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Abstract

Let M be a faithful multiplication and comultiplication module over
a commutative ring R. In this paper we investigate some results on such
modules.
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1 Introduction

Throughout this work, R denotes a commutative ring with identity and M
denotes a unital R-module. We investigate here the question of those condi-
tions under which a factor module M/N of an R-module M is comultiplication
module as R-module and also as R/I-module for some ideal I of R, and some
properties of comultiplication submodules, [Theorem 3.1]. For N ≤ M , the
set [N :R M ] = {r ∈ R | rM ≤ N} is called colon of N and it is an ideal
of R. Let I be an ideal of R, the submodule [N :M I] of M is defined by
[N :M I] = {m ∈ M | Im ≤ N}. In particular, if I = (a1, . . . , ak) be a finitely
generated ideal of R, then [N :M I] =

⋂k
s=1[N :M as]. We will obtain some

results of faithful multiplication and comultiplication modules, [Theorem 3.3].

2 Preliminary Notes

An R-modules M is called multiplication if for every submodule N of M , there
exists an ideal I of R such that N = IM . It is clear that every homomorphic
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image of a multiplication module M is also multiplication. An R-module M is
called cancellation module, if for ideals I and J of R, IM = JM implies that
I = J . Also M is faithful if annR(M) = 0. We note that I ⊆ [N : M ] and
hence N = IM ≤ [N : M ]M ≤ N , so N = IM = [N : M ]M and if M be a
cancellation module, then I = [N : M ] = [IM : M ], see [1], [3], [4].
A submodule N of M is said to be pure if IN = N ∩ IM for every ideal I of
R. Moreover, N is said to be copure if [N :M I] = N + [0 :M I] for every ideal
I of R. The R-module M is said to be fully pure (resp. fully copure) if every
submodule of M is pure (resp. copure).

Definition 2.1. Let M is an R-module. A submodule N of M is called
comultiplication submodule of M and we denote this concept by N ≤c M ,
whenever there exists an ideal I of R such that N = [0 :M I] = annM (I).
In particular, if all submodules of M be comultiplication submodules, then M
is called a comultiplication module. Also, M is a comultiplication module if
and only if N = [0 :M annR(N)] for each submodule N of M .

Example 2.2. Z4 is a comultiplication Z-module. Consider the Z-module
M = Z/4Z and set N = 2Z/4Z. Then N and M/N are comultiplication
Z-modules.

Remark 2.3. Let M be a faithful multiplication R-module and IM = JM
for some ideals I and J of R, then I − J ⊆ annR(M) = 0, hence I = J ,
therefore M is cancellation module. Let N ≤ M and I be an ideal of R, if
Ir ∈ I[N :R M ] with r ∈ [N :R M ], then rM ≤ N . Therefore
(Ir)M = I(rM) ≤ IN ⇒ Ir ∈ [IN :R M ] ⇒ I[N :R M ] ≤ [IN :R M ]
Conversely, r ∈ [IN :R M ] ⇒ rM ∈ [IN :R M ]M ≤ IN = I[N :R M ]M ,
hence [IN :R M ]M ≤ I[N :R M ]M . Since M is a cancellation module, hence
[IN :R M ] ≤ I[N :R M ]. It follows that [IN :R M ] = I[N :R M ].

Theorem 2.4. Every faithful multiplication module M is finitely generated.
Proof: See ([2], Theorem 2.6).

It follows that if M be faithful multiplication module, then for every proper
ideal I of R, M �= IM .

3 Main Results

Theorem 3.1. Let M be an R-module and N ≤ L ≤ M , then
i) L/N is a comultiplication submodule of M/N if and only if there exists an
ideal I of R such that L = [N :M I]. If M be a semisimple R-module, then M
is fully copure and L/N ∼= annM (I)/annN(I).
Moreover, if we consider M/N as an R/I-module, then M/N is comulti-
plication R/I-module if and only if for every submodule L of M such that
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N ≤ L ≤ M , there exists an ideal J ⊇ I of R such that L = [N :M J ].
ii) if K1 ≤c L and K2 ≤c M , then K1 ∩ K2 ≤c L.
iii) if T1 ≤c L/N and T2 ≤c M/N , then T1 ∩ T2 ≤c L/N .
iv) if R be a Noetherian ring, then every comultiplication submodule N of M
is a finite intersection of comultiplication submodules of M .
v) if f : M → M ′ be an isomorphism of R-modules and K ≤c M , then we
have f(K) ≤c M ′. Moreover, if L ≤c M ′, then f−1(L) ≤c M .
Proof: i) Since IN ≤ N for every ideal I of R, hence N ≤ L = [N :M I]. We
consider M/N as an R-module. If L/N ≤c M/N , then there exists an ideal I
of R such that
L/N = [N :M/N I] = {m + N ∈ M/N | I(m + N) = Im + N = N}
= {m + N ∈ M

N
| Im ≤ N} = {m + N ∈ M

N
|m ∈ [N :M I]} = [N :M I]/N .

Therefore L = [N :M I]. The converse is clearly true.
Moreover, if N be copure, then [N :M I] = N + [0 :M I]. Therefore

L

N
=

N + [0 :M I]

N
∼= [0 :M I]

N ∩ [0 :M I]
=

[0 :M I]

[0 :N I]
=

annM (I)

annN (I)

In particular, if M be a semisimple R-module, then there exists K ≤ M such
that M = N ⊕ K. Therefore
[N :M I] = [N :K I] + [N :N I] = [0 :K I] + N ≤ [0 :M I] + N . Conversely, it
is clear that [0 :M I] + N ≤ [N :M I], hence N is copure.
Similarly, if we consider M/N as an R/I-module, then L/N ≤c M/N iff for
some ideal J/I of R/I we have L/N = [0M/N :M/N J/I ] = [N :M J ]/N .
ii) Let K1 = [0 :L I] and K2 = [0 :M J ] for some ideals I, J of R, then
K1 ∩ K2 = [0 :L I] ∩ [0 :M J ] = [0 :L I + J ] ⇒ K1 ∩ K2 ≤c L.
iii) By (i), T1 = [N :L I] and T2 = [N :M J ] for some ideals I, J of R, then
T1 ∩ T2 = [N :L I] ∩ [N :M J ] = [N :L I + J ] ⇒ T1 ∩ T2 ≤c L/N.
iv) Since R is Noetherian ring, hence every ideal of R is f.g. say I =

∑n
i=1 Rai.

Let N ≤c M , then there exists an ideal I of R such that N = [0 :M I], hence
N = [0 :M I] = [0 :M

∑n
i=1 Rai] =

⋂n
i=1[0 :M Rai] =

⋂n
i=1 Ni;

where Ni = [0 :M Rai] ≤c M .
Moreover, if N be a completely irreducible submodule of M , then there exists
1 ≤ k ≤ n, such that N = [0 :M I] = Nk = [0 :M Rak] or equivalently,
annM (I) = annM (Rak).
v) Let K = [0 :M I] for some ideal I of R, then

f(K) = f([0 :M I]) = {f(x)|Ix = 0} ≤ [0 :M ′ I];
because f(x) ∈ M ′ and f(Ix) = If(x) = 0, hence f(x) ∈ [0 :M ′ I].
Conversely, let y ∈ [0 :M ′ I], then there exists x ∈ M such that y = f(x)
and Iy = If(x) = f(Ix) = 0. Since f is monomorphism, hence Ix = 0, then
x ∈ [0 :M I] and y = f(x) ∈ f(K). Therefore f(K) = [0 :M ′ I] ≤c M ′.
Similarly, let L = [0 :M ′ I], then clearly K = f−1(L) = [0 :M I] ≤c M .

Corollary 3.2. Let M be an R-module and N ≤ L ≤ M . If N ≤c M and
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M/N be a comultiplication R-module, then L ≤c M .
Proof: We suppose that N = [0 :M J ]. Since L/N ≤c M/N by (i), we have
L = [N :M I] for some ideal I of R. Therefore L = [[0 :M J ] :M I] = [0 :M IJ ].

Theorem 3.3. Let M be a faithful multiplication and comultiplication R-
module, then the following assertions hold.
i) for every submodule N of M , [N :R M ] is a comultiplication ideal of R,
ii) R is comultiplication as an R-module.
Proof: Let N ≤ M , then since M is comultiplication module, there exists an
ideal I of R such that N = [0 :M I], then
[N :R M ] = [[0 :M I] :R M ] = [0 :R IM ] = annR(IM).
Since M is faithful multiplication R-module, then annR(IM) = [0 :R IM ] =
annR(I) = [0 :R I]. Therefore [N :R M ] = [0 :R I] is a comultiplication ideal.
ii) Let I be an ideal of R, then we set N = IM ≤ M . Since M is faithful
multiplication R-module, hence it is cancellation module and hence finitely
generated. Therefore for every N ≤ M and every ideal I of R, [IN :R M ] =
I[N :R M ]. In particular, [N :R M ] = [IM :R M ] = I[M :R M ] = IR = I. By
(i), I is a comultiplication ideal.
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