that (i) the first 23 basis elements have the form z
i

+

f
i

(y16), where z
i

2 {x
i

, y
i

} and (ii) the final basis element is a degree six polynomial

in y16:

BCFRX := function(p)

.. // as above

t := Cputime();

GB := GroebnerBasis(I);

t := Cputime(t)

for i in [1..#GB-1] do

if Degree(Monomials(GB[i])[1]) ne 1 or Monomials(GB[i])[2] lt y16

then

print "The knights who say";

end if;

end for;

if Degree(GB[#GB]) ne 6 or IsUnivariate(GB[#GB],y16) ne true then

print "Ni";

end if;

return t;

end function;

For example, running 1000 trials for random 100 bit primes we have:

89

A.1 BCFRX SCHEME

n := 1000;

c := 0;

for m in [1..n] do

c := c + BCFRX(RandomPrime(100));

end for;

print c/n;

16.735

Similarly, for random 200 and 300 bit primes it takes roughly 23 seconds and 33

seconds respectively.

90

Bibliography

[1] K. S. Abdukhalikov, C. Kim, On the security of the hashing scheme based on

SL2, Fast Software Encryption - FSE ’98 (S. Vaudenay, ed.), Lecture Notes in Com-

puter Science 1372 (Springer-Verlag, 1998) 93–102.

[2] R. Álvarez, L. Tortosa, J. F. Vicent, A. Zamora, Analysis and design of a secure

key exchange scheme, Information Sciences 179 (12) (2009) 2014–2021.

[3] I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptog-

raphy, Math. Res. Lett. 6 (1999) 287-291.

[4] E. Artin, The theory of braids, Annals of Math. 48 (1947) 101–126.

[5] J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups I:

cycling, powers and rigidity, Groups Geom. Dynamics 1 (2007) 221–279.

[6] J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups

II: structure of the ultra-summit set, Groups Geom. Dynamics 2 (2008) 13–61.

[7] J. S. Birman, V. Gebhardt, J. González-Meneses, Conjugacy in Garside groups

III: periodic braids, J. Algebra 316 (2007) 746–776.

[8] J. S. Birman, K. H. Ko, S. J. Lee, A new approach to the word and conjugacy

problems in the braid groups, Adv. Math. 139 (1998) 322–353.

[9] G. Baumslag, T. Camps, B. Fine, G. Rosenberger, X. Xu, Designing key transport

protocols using combinatorial group theory, Algebraic methods in cryptogra-

phy: AMS/DMV Joint International Meeting, June 16-19, 2005, Mainz, Germany:

91

BIBLIOGRAPHY

International Workshop on Algebraic Methods in Cryptography, November 17-

18, 2005, Bochum, Germany, Contemporary mathematics 418 (2006) 35–43.

[10] J.-C. Birget, S. S. Magliveras, W. Wei, Trap doors from subgroup chains and

recombinant bilateral transversals, Proceedings of RECSI VII (2002) 31–48.

[11] S. R. Blackburn, C. Cid, C. Mullan, Group theory in cryptography, in:

C. M. Campbell, M. R. Quick, E. F. Robertson, C. M. Roney-Dougal, G. C. Smith

and G. Traustason (editors), Proceedings of Groups St Andrews 2009 in Bath Volume

1, Cambridge University Press, 133–149, 2011.

[12] S. R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of the MST3 cryptosystem,

J. Math. Crypt. 3 (2009) 321–338.

[13] S. R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of three matrix-based key

establishment protocols. To appear in J. Math. Crypt.

[14] S. R. Blackburn, S. Murphy, J. Stern, The cryptanalysis of a public key imple-

mentation of Finite Group Mappings, J. Cryptology 8 (1995) 157–166.

[15] J.-M. Bohli, M. I. González Vasco, C. Martı́nez, R. Steinwandt, Weak keys in

MST1, Des. Cod. Crypt. 37 (2005) 509–524.

[16] W. W. Boone, Certain simple unsolvable problems in group theory, I–VI, Ned-

erl. Akad. Wetensch Proc. Ser. A57,231–237, 492–497 (1954), 58, 252–256, 571–577

(1955), 60, 22–27, 227–232 (1957).

[17] V. Canda, T. van Trung, S. S. Magliveras, T. Horvath, Symmetric block ciphers

based on group bases, Selected Areas in Cryptography, SAC 2000 (D.R. Stinson and

S.E. Tavares, eds.), Lecture Notes in Computer Science 2012 (Springer-Verlag,

Berlin, 2001) 89–105.

[18] K. W. Campbell, M. J. Wiener, DES is not a group, Advances in Cryptol-

ogy – CRYPTO ’92 (E.F. Brickell, ed.), Lecture Notes in Computer Science 740

(Springer–Verlag, Berlin, 1993) 512–520.

92

BIBLIOGRAPHY

[19] J. H. Cheon, B. Jun, A polynomial time algorithm for the braid Diffie-Hellman

conjugacy problem, Advances in Cryptology – CRYPTO 2003 (D. Boneh, ed.), Lec-

ture Notes in Computer Science 2729 (Springer, Berlin, 2003) 212–225.

[20] D. Charles, E. Goren, K. Lauter, Cryptographic hash functions from expander

graphs, J. Cryptology 22 (1) (2009) 93–113.

[21] C. Charles, J. Pieprzyk, Attacking the SL2 hashing scheme, Advances in Cryptol-

ogy - ASIACRYPT ’94(J. Pieprzyk, R. Safavi-Naini, eds.), Lecture Notes in Com-

puter Science 917 (Springer-Verlag, 1995) 322–330.

[22] J. J. Climent, F. Ferrández, J. F. Vicent, A. Zamora, A nonlinear elliptic curve

cryptosystem based on matrices, Applied mathematics and computation 174 (1)

(2006) 150–164.

[23] J. J. Climent, E. Gorla, J. Rosenthal, Cryptanalysis of the CFVZ cryptosystem,

Advances in Mathematics of Communications 1 (1) (2007) 1–11.

[24] G. Cohen, S. Litsyn, A. Vardy, G. Zémor, Tilings of binary spaces, SIAM Journal

on Discrete Mathematics 9 (1996) 393–412.

[25] D. Coppersmith, The Data Encryption Standard (DES) and its strength against

attacks, IBM Research Report RC 18613 (IBM, 1992).

[26] P. Dehornoy, Braid-based cryptography, Contemp. Math, 360, 5–33 (2004).

[27] M. Dehn, Über unendliche diskontinuerlich gruppen, Math. Ann. 69(1911)

116–144.

[28] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Trans.

Information Theory 22 (1976) 644–654.

[29] J. B. Fraleigh, A first course in abstract algebra, Pearson Education India, 1971.

[30] D. Garber, Braid group cryptography, available at http://arxiv.org/

abs/0711.3941.

93

BIBLIOGRAPHY

[31] D. Garber, S. Kaplan, M. Teicher, B. Tsaban, U. Vishne, Probabilistic solutions

of equations in the braid group, Adv. Appl. Math. 35 (2005) 323–334.

[32] F.A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20

(1969) 235–254.

[33] W. Geiselmann, A note on the hash function of Tillich and Zémor, Cryptography

and Coding (C. Boyd, ed.), Lecture Notes in Computer Science 1025 (Springer-

Verlag, 1995) 257–263.

[34] M. I. González Vasco, A. L. P. del Pozo, P.T. Duarte, Cryptanalysis of a key ex-

change scheme based on block matrices, available at http://eprint.iacr.

org/2009/5532009.

[35] M. I. González Vasco, D. Hofheinz, C. Martı́nez, R. Steinwandt, On the se-

curity of two public key cryptosystems using non-abelian groups, Des. Codes

Cryptography 32 (2004) 207–216.

[36] M. I. González Vasco, A. L. P. del Pozo, P. T. Duarte, A note on the security of

MST3, Des. Codes Cryptography 55 (2010) 189–200.

[37] M. I. González Vasco, M. Rötteler, R. Steinwandt, On minimal length factor-

izations of finite groups, J. Exp. Math. 12 (2003) 1–12.

[38] M. I. González Vasco, R. Steinwandt, Obstacles in two public-key cryptosys-

tems based on group factorizations, Tatra Mountains Math. Pub. 25 (2002) 23–37.

[39] M. I. González Vasco, R. Steinwandt, A reaction attack on a public key cryp-

tosystem based on the word problem, Applicable Algebra in Engineering, Commu-

nication and Computing 14 (2004) 335–340.

[40] M. Grassl, I. Ilić, S.S. Magliveras, R. Steinwandt, Cryptanalysis of the Tillich-

Zémor hash function, J. Cryptology (2011) 148–156.

94

BIBLIOGRAPHY

[41] M. Habeeb, D. Kahrobaei, V. Shpilrain, A public key exchange using semidi-

rect products of groups, Proceedings of SCC 2010 (2010) 137–141, available at

http://scc2010.rhul.ac.uk/program.php.

[42] G. Higman, Suzuki 2-groups, Ill. J. Math 7 (1963) 79–96.

[43] D. Hofheinz, R. Steinwandt, A practical attack on some braid group based

cryptographic primitives, Public Key Cryptography – PKC 2003 (Y.G. Desmedt,

ed.), Lecture Notes in Computer Science 2384 (Springer, Berlin, 2002), 176–189.

[44] J. Hughes, A linear algebraic attack on the AAFG1 braid group cryptosystem,

Lecture Notes in Computer Science 2384 (2002) 176–189.

[45] J. Hughes, A. Tannenbaum, Length-based attacks for certain group based en-

cryption rewriting systems, available at http://arxiv.org/PS_cache/cs/

pdf/0306/0306032v1.pdf.

[46] Sang Jin Lee and Eonkyung Lee, Potential weaknesses of the commutator

key agreement protocol based on braid groups, Advances in Cryptology – EU-

ROCRYPT 2002 (L. Knudsen, ed.), Lecture Notes in Computer Science 2332

(Springer, Berlin, 2002) 14–28.

[47] P. E. Holmes, On minimal factorisations of sporadic groups, J. Exp. Math. 13

(2004) 435–440.

[48] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.

[49] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-key

cryptosystem using braid group, Advances in Cryptology - CRYPTO 2000 (M. Bel-

lare, ed.), Lecture Notes in Computer Science 1880 (Springer, Berlin, 2000) 166–

183.

[50] W. Lempken, S. S. Magliveras, T. van Trung, W. Wei, A public key cryptosys-

tem based on non-abelian finite groups, J. Cryptology 22 (2009) 62–74.

95

BIBLIOGRAPHY

[51] W. Lempken, T. van Trung, On minimal logarithmic signatures of finite

groups, J. Exp. Math. 14 (2005) 257–269.

[52] F. Levy-dit-Vehel, L. Perret, On the Wagner–Magyarik cryptosystem, Coding

and Cryptography (O. Ytrehus, ed.), (Springer, Berlin, 2006) 316–329.

[53] F. Levy-dit-Vehel, L. Perret, Security analysis of word problem-based cryp-

tosystems, Des. Codes Cryptography 54 (1) (2010) 29-41.

[54] S. S. Magliveras, A cryptosystem from logarithmic signatures of finite groups,

Proceedings of the 29th Midwest Symposium on Circuits and Systems, Elsevier Pub-

lishing Company (1986) 972–975.

[55] S. S. Magliveras, Secret and public-key cryptosystems from group factoriza-

tions, Tatra Mt. Math. Publ. 25 (2002) 1–12.

[56] S. S. Magliveras, N. D. Memon, The algebraic properties of cryptosystem

PGM, J. Cryptology 5 (1992) 167–183.

[57] S. S. Magliveras, D. R. Stinson, T. van Trung, New approaches to design-

ing public key cryptosystems using one-way functions and trap-doors in finite

groups, J. Cryptology 15 (2002) 167–183.

[58] S.S. Magliveras, P. Svaba, T. van Trung, P. Zajac, On the security of a realization

of cryptosystem MST3, Tatra Mt. Math. Publ. 41 (2008) 65-78.

[59] Wieb Bosma, John Cannon, and Catherine Playoust, “The Magma Algebra

System I: The User Language”, J. Symbolic Comput. 24 (1997), 235–265.

[60] R.J. McEliece, A public key cryptosystem based on algebraic coding theory,

DSN Progress Report 42 - 44 (Jet Propulsion Lab, Pasadena, 1978) 114–116.

[61] A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, Handbook of Applied Cryptog-

raphy, CRC Press, Boca Raton, 1997.

96

BIBLIOGRAPHY

[62] A. J. Menezes, S. A. Vanstone, A note on cyclic groups, finite fields and the

discrete logarithm problem, Applicable Algebra in Engineering, Communication and

Computing, 3 (1992) 67–74.

[63] A.J. Menezes and Y.H. Wu, The discrete logarithm problem in GL(n, q), Ars

Combinatoria 47 (1997) 23–32.

[64] C. Mullan, Cryptanalysing variants of Stickel’s key agreement protocol, J.

Math. Crypt. 4 (4) (2011) 365–373.

[65] A. D. Myasnikov, A. Ushakov, Length based attack and braid groups: crypt-

analysis of Anshel-Anshel-Goldfeld key exchange protocol, Public Key Cryptog-

raphy – PKC 2007 (T. Okamoto, X. Wang, eds.), Lecture Notes in Computer Sci-

ence 4450 (Springer, Berlin, 2007) 76–88.

[66] A.G. Myasnikov and A. Ushakov, Random subgroups and analysis of the

length-based and quotient attacks, J. Math. Crypt. 2 (2008) 29–61.

[67] A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based Cryptography, Advanced

Courses in Mathematics CRM Barcelona (Birkhäuser, Basel, 2008).

[68] R. W. K. Odoni, V. Varadharajan, P. W. Sanders, Public key distribution in ma-

trix rings, Electronic Letters 20 (9) (1984) 386–387.

[69] P. S. Novikov, On the algorithmic unsolvability of the word problem in group

theory, Trudy Mat. Inst. Steklov 44 (1955) 1–143.

[70] C. Petit, J.-J. Quisquater, Preimages for the Tillich-Zémor hash function, Se-

lected areas in cryptography – SAC 2010 (A. Biryukov, G. Gong, D. R. Stinson),

Lecture Notes in Computer Science 6544 (Springer, 2011) 282–301.

[71] C. Petit, K. Lauter, J.-J. Quisquater, Cayley hashes: a class of efficient graph-

based hash functions, available at http:/www.dice.ucl.ac.be/
˜

petit/

files/Cayley.pdf.

97

BIBLIOGRAPHY

[72] C. Petit, K. Lauter, J. J. Quisquater, Full cryptanalysis of LPS and Morgenstern

hash functions, SCN (R. Ostrovsky, R. D. Prisco, I. Visconti, eds.), Lecture Notes

in Computer Science 5229 (Springer, 2008) 263–277.

[73] C. Petit, J. J. Quisquater, J. P. Tillich, G. Zémor, Hard and easy components

of collision search in the Zémor-Tillich hash function: new attacks and reduced

variants with equivalent security, Topics in Cryptology - CT-RSA 2009 (M. Fischlin,

ed.), Lecture Notes in Computer Science 5473 (Springer-Verlag, 2009) 182–194.

[74] C. Petit, J.-J. Quisquater, N. Veyrat-Charvillon, Efficiency and pseudo-

randomness of a variant of Zémor-Tillich hash function, ICECS2008 - IEEE In-

ternational Conference on Electronics, Circuits, and Systems (J. Micallef, ed.), IEEE

(2008) 906–909.

[75] M. Qu, S. A. Vanstone, New public-key cryptosystems based on factorizations

of finite groups, AUSCRYPT ’92 Preproceedings.

[76] U. Romanczuk and V. Ustimenko, On the PSL2(q), Ramanujan graphs and

key exchange protocols, available at http://aca2010.info/index.php/

aca2010/aca2010/paper/viewFile/80/3.

[77] William A. Stein et al., The Sage Development Team, http://www.

sagemath.org. Sage Mathematics Software (Version 3.4.1).

[78] William A. Stein et al., The Sage Development Team, http://www.

sagemath.org. Sage Mathematics Software (Version 4.4).

[79] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer, SIAM J. Computing 26 (1997) 1484–1509.

[80] V. Shpilrain, Cryptanalysis of Stickel’s key exchange scheme, Proceedings of

Computer Science in Russia 5010 (2008) 283–288.

[81] N. Singhi, N. Singhi, Minimal logarithmic signatures for classical groups, Des.

Codes Cryptography, Online first, available at http://www.springerlink.

com/content/6wn387r508646463/.

98

BIBLIOGRAPHY

[82] N. Singhi, N. Singhi, S. S. Magliveras, Minimal logarithmic signatures for finite

groups of Lie type, Des. Codes Cryptography 55 (2010) 243–260.

[83] R. Sparr and R. Wernsdorf, Group theoretic properties of RIJNDAEL-like ci-

phers, Discrete Appl. Math. 156 (2008) 3139–3149.

[84] M. Sramka, On the security of Stickels key exchange scheme, available at

http://crises-deim.urv.cat/

˜

msramka/pubs/

sramka-stickelkesecurity.pdf.

[85] T. Beth, W. Geiselmann, M. Grassl, R. Steinwandt, Weaknesses in the SL2(F2n)

hashing scheme, Advances in Cryptology - CRYPTO 2000 (M. Bellare, ed.), Lecture

Notes in Computer Science 1880 (Springer-Verlag, 2000) 287–299.

[86] E. Stickel, A new public-key cryptosystem in non abelian groups, Proceedings

of the Thirteenth International Conference on Information Technology and Applications

(2005) 426–430.

[87] P. Svaba, T. van Trung, On generation of random covers for finite

groups, available at http://www.exp-math.uni-essen.de/preprints/

RanCoversTran.pdf.

[88] D. R. Stinson, Cryptography: Theory and Practice, Third Edition (Chapman &

Hall, Boca Raton, 2005).

[89] P. Svaba, T. van Trung, Public key cryptosystem MST3: cryptanalysis and re-

alization, J. Math. Crypt. 4 (2010) 271–315.

[90] U. Tamm, Group factorizations and information theory, Information Theory and

Applications Workshop (2007) 384–387.

[91] J.P. Tillich, G. Zémor, Group-theoretic hash functions, Algebraic Coding, First

French-Israeli Workshop (G. D. Cohen, S. Litsyn, A. Lobstein, G. Zémor, eds.),

Lecture Notes in Computer Science 781 (Springer-Verlag, 1994) 90-110.

99

BIBLIOGRAPHY

[92] J.P. Tillich, G. Zémor, Hashing with SL2. Advances in Cryptology - CRYPTO ’94

(Y. Desmedt, ed.), Lecture Notes in Computer Science 839 (Springer-Verlag, 1991)

508–511.

[93] J.P. Tillich, G. Zémor, Collisions for the LPS expander graph hash function,

Advances in cryptology – EUROCRYPT 2008 (N. P. Smart, ed.), Lecture Notes in

Computer Science 4965 (Springer, 2008) 254–269.

[94] N. R. Wagner, M. R. Magyarik, A public key cryptosystem based on the word

problem, in Advances in Cryptology – CRYPTO ’84 (G.R. Blakley, D. Chaum, eds.),

Lecture Notes in Computer Science 196 (Springer, Berlin, 1985) 19–36.

[95] R. Wernsdorf, The one-round functions of the DES generate the alternating

group, Advances in Cryptology – EUROCRYPT 1992 (R.A. Rueppel, ed.), Lecture

Notes in Computer Science 658 (Springer–Verlag, Berlin, 1993) 99–112.

[96] R. Wernsdorf, The round functions of RIJNDAEL generate the alternating

group FSE (2002) 143–148.

[97] G. Zémor, Hash functions and graphs with large girths, Advances in Cryptol-

ogy – EUROCRYPT ’91 (D. W. Davies, ed.), Lecture Notes in Computer Science 547

(Springer-Verlag, 1991) 508–511.

[98] G. Zémor, Hash functions and Cayley graphs, Des. Codes Cryptography, 4(4)

(1994) 381–394.

100

