
31

Some Results on Cross Viewpoint Consistency
Checking

Howard Bowman, John Derrick and Maarten Steen

University of Kent at Canterbury, U.K. (hb5Jdl,mwas)@ukc.ac.uk.

The ODP multiple viewpoints model prompts the very challenging issue of cross viewpoint

consistency. This paper considers definitions of consistency arising from the RM-ODP and

relates these in a mathematical framework for consistency checking. We place existing

FDTs, in particular LOTOS, into this framework. Then we consider the prospects for

viewpoint translation. Our conclusions centre on the relationship between the different

definitions of consistency and on the requirements for realistic consistency checking.

Keyword Codes: D.2.1, D.2.10

Keywords: Requirements/Specifications, Design

1. INTRODUCTION

Multiple viewpoints are a cornerstone of the Open Distributed Processing (ODP) model

[12]; they enable a different perspective of a system to be presented to different observers.

Each viewpoint is a partial view of the complete system specification. It is through this

separation of concerns that the inherent complexity of a complete distributed system

is decomposed. ODP supports five viewpoints: enterprise, information, computational,

engineering and technology.

However, the subdivision of a system specification raises the issue of consistency.

Descriptions of the same or related entities will appear in different viewpoints and it

must be shown that the multiple specifications are not in conflict with one another. The

development of tools and techniques to check the consistency of viewpoint specifications

is of great importance, however, it is also extremely challenging. In particular, in its

most general form, consistency checking requires specifications in different notations to be

related. This is because it has been recognised that different notations are appropriate for

different viewpoints. Relating model based specification notations, such as Z, to languages

which explicitly model the 'temporal ordering' of abstract events, such as LOTOS or SDL,

is particularly challenging.

This paper addresses the question: what is an appropriate definition for consistency?

The RM-ODP is ambiguous in this respect. We will clarify the relationship between a

number of possible consistency definitions and we will consider how different FDTs, in

particular LOTOS, can be integrated into a consistency checking framework and then we

will discuss the different options for translation. The results of the paper centre on the

relative strengths of definitions and the information that needs to be made available in

0The work presented in this paper was partially funded by British Telecom Labs., U.K. and partially

by the U.K. Engineering and Physical Sciences Research Council (grant number GR/K13035.)

K. Raymond et al. (eds.), Open Distributed Processing

© Springer Science+Business Media Dordrecht 1995

400 Part Two Reviewed Papers

order that an appropriate consistency check can be applied.

We consider consistency in very general terms. In particular, we do not consider

specific instances of consistency, such as between the information and computational

viewpoints. This reflects our adopted strategy, which is to clarify the general form of

consistency as a relationship between arbitrary specifications before considering specific

instances of consistency. This paper is reporting results of the initial, general, phase of

our work.

The paper begins by exploring the extent of consistency relationships in ODP (in

section 2). Section 3 discusses appropriate definitions of consistency arising from the

RM-ODP and then section 4 relates these to a mathematical framework for consistency

checking. Section 5 places existing FDTs into this framework. Then we outline a number

of possible approaches to translation in section 6. Finally, we present concluding remarks

in section 7.

2. THE EXTENT OF CROSS VIEWPOINT RELATIONSHIPS

Due to the central role viewpoints play, consistency relationships are extremely pervasive

in ODP. Consistency arises in the following situations:-

Conformance Assessment. Conformance assessment for ODP is extremely broad. In

particular, it encompasses both conformance testing (i.e. relating real implementations to

specifications) and specification checking (i.e. specification to specification relationships),

this distinction was particularly emphasised in PROST [7]. Verification of cross viewpoint

consistency is an important example of specification checking.

System Development. The RM-ODP does not prescribe a particular system devel

opment methodology and a number of development methodologies could be envisaged.

However, each viewpoint specification is, at least potentially, at the same level of ab

straction; suggesting that viewpoints are related horizontally relative to a vertical system

development. This is in contrast to classic waterfall development methodologies. PROST

[7] has investigated such a, fully general, system development methodology for ODP. This

is depicted in figure 1 and uses a number of specification to specification transformations,

such as translation, refinement and unification, in order to generate a composite 'imple

mentation' specification. Translation maps specifications into new languages, refinement

has the usual meaning and unification is a transformation which enables specifications

in the same language to be combined. Consistency is implicit in such a system develop

ment methodology. For example, two specifications would be viewed as inconsistent if a

common unified specification did not exist. Thus, consistency arises during unification of

specifications in models of ODP system development.

Architectural Semantics. The use of different FDTs in defining the ODP architectural

semantics and the fact that the architectural semantics (when complete) will span a

number of the viewpoint languages suggests consistency relationships will have relevance

in this domain as well. Two forms of consistency relationship can arise. Firstly, there is

a need to relate the architectural semantics of different viewpoints in order to determine

that the FDT interpretations are consistent. Secondly, there is a need to demonstrate that

descriptions in different FDTs of particular architectural semantics entities are consistent.

Some results on cross viewpoint consistency checking

VIEWPOINTS
___..RELA1ED ..,._

HORIZONTALLY

VlinLl V2inL2 V3inL3 V4in!A V5inL5

1RANSLA1E I JINE v ~
into L2 ~ Specification I I

l_ ~':c£J'!~~s J / /
inL2 I 11 /

V 1 I
UNJFICATION I I
of Specifications< 1 11

Vi - Viewpoint Specification i
Li - Language i

inL2 I I

'',,, / /
' 1/

Implementation
Specification

Figure 1: PROST System Development Scenario

VERTICAL
SYS1EM
DEVELOPMENT

401

We strongly believe that a formal approach to consistency checking should be employed. In

particular, the ability to reason rigorously about the specifications under consideration is

of vital importance. We will assume the use of formal description techniques as viewpoint

languages in the remainder of this paper.

3. CONSISTENCY DEFINITION

This section highlights three possible interpretations of consistency that appear in the

RM-ODP, the first two appear in part 1 (clause 12.2) and the third apears in part 3 [12)

(clause 10). Although, the first of these definitions is only alluded to; it is not formally

proposed as a definition.

Definition 1

{1.1} Two specifications are consistent iff they do not impose contradictory requirements.

{1.2} Two specifications are consistent iff it is possible for at least one example of a product

(or implementation) to exist that can conform to both of the specifications.

{1.3} Two specifications are consistent iff they are both behaviourally compatible with the

other.

This last interpretation is a rewording of the RM-0 D P definition. This is because the RM

ODP definition is expressed in terms of relating specific viewpoints. We are considering

more generalised notions of consistency, thus, we have brought the definition into line with

the other definitions in order to facilitate a direct comparison. In addition note, that all

these definitions are symmetric, i.e. if a specification S is consistent with a specification

R then R is consistent with S. This is a reasonable intuitive requirement for consistency.

Behavioural compatibility is defined as follows:

Definition 2 (Behavioural Compatibility) An object is behaviourally compatible with

a second object, with respect to a set of criteria, if the first object can replace the second

402 Part Two Reviewed Papers

object without the environment being able to notice the difference in the objects behaviour

on the basis of the set of criteria.

These three consistency interpretations blur over the fact that specifications may be in

different FDTs and that it may not be possible to relate specifications directly with

out some element of translation. In fact, in the RM-ODP the third of these definitions

includes a notion of translation which is described in terms of 'information preserving'

transformations between languages. Translation will be discussed in section 6.

Each of these notions of consistency is intuitively reasonable. However, the question

arises: what is the relationship between the interpretations and, in particular, are these

definitions of consistency themselves consistent? In fact, the different interpretations

are likely to be applicable in different settings. For example, definition 1 is relevant to

consistency checking in a logical setting, e.g. in an FDT such as Z which is based on first

order logic.

We seek to reconcile these interpretations through formalisation. We formalise the

first notion of consistency as follows,

where I= is the satisfaction relation of the specification's logic. This definition states that

two specifications are consistent if and only if there is no property that holds over one of

the specifications and its negation holds over the other specification.

To interprete consistency 1.2 we need a formal interpretation of conformance. There is

a difficulty here because conformance relates implementations to specifications and imple

mentations are not amenable to formal interpretation. The classical approach to handling

this difficulty is to only consider conformance up to a, so called, implementation specifica

tion. This is a specification that describes a real implementation in as much detail that a

direct mapping from the implementation specification to the real implementation can be

found. Thus, it is normal just to consider conformance relations between specifications,

see [4] [5] [14] for typical approaches. However, implementation specifications relate to real

implementations in different ways for different FDTs and, in particular, for some FDTs

not all implementation specifications are implementable. For example, a Z specification

that contains an operation [n! : NJn! = 51\ n! = 3] has no real implementation.

Our approach then is to divide conformance testing into two parts. Firstly, we con

sider conformance up to implementation specifications, using a relation conf ~SPEC x
SPEC, and then we consider conformance of implementation specifications to real im

plementations, using a relation conf ~ SPEC x IMP 1. Where SPEC is the set of

possible ODP specifications and IMP is the set of possible ODP implementations.

By way of clarification, S1 con f S2 expresses the property that specification S2 conforms

to specification S1, i.e. according to tests derived from S1, S2 cannot be distinguished

from S1. It shm.1ld be noted that we have not specified how and what form of tests are

derived from S1; there are many options for such derivation [4] (5]. In a similar way

Sconfi expresses the property that I conforms to S. Interpretation 1.2 is now formalized

as:-

1The order of our relations is in accordance with Z conventions and is opposed to LOTOS conventions

Some results on cross viewpoint consistency checking 403

Definition 4 S1 C2.1 S2 iff3S E SPEC, IE IMP s.t.(S1confS 1\ S2confS) 1\S confl.

i.e., two specifications are consistent iff an implementation specification which conforms

to both and a real implementation of the implementation specification can be found.

This definition is correct, but is not very useful since it uses conf, which is not subject

to formal interpretation. In order to resolve this difficulty we introduce the concept of

internal validity which holds whenever a specification is implementable:-

Definition 5 Sis internally valid, denoted w(S), iff3l E IMP s.t. Sconfl

W acts as a receptacle for properties of particular FDTs that make specifications in that

FDT unimplementable. For example, a Z specification which contains contradictions

would not be internally valid. Now we can redefine C2 in a more usable way:

Definition 6 S1 C2.2 S2 iff 3S E SPEC s.t." (S1confS 1\ S2 confS) 1\ w(S).

The third and final consistency interpretation hinges on the. notion of behavioural compat

ibility which is defined in terms of an environment and unspecified criteria. We will con

sider specific instantiations of behavioural compatibility when we look at specific FDTs;

at this stage we formulate the interpretation completely generally, for be a particular

instantiation of behavioural compatibility.

Since consistency checking will occur at the specification checking stage of conformance

assessment we actually need a mechanism to assess consistency that uses only specifica

tion checking relationships, i.e. refinement, unification and equivalence. We will seek to

define natural interpretations of refinement, unification and translation and then consider

how the different definitions of consistency can be related to the above three consistency

interpretations.

4. A SPECIFICATION CHECKING FRAMEWORK

Translation. It seems natural to require that translation enforces equivalence, i.e. a

translation of a specification should be equivalent to the original specification. The actual

notion of equivalence required will be FDT dependent. However, we would certainly want

translation to preserve equivalence due to conformance, which we denote =.c1:

Intuitively, two specifications are equivalent iff they determine exactly the same set of

valid implementation specifications through con f. It should be pointed out that =cf does

not imply standard semantic equivalence; the equivalences of FDTs (such as observational

and testing equivalences of process algebra) are likely to be stronger than =cf·

Refinement. Following (14] we define that S2 is a refinement of S1 as:-

404 Part Two Reviewed Papers

i.e. refinement restricts the set of conformant implementation specifications. But, im

portantly, the implementations of a refinement are also implementations of the original

specification.

Unification. Unification takes two specifications in the same language and produces

a unified version which is a combination of the two specifications. By combination of

specifications, we mean that unification should satisfy the property of common refinement,

i.e. that Tll T2 !; U(Tll n), since an implementation that conforms to U(Tll T2) should

also conform to the original specifications Tll T2. In fact, we characterize unification as

the least refinement of two specifications, with the following construction: U(Tll T2) E

{T: T1 , T2 !;_ T and if Tll T2 !; S then T!; S}, see [8] for a discussion.

Consistency. A natural specification checking definition of consistency is that two spec

ifications are consistent if their unification can be implemented.

Definition 10 Given S1 in language L1 and S2 in language L2. Then S1C4S2 iff there ex

ists a specification language Ls such that S1 =cf Tll S2 =.cf T2 and there exists a U(Tll T2)

in L3 such that w(U(TllT2)) for some TllT2 in Ls.

Notice in particular that the internal validity condition guarantees that a conformant

implementation of the unification exists. In addition, this is our first interpretation o.f

consistency that embraces translation. Properties of refinement, equivalence, unification

and consistency can be found in appendix (ii).

Discussion. We now have four definitions of consistency C1, C2.2,_ C3 and C4 • The first

three of these arise from the ODP reference model and the third is a natural specification

checking definition, which links notions of conformance to specification checking relation

ships such as refinement, unification and equivalence. We would clearly like to relate

these definitions. However, a number of aspects of these definitions are FDT dependent.

We will make the required FDT dependent comparison in the next two sections. We

can, though, clarify our general approach, which is the following. Firstly, we view C1

as a specialised form of consistency which is relevant to consistency checking in a logical

setting and it will be captured by the internal validity property where it is relevant. The

main focus of this paper, though, will be the relationship between C2.2, C3 and C4 which

are clearly in the same domain of reference.

The specification checking relationships of a particular FDT will not be equivalent

to the corresponding definitions in our framework. However, our interpretation in this

respect is that FDT relations that are stronger or equal to the framework definitions

are appropriate, but relations that are either weaker or only partially intersect with the

corresponding framework definition are not appropriate. Our intuition behind this in

terpretation is that consistency checking occurs during specification checking and that

the specifier has knowledge about the nature of the specifications under consideration

that is relevant to consistency, thus, at this stage of system development we can be more

discriminating than is implicit in the framework. For example, the specifier may know

that a specification is a functionality extension of another specification; that two spec

ifications are strictly equivalent or that two specifications are related by reduction of

non-determinism. This extra information should be used at the specification checking

phase as long as it does not contradict the weaker conformance oriented definitions.

Some results on cross viewpoint consistency checking 405

5. INSTANTIATING PARTICULAR FDTs

5.1 LOTOS Consistency Checking Relationships

Existing LOTOS relations can be instantiated into the consistency framework as follows:

Conformance. A natural instantiation of our conf relation is the LOTOS conformance

relation, which we denote conf (a definition of conf can be found in appendix i).

Internal Validity. The internal validity concept is targetted at FDTs such as Z where

specifications can exist which do not have implementations. All LOTOS specifications

can, at least 'theoretically', be implemented (and we apologize for the circularity here).

Thus, we view all LOTOS specifications as internally valid.

Ca. Consistency definition 1.3 is dependent upon the interpretation of behavioural com

patibility, which in turn hinges on the interpretation of a specification's environment and

the criteria imposed on that environment. The looseness of the definition of behavioural

compatibility implies that one of a number of interpretations of 0 3 could be made. It is
our view that 0 3 could be interpreted as any of the following:-

Definition 11

{i} SI o; 82 iff St ,...., 82 - Strong Bisimulation

(ii) S1C~S2 iff 81 ~ 82 - Weak Bisimulation

{iii} St qe 82 iff 81 teS2 - Testing Equivalence

(iv) S10~:s2 iff Stcon/821\ S2confS1 - conf symmetric

Definitions (11.i) and (11.ii) view the environment as an unconstrained observer, in the

sense of standard observational equivalences. In contrast, (11.iii) and (11.iv) view the

environment as a tester for the specifications. The distinction between (ll.iii) and (11.iv)

is that (ll.iii) implies robustness testing and (ll.iv) implies restricted testing, see [4] [5]

for a discussion of these alternatives. In the remainder of this paper we will concentrate on

og•. Our reasons for this choice are two fold. Firstly, this interpretation agrees with the

LOTOS definition of behavioural compatibility in Part IV of [12] and, secondly, we will

show that, in comparison with 0 2•2 and 0 4 , Og• is a strong interpretation of consistency.

Furthermore, Cg" is the weakest behavioural compatibility definition. Thus, since 03 ===}

o: ===} o~e ===} o~·' from process algebra theory, og• bounds the relationship between

03 and the other consistency definitions.

Refinement. We will focus on two of the most important LOTOS refinement relations,

extension (which we denote ext) and reduction (which we denote red), see appendix 1

for definitions. Intuitively, the former of these characterizes when a specification validly

extends the behaviour of another specification and the latter relation characterizes refine

ment through reduction of non-determinism. In order to accept ext and red as suitable

refinement relations we must show that both imply !;;;;. Extrapolating from the results

of [14] we get that ext =>!;;;;, but red fr!;;; and red 1:!:;;;. Thus, ext can be instantiated

without any difficult, but red causes problems. We resolve this problem by considering a

relation red* which we define as follows: red* = redn C.

We will denote the instantiation of ext as the refin;ment relation in G4 as 0:"'1 and,

similarly, the instantiation of red* in G4 as o~·d•

406 Part Two Reviewed Papers

Results. The following results arise from applying LOTOS relations to consistency:-

Proposition 1 For conf all pairs of LOTOS processes are consistent by C2.2

Proof This follows from (13] which provides an algorithm that determines a common

extension (i.e. ext) for any pair of LOTOS processes and since ext==} conf.

Proposition 2 For con/, C3 c C2.2

Proof All we have to do is to demonstrate a pair of processes that are not related by

con f. This is straightforward. For example, for the processes, sl := b; stopOi; a; stop

and S2 := b;c;stop0i;a;stop, •(S2confS1). This is because Ref(SI.b) !6 Rej(S2,b), e.g.

c E Ref(St, b) but c ¢ Rej(S2, b).-

Proposition 3 c:"' = C2.2

Proof This follows from the results of (13].

Proposition 4 {i) cg• n C~ed• #0, {ii) q• !l C~ed· and (iii) c~•d• !6 cg•.

Proof We provide example LOTOS processes to demonstrate each of the properties.

(i) Consider the following trivial example. Take S1 = S2 := a; b; stop. Clearly, S1 C3 S2.

In order to show that also S1 c~•d• S2, we choose their common refinement to be S = S1
= S2 :=a; b; stop. Obviously, S1red*S and S2red*S.

{ii) Take S1 :=a; stop and 82 := i; a; stop 0 b; c; stop. Now S1q•s2, but we will show

that •(S 1 C~•d•s 2). Firstly, the only possible reduction of both S1 and 82 is the process

S := a; stop. Now, take the implementation T := a; stop 0 b; stop. This is a valid

implementation with respect to S, i.e. SconfT. However, we can see that •(S2confS),

because S refuses action c after the trace b. Therefore, S2red*S does not hold. -

(iii) Take 81 := a; (b; stop 0 i; stop) and 82 := a; b; stop (] i; stop. We can easily

check that •(S2conjSt) and •(S1conJS2). Therefore, we have •(S1 q• S2). However,

sl c~·d• s2, which can be shown by taking s := a; b; stop as the common refinement of

St and 82. This is because S1redS and S2redS, since all non-determinism in 81 and 82

has been resolved inS. In addition, as Tr(S) = Tr(S1) = Tr(S2) we know that S1extS

and S2extS. Moreover, since ext=?[;;;, from [14], we know that 81 [;;; S and S2 [;;; S.

These results are depicted in figure 2. Interestingly, though unification construction al

gorithms can be given which demonstrate that c3 c c~·d and c3 ~ c4, these algorithms

will not always yield the same unification, thus c~·d n C4 # c~•d•. For further discussion

of these relations see [16]. The following implications can be drawn from these results.

1. For LOTOS C2.2 is very weak. In fact, it does not distinguish any processes.

2. In contrast, C3 is a strong relation for LOTOS. In particular, none of the specifica

tion checking consistency relationships, i.e. c~ed·, c~·d, c:"'\ imply c3.

3. The relationship between c~•d• and Cg• is not very satisfactory and contrasts with

the more natural relationship of c~·d and c4 with cg•.

Some results on cross viewpoint consistency checking 407

4. Under c:"'1 all pairs of LOTOS specifications are consistent. This may seem a

surprising result at first, but it reflects the fact that extension of functionality across

pairs of specifications can always be reconciled.

C 2·2 = c;p =true

ccs
3

Firgure 2: LOTOS Consistency Relations

Probably the most important implication of these results is that consistency checking must

be performed selectively. In particular, it is inappropriate to view consistency checking

as a single mechanism which can be applied to any pair of specifications. For example, it

would be inappropriate to check two specifications which express exactly corresponding

functionality with c:"'1• Thus, in order to apply suitable consistency checks the relation

ship of the specifications being checked must be made available. The RM-ODP has no

provision for the communication of such information. The correspondence rule concept

is used in the reference model as a means to locate portions of viewpoint specifications

that should be compared. However, there is no means to define how these portions of

specifications should be related.

5.2 Z Consistency Checking Relationships

A conformance relation for Z does not exist, but refinement has been extensively investi

gated. Thus, our work on consistency checking in Z has focussed on instantiating the C4

definition of consistency. As indicated earlier internal validity is a central issue with Z,

specifically, we define:-

Definition 12 For S, a Z specification, w(S) iff ..,3,p s.t. S I= '1/J, ..,,p.

An algorithm can be given which will unify two Z specifications (8]. This algorithm is

divided into three stages: normalization, common refinement (which we usually term

unification itself), and re-structuring. Normalization identifies commonality between two

specifications, and re-writes the specifications into normal forms suitable for unification.

Unification itself takes two normal forms and produces the least refinement of both. Re

structuring is performed to re-introduce the specification structure that is lost during

normalization.

The major issue with Z consistency checking is not demonstrating that a unification ·

exists, rather it is showing that the unification is internally valid. This is in obvious

contrast to LOTOS where finding a unification with respect to a refinement relation

408 Part Two Reviewed Papers

is the central task. Demonstrating internal validity of Z specifications using theorem

proving tools is a central area of our current research. A companion paper [8] contains a

full discussion of consistency checking for Z.

6. TRANSLATION - THE OPTIONS

There has been some success in relating FDTs that have similar underlying semantics, e.g.

[15] [2], although, it should be pointed out that the common semantic form underlying

these approaches is typically very ugly and significant research is required before usable

translations can be generated. ODP consistency checking though, requires translation

across FDT families. There are very few positive results on this topic, although a number

of approaches could be considered, the following are the most likely:-

Syntactic Translation. Translation based upon a direct relating of syntactic terms

in one FDT to terms in another FDT is a possible approach. However, it is difficult

to envisage that such an approach could offer a general solution. In particular, a lot of

semantic meaning will certainly be lost in such a crude relating of FDTs. Partial syntactic

translations may though be feasible. ·

Common Semantic Model. Translation into a common semantic model is a more

realistic approach. Such translation could either use the semantics of one of the FDTs

as the intermediate semantics or use a third semantics. The former of these is not fully

general, for example, Z and LOTOS are so fundamentally different that relating one to

the others semantic model is very difficult to envisage. Relating FDTs using a third

intermediate form is a more likely approach.

• There is a link between model based action systems (and thereby Z) and CSP

made by showing that refinements (forwards and backwards simulation) in an action

system are sound and jointly complete with respect to the notion of refinement in

CSP [18].

• The requirement for highly expressive intermediate semantics suggests that logical

notations may be appropriate. [10] and [3] consider logical characterisations of

LOTOS in temporal logic. However, relating temporal logic to the Z first order

logic remains an open issue. Categorical approaches and the theory of institutions

offer a possible solution [3].

• An alternative logical approach is that by [19]. This work uses first order logic to

express relationships between states and events. Thus, they offer a single notational

link between model based specification and formal descriptions based on transition

systems. The approach uses logical conjunction as composition and sketches how

consistency checking can be performed in this framework. The pragmatic nature

of this work reflects the compromises that will have to be made when performing

translation in the ODP setting. Specifically, [19] acknowledge that their approach

does not preserve the semantic equivalences of particular FDTs.

• A final alternative which has the benefit of being ODP specific is suggested by

the work of [6]. This work offers a denotational semantics for the computational

Some results on cross viewpoint consistency checking 409

viewpoint language. These semantics could, theoretically, be used to relate different

FDT interpretations of the computational viewpoint language. Clearly, this work

does not give a complete solution to consistency as the semantics are restricted to

a single viewpoint. However, it may be possible to extrapolate this approach to a

general solution.

A further issue affecting translation is the role of the ODP architectural semantics. Specif

ically, Part 4 should provide a basis for relating FDTs. ODP concepts, in particular

viewpoint languages, are defined in different FDTs in the architectural semantics. Thus,

when relating complete viewpoint specifications in different FDTs these definitions can

be used as components of a consistency check. However, it is important to note that the

architectural semantics will only provide a framework for consistency checking. Actual

viewpoint language specifications will extend the ODP architectural semantics, which are

non prescriptive by nature, with FDT specific behaviour. There is then a need to combine

the framework provided by the architectural semantics with actual consistency checking

relationships arising from FDTs.

It is clear though that a usable translation mechanism is likely to represent a prag

matic, compromise solution. In particular, complete preservation of semantic meaning

during translation will not be possible.

7. CONCLUDING REMARKS

We have described how consistency arises in ODP. We have formalized a number of

possible definitions of consistency, three of which are presented in the RM-ODP. We

have considered instantiations of these consistency definitions with particular FDTs, viz,

LOTOS and Z and finally we have discussed the thorny issue of translation between FDTs.

We believe that consideration of consistency is timely, not just from an ODP per

spective. In particular, a number of recent software engineering methodologies consider

relating multiple specifications of a single system, e.g. (19] [1]. The interest in such

approaches reflects a general move away from classical single threaded waterfall syst~m

development scenarios. Furthermore, 00 methodologies, require specifications to be re

lated horizontally. Related issues can be found in OSI [9].

There are very few published results on consistency checking for Open Distributed

Processing, [17] and [11] are exceptions to this. Both of these consider strong notions of

consistency based on process algebra equivalences and in this sense take a quite different

approach to us. The work presented in this paper suggests the following concrete results:-

1. The consistency interpretations arising in the RM-ODP have very different mean

ings. In particular, for LOTOS, all pairs of specifications are consistent by C2.2 ,

while C3 is significantly stronger. In addition, by defining suitable conditions on the

relationship between conf and I= we can use C1 'consistently' with our conformance

definitions. We can guarantee that C4 * C2•2 and C4 => C11 thus, C4 provides an

important link between logical notions of consistency and conformance notions.

2. It is appropriate to determine consistency using stronger relationships than the basic

conformance definitions, since the extra knowledge available during specification

checking enables system developers to apply consistency more discriminatingly.

410 Part Two Reviewed Papers

3. With LOTOS all instantiations of C4 with LOTOS refinement relations (trivially)

imply c2.2, while none of the instantiations imply c3.

4. Consistency checking in Z and in LOTOS have a very different character. With

LOTOS the central issue is finding a unification, while with Z the central issue is

demonstrating that a unification does not contain any contradictions and can thus

be implemented.

5. Pragmatic approaches to translation, in which some semantic information is lost,

will have to be accepted.

We make the following recommendations; these are all required if realistic cross viewpoint

consistency checking is to be undertaken:-

1. More specification to specification information must be made available to the con

sistency checking process. The nature of the consistency relationship to be checked

must be made known. In addition, knowledge of the specification style used will be

of value in performing consistency checking. It may even be necessary for specifiers

to highlight particular cross viewpoint assertions that need to be tested.

2. Work on Part 4 of the RM-ODP must be undertaken as a priority. The architec

tural semantics provide an essential basis for consistency checking. In addition, the

architectural semantics must themselves be shown to be 'consistent'. i.e. different

FDT interpretations must not conflict.

3. Examples of multiple viewpoint specifications must be undertaken and be made

available to the ODP community. Without realistic examples, consistency checking

research will be poorly focussed.

In conclusion then, our inital results suggest that reasonable intra language consistency

relationships can be found, however, inter language consistency checking remains a very

challenging proposition. It is likely that this will only be possible with considerable pre

scriptive help from viewpoint language specifiers and in a pragmatic manner. However,

this challenge must be met since without a realistic approach to maintaining the consis

tency of specifications across multiple viewpoints the potential of the existing and ongoing

work on the ODP model cannot be fully realised.

References

[1) M Ainsworth, AH Cruickshank, LJ Groves, and PJL Wallis. Viewpoint specification

and Z. Information and Software Technology, 36(1):43-51, February 1994.

[2) D. Bert, M. Bidoit, C. Choppy, R. Echahed, J.-M. Huffien, J.-P. Jacquot, M. Lemoine,

N. Levy, J.-C. Reynaud, C. Roques, F. Voisin, J.-P. Finance, and M.-C. Gaudel.

Operation SALSA: Structure d'AccueiL pour Specifications Algebriques. Rapport

final, PRC Programmation et Outils pour !'intelligence Artificielle, 1993.

Some results on cross viewpoint consistency checking 411

[3] H. Bowman and J. Derrick. Towards a formal model of consistency in ODP. Technical

Report 3-94, Computing Laboratory, University of Kent at Canterbury, 1994.

[4] E. Brinksma. A theory for the derivation of tests. InS. Aggarwal and K. Sabnani,

editors, Protocol Specification, Testing and Verification, VIII, pages 63-74, Atlantic

City, USA, June 1988. North-Holland.

[5] E. Brinksma, G. Scollo, and C. Steenbergen. Process specification, their imple

mentation and their tests. In B. Sarikaya and G. V. Bochmann, editors, Protocol

Specification, Testing and Verification, VI, pages 349-360, Montreal, Canada, June

1986. North-Holland.

[6] AFNOR cont. A direct computational language semantics for Part 4 of the RM-ODP.

ISO/IEC JTC1/SC21/WG7 approved AFNOR contribution, July 1994.

[7] G. Cowen, J. Derrick, M. Gill, G. Girling (editor), A. Herbert, P. F. Linington,

D. Rayner, F. Schulz, and R. Soley. Prost Report of the Study on Testing for Open

Distributed Processing. APM Ltd, 1993.

[8] J. Derrick, H. Bowman, and M. Steen. Maintaining cross viewpoint consistency using

Z. In ICODP'95, Brisbane, Australia, February 1995.

[9] A. Fantechi, S. Gnesi, and C. Laneve. Two standards means problems : A case study

on formal protocol descriptions. Computer Standards and Interfaces, 9:11-19, 1989.

[10] A. Fantechi, S. Gnesi, and G. Ristori. Compositional logic semantics and LOTOS.

In L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Specification, Testing

and Verification, X, Ottawa, Canada, June 1990. North-Holland.

[11] K. Farooqui and L. Logrippo. Viewpoint transformations. In J. de Meer, B. Mahr,

and 0. Spaniol, editors, 2nd ICODP, pages 352-362, Berlin, September 1993.

[12] ISO/IEC JTC1/SC21/WG7. Basic reference model of Open Distributed Processing

- Parts 1-4, July 1993.

[13] F. Khendek and G. v. Bochmann. Merging behaviour specifications. Technical Report

856, University of Montreal, Department of Computing, 1993.

[14] G. Leduc. A framework based on implementation relations for implementing LOTOS

specifications. Computer Networks and ISDN Systems, 25:23-41, 1992.

[15] R. Reed, W. Bouma, J.D. Evans, M. Dauphin, and M. Michel. Specification and

Programming Environment for Communication Software. North-Holland, 1993. ISBN

0 444 89923 5.

[16] M. Steen, H. Bowman, and J. Derrick. Consistency in LOTOS. Technical Report in

preparation, Computing Laboratory, University of Kent at Canterbury, 1995.

412 Part Two Reviewed Papers

[17] A. Vogel. Entwurj, Realisierung und Test von ODP-Systemen auf der Grundlage

formaler Beschreibungstechniken. PhD thesis, Humboldt-Universitat zu Berlin, 1993.

submitted.

[18] J.C.P. Woodcock and C.C. Morgan. Refinement of state-based concurent systems.

In D. Bjorner, C.A.R. Hoare, and H. Langmaack, editors, VDM '90 VDM and Z -

Formal Methods in Software Development, LNCS 428, pages 340-351, Kiel, FRG,

April1990. Springer-Verlag.

[19] P. Za.ve and M. Jackson. Conjunction as composition. ACM Trans. on Soft. Eng.

and Method., 2:379-411, 1993.

APPENDIX (i): LOTOS Relations. P, P1 and P2 are processes; .Cis the alphabet

of observable actions; .C* denotes strings over .C; Tr(P) denotes the set of traces of P and

Ref(P, u) denotes the refusal set of P after the trace u.

Definition '13

(i) P2 conf P1 iff'Vu E Tr(P2) : Rej(P1,u) s;; Rej(P2,u).

(ii) P2 red P1 iffTr(Pl) s;; Tr(P2) 1\ P1con!P2.

(iii) P2 ext P1 iffTr(Pl) 2 Tr(P2) 1\ P1conJP2.

(iv) P1 k P2 iff: Tr(P1) = Tr(P2) 1\ VuE .C*: Ref(P1,u) = Ref(P2,u).

APPENDIX (ii): Further Results. Proofs of these results can be found in [3].

Proposition 5 Properties of !;;;

(i) !;;; is a pre-order (i.e. reflexive and transitive)

(ii) sl '=cf s2 iff sl !;;; s2 and s2 !;;; sl (i.e., !;;; is a partial order with respect to equivalence)

(iii) (!;;; o con!) = conf

(iv) For all R, we have R s;; !;;; iff (R o con f) s;; conf

(v) For all R, we have Ids;; R implies that (R s;; !;;;) iff (R o conf =con f)

(vi) !;;; is the least relation R such that R o conf =con f.

Proposition 6 Unification satisfies the following properties:

(i) U(T1, T2) = U(T2 , T1) - commutativity

(ii) U(T1, U(T2, T3)) = U(U(T1, T2), T3) -associativity

(iii) T1, T2 !;;; U(Tb T2) - common refinement

(iv) If T1 !;;; n then U(T1, T2) = T2

Proposition 1 Properties of consistency:

(1) Consistency is a symmetric relation, but it is neither reflexive nor transitive.

(ii) S1C4U(S2, S3) if! S2C4U(S1> S3) if! S3C4U(S1> S2).
(iii) Global consistency of three or more specifications implies pairwise consistency.

(iv) Pairwise consistency does not imply global consistency.

