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Abstract

The circulant graph of order n with connection set S is denoted by
Circ(n, S). Several results on decompositions of Circ(n, {1, 2}) and
Circ(n, {1, 2, 3}) are proved here. The existence problems for decom-
positions into paths of arbitrary specified lengths and for decomposi-
tions into cycles of arbitrary specified lengths are completely solved for
Circ(n, {1, 2}). For all m ≥ 3, we prove that Circ(n, {1, 2, 3}) has an
m-cycle decomposition if and only if the obvious necessary conditions are
satisfied. We also prove that there exists a decomposition of
Circ(n, {1, 2, 3}) into t circuits (connected subgraphs in which each ver-
tex has even degree) of sizes m1, m2, . . . , mt if and only if each mi ≥ 3
and m1 + m2 + · · · + mt = 3n. This settles the problem of decomposing
Circ(n, {1, 2, 3}) into specified numbers of 3-cycles, 4-cycles and 5-cycles.

1 Introduction

A decomposition of a graph K is a set {G1, G2, . . . , Gt} of subgraphs of K such that
E(G1) ∪ E(G2) ∪ · · · ∪ E(Gt) = E(K) and E(Gi) ∩ E(Gj) = ∅ for i �= j. Here we
examine decompositions of some low degree circulant graphs into cycles, into paths,
and into circuits. The circulant graph of order n with connection set S ⊆ Zn \ {0}
is denoted by Circ(n, S). It has vertex set Zn and edge set given by joining x to
x + s for each x ∈ Zn and each s ∈ S. We will assume S ⊆ {1, 2, . . . , 	n

2

} and

define the length of an edge {x, y} to be the unique s ∈ S such that s = x − y or
s = y−x (working modulo n). Of course, circulant graphs are Cayley graphs on cyclic
groups. We will be interested almost exclusively in decompositions of Circ(n, {1, 2})
and Circ(n, {1, 2, 3}).

Work on decompositions of circulant graphs has focused on decompositions into
perfect matchings (decompositions into perfect matchings are 1-factorisations), or
into Hamilton cycles. The graph Circ(n, S) has a 1-factorisation if and only if S
has an element of even order [21]. In [2], Alspach asks whether every connected 2k-
regular Cayley graph on a finite abelian group has a decomposition into k Hamilton
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cycles. A lot of results have been obtained on this problem, see [8, 14, 15, 17, 18], but
the general problem is unsolved, even in the case of circulant graphs. Further results
on decompositions of circulant graphs into isomorphic subgraphs are obtained in [3].

Here we consider the existence of decompositions of circulant graphs into cycles
of arbitrary specified lengths, focusing in particular on Circ(n, {1, 2}) (see Theorem
5) and Circ(n, {1, 2, 3}) (see Theorems 7 and 8). We also examine decompositions of
Circ(n, {1, 2}) into paths (see Theorem 2), and decompositions of Circ(n, {1, 2, 3})
into circuits (see Theorem 1). A circuit is a connected graph in which each vertex
has even degree. Our result on circuit decompositions of Circ(n, {1, 2, 3}) settles a
question posed by Billington and Cavenagh in [9]. They ask whether there exist in-
finitely many 6-regular graphs which are arbitrarily decomposable into closed trails;
that is, can be decomposed into closed trails of specified sizes m1, m2, . . . , mt when-
ever m1 + m2 + · · · + mt is the size of the graph in question. Theorem 1 says that
{Circ(n, {1, 2, 3}) : n ≥ 7} is one such infinite family.

2 Circuit and path decompositions

The following theorem says that Circ(n, {1, 2, 3}) can be decomposed into circuits
of arbitrary specified sizes m1, m2, . . . , mt whenever the obvious necessary numerical
conditions are satisfied. A similar result has been proven for all sufficiently dense
graphs by Balister in [7], and for various families of graphs in [6, 9, 16].

Theorem 1 Let n and m1, m2, . . . , mt be integers with n ≥ 7 and mi ≥ 3 for i =
1, 2, . . . , t. There exists a decomposition D = {G1, G2, . . . , Gt} of the circulant graph
Circ(n, {1, 2, 3}) where Gi is a circuit of size mi for i = 1, 2, . . . , t if and only if
m1 + m2 + · · · + mt = 3n.

Proof The conditions are clearly necessary for the existence of such a decomposi-
tion. To prove sufficiency, we will actually prove a slightly stronger result from which
the theorem follows easily. For any x ≥ 1 let Tx be the 3-cycle (x, x+1, x+3) and de-
fine the graph Jn by V (Jn) = {1, 2, . . . , n+3} and E(Jn) = E(T1)∪E(T2)∪· · ·∪E(Tn).
Note that Ti and Tj are edge-disjoint for i �= j. So Jn has 3n edges and for n ≥ 7,
one can obtain a graph isomorphic to Circ(n, {1, 2, 3}) from Jn by identifying vertex
i with vertex n + i for i = 1, 2, 3. We will show that for any sequence m1, m2, . . . , mt

satisfying mi ≥ 3 for i = 1, 2, . . . , t and m1 + m2 + · · · + mt = 3n, there exists
a decomposition D = {G1, G2, . . . , Gt} of Jn where Gi is a circuit of size mi for
i = 1, 2, . . . , t. Moreover, we will show that there is such a decomposition with the
additional property that the vertex n + 3 is in G1.

The proof is by induction on n. The result clearly holds for n = 1 and n = 2, so
assume n ≥ 3 and that the result holds for J1, J2, . . . , Jn−1. The proof splits into the
following four cases.

(a) m1 = 3.

(b) m1 = 4.
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(c) m1 = 5.

(d) m1 ≥ 6.

(a) Take a decomposition of Jn−1 into circuits of sizes m2, m3, . . . , mt (which exists
by the inductive assumption) and add the 3-cycle Tn = (n, n + 1, n + 3) to obtain
the required decomposition of Jn.
(b) First consider the case m1, m2, . . . , mt ∈ {3, 4}. Since Jn has 3n edges, the
required number of 4-cycles is 3k for some k ≥ 1. We obtain the required decom-
position of Jn by combining a decomposition of Jn−4 into n − 4k cycles of length 3
and 3(k − 1) cycles of length 4 (which exists by the inductive assumption) with the
following decomposition of Tn−3 ∪ Tn−2 ∪ Tn−1 ∪ Tn into three 4-cycles.

{(n − 3, n − 2, n + 1, n), (n − 2, n − 1, n + 2, n), (n − 1, n, n + 3, n + 1)}

We can now assume mi ≥ 5 for some i ∈ {2, 3, . . . , t}. Without loss of generality
suppose m2 ≥ 5. By the inductive assumption we have a decomposition of Jn−2 into
t − 1 circuits of sizes m2 − 2, m3, m4, . . . , mt where vertex n + 1 is in a circuit of
size m2 − 2. If we take such a decomposition, replace the edge {n − 1, n + 1} of
the circuit of size m2 − 2 with the path [n − 1, n + 2, n, n + 1], and add the 4-cycle
(n − 1, n, n + 3, n + 1), then we obtain the required decomposition of Jn.
(c) Note that m1 = 5 implies there is some i ∈ {2, 3, . . . , t} such that mi ≥ 4 (as
5 + 3 + 3 + · · ·+ 3 is not divisible by 3). Without loss of generality suppose m2 ≥ 4.
By the inductive assumption we have a decomposition of Jn−2 into t − 1 circuits of
sizes m2 − 1, m3, m4, . . . , mt where vertex n + 1 is in a circuit of size m2 − 1. If we
take such a decomposition, replace the edge {n−1, n+1} of the circuit of size m2−1
with the path [n− 1, n, n + 1], and add the 5-cycle (n− 1, n + 1, n + 3, n, n + 2), then
we obtain the required decomposition of Jn.
(d) By the inductive assumption we have a decomposition of Jn−1 into t circuits
of sizes m1 − 3, m2, m3, . . . , mt where vertex n + 2, and hence also vertex n, is in a
circuit of size m1 − 3. If we take such a decomposition and add the three edges of
the 3-cycle (n, n + 1, n + 3) to the circuit of size m1 − 3, then we obtain the required
decomposition of Jn. �

We now consider the problem of decomposing Circ(n, {1, 2}) into paths of speci-
fied lengths m1, m2, . . . , mt. The following theorem completely settles this problem.
Strong results on the path decomposition problem for complete graphs were proven
by Tarsi [22].

Theorem 2 Let n and m1, m2, . . . , mt be integers with n ≥ 5. There exists a de-
composition D = {G1, G2, . . . , Gt} of the circulant graph Circ(n, {1, 2}) where Gi is
a path with mi edges for i = 1, 2, . . . , t if and only if m1 + m2 + · · · + mt = 2n and
mi ≤ n − 1 for i = 1, 2, . . . , t.

Proof The conditions are clearly necessary. We now prove that they are also
sufficient. Without loss of generality we can assume m1 ≤ m2 ≤ · · · ≤ mt. Moreover,
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we can assume m1+m2 ≥ n (as we can obtain any decomposition with m1+m2 ≤ n−1
from a decomposition into t− 1 paths of lengths m1 +m2, m3, m4, . . . , mt). It is easy
to see that the conditions imply t ≥ 3.

First suppose t = 3. Let G3 be the path with vertices 0, 1, . . . , m3 and edges
{{0, 1}} ∪ {{i, i + 2} : i = 0, 1, . . . , m3 − 2}. Let G2 be the path with vertices
{0, n − 1, n − 2, . . . , n − m2} and edges {{0, n − 1}} ∪ {{i, i − 2} : i = 0, n − 1, n −
2, . . . , m3 + 1}∪ {{i, i− 1} : i = m3 − 1, m3 − 2, . . . , n−m2 + 1}. Let G1 be the path
with edges E(Circ(n, {1, 2})) \ (E(G3)∪E(G2)). So G1 has vertices 1, 2, . . . , n−m2

and n − 1, n − 2, . . . , m3 − 1 and edges {{1, n − 1}} ∪ {{i, i + 1} : i = 1, 2, . . . , n −
m2 − 1} ∪ {{i, i − 1} : i = n − 1, n − 2, . . . , m3}. It is straightforward to check that
{G1, G2, G3} is the required path decomposition of Circ(n, {1, 2}).

Now suppose t ≥ 4. Since we can assume m1 +m2 ≥ n and m1 ≤ m2 ≤ · · · ≤ mt,
we have m1 + m2 + m3 + m4 ≥ 2n. But m1 + m2 + · · ·+ mt = 2n and thus it follows
that t = 4, n is even, and m1 = m2 = m3 = m4 = n

2
. The required decomposition is

given by

• G1 = [0, 2, 1, 3, 4, 5, 6, . . . , n
2
];

• G2 = [n
2
, n

2
+ 1, . . . , n − 1, 0];

• G3 = [2, 4, 6, . . . , n − 2, 0, 1];

• G4 = [2, 3, 5, 7, . . . , n − 1, 1].

�

3 Cycle decompositions

In this section we examine cycle decompositions of Circ(n, {1, 2}) and Circ(n, {1, 2,
3}). If m1, m2, . . . , mt is a list of cycle lengths (possibly containing repeated ele-
ments), then an (m1, m2, . . . , mt)-cycle decomposition is a decomposition {G1, G2,
. . . , Gt} where Gi is an mi-cycle for i = 1, 2, . . . , t. Obvious necessary conditions for
the existence of an (m1, m2, . . . , mt)-cycle decomposition of a graph K are

• 3 ≤ mi ≤ |V (K)| for i = 1, 2, . . . , t,

• each vertex of K has even degree, and

• m1 + m2 + · · · + mt = |E(K)|.
We say that a list m1, m2, . . . , mt is admissible for a graph K if these three conditions
are satisfied. The cycle decomposition problem for a graph K (or a family K of graphs)
involves proving the existence or otherwise of an (M)-cycle decomposition of K (or
of K for each K ∈ K) for each admissible list M .

In 1981 Alspach [1] conjectured that for any admissible list m1, m2, . . . , mt, an
(m1, m2, . . . , mt)-cycle decomposition of Kn (the complete graph) or of Kn − I (the
complete graph of even order with the edges of a perfect matching removed) exists.
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Numerous results have been obtained on this conjecture but it remains unsolved.
The conjecture has been proven by Alspach, Gavlas and Šajna for the case where
all the cycles are of uniform length [4, 19, 20], and by Balister for cases where n is
sufficiently large and the longest cycle has length at most about n/20 [5]. A recent
result [11] proves the existence of about 10% of all admissible cycle decompositions
of Kn. See [10] for a survey on Alspach’s cycle decomposition problem, and [12] for
a survey of cycle decompositions generally.

In Theorem 5, we give a complete solution to the cycle decomposition problem
in the case of Circ(n, {1, 2}). For Circ(n, {1, 2, 3}), we settle the problem for decom-
positions into cycles of uniform length m in Theorem 7, and for decompositions into
cycles of length at most 5 in Theorem 8.

We shall see that there are numerous admissible lists m1, m2, . . . , mt for which
(m1, m2, . . . , mt)-cycle decompositions of Circ(n, {1, 2}) do not exist. However, we
have found no such lists for Circ(n, {1, 2, 3}) and we thus pose the following problem.

Problem 3 Let n ≥ 7. Does every admissible cycle decomposition of the circulant
graph Circ(n, {1, 2, 3}) exist ?

One might ask whether an (m1, m2, . . . , mt)-cycle decomposition of the graph
Circ(n, {1, 2, . . . , k}) exists for each admissible list m1, m2, . . . , mt whenever k ≥ 3
and n ≥ 2k + 1. The following result answers this question in the negative. For
example, it shows that there is no 3-cycle decomposition of Circ(n, {1, 2, 3, 4, 5, 6})
for n ≥ 19.

We now give a few definitions that will be used later. Let C = (v1, v2, . . . , vm)
be a cycle in the graph Circ(n, {d1, d2, . . . , dk}), and for i = 1, 2, . . . , m, let ei be
the integer in the set {−d1,−d2, . . . ,−dk, d1, d2, . . . , dk} such that ei ≡ vi+1 − vi

(mod n) for i = 1, 2, . . . , m − 1, and em ≡ v1 − vm (mod n). Then clearly we have
e1 + e2 + · · · + em ≡ 0 (mod n). If we have e1 + e2 + · · · + em = 0 (in Z not just in
Zn), then we call C a short cycle, and otherwise we call C a long cycle. The figure
below shows a short cycle and a long cycle in a circulant graph.

A “short” cycle. A “long” cycle.

Consider the set E of edges of Circ(n, {d1, d2, . . . , dk}) defined by

E = {{−di, 0}, {−di + 1, 1}, . . . , {−1, di − 1} : i = 1, 2, . . . k}
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and note that |E| = d1 + d2 + · · · + dk. Informally, E contains the edges crossing an
imaginary line between 0 and n − 1. The set E for the graph Circ(13, {1, 2, 4}) is
shown in the figure below.

11
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3

2
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012

Proposition 4 Let d1, d2, . . . , dk be positive integers such that d1 < d2 < · · · < dk

and d1 + d2 + · · · + dk is odd, and let n ≥ 2dk + 1. Then any cycle decomposition of
Circ(n, {d1, d2, . . . , dk}) contains a cycle of length at least  n

dk
�.

Proof We shall show that under the given conditions, any cycle decomposition of
the graph Circ(n, {d1, d2, . . . , dk}) contains a long cycle. It is clear that any long
cycle has length at least  n

dk
� and the result will thus follow.

Since the edges of a short cycle must cross the imaginary line between 0 and n−1
an even number of times, the number of edges of E in each short cycle in the graph
Circ(n, {d1, d2, . . . , dk}) is even. Thus, if |E| is odd then there is at least one long cycle
in any cycle decomposition of Circ(n, {d1, d2, . . . , dk}). Since |E| = d1 +d2 + · · ·+dk,
the result follows. �

Theorem 5 Let n be an integer with n ≥ 5 and let m1, m2, . . . , mt be a sequence
of integers with mi ≥ 3 for i = 1, 2, . . . , t. There exists an (m1, m2, . . . , mt)-cycle
decomposition of Circ(n, {1, 2}) if and only if each of the following conditions hold.

(1) m1 + m2 + · · · + mt = 2n.

(2) mi ≤ n for i = 1, 2, . . . , t.

(3) Either

(i) t = 3 and n
2
≤ m1, m2, m3 ≤ n, or

(ii) there exists a k ∈ {1, 2, . . . , t} such that mk ≥ n − t + 1.

Proof It is clear that Conditions (1) and (2) are necessary. We will now prove the
necessity of Condition (3). In this proof we shall use the definitions of short and long
cycles given above. It follows from Proposition 4 that any cycle decomposition of
Circ(n, {1, 2}) contains a long cycle. We now show that if a cycle decomposition of
Circ(n, {1, 2}) contains a short cycle, then it contains at most one long cycle. To see
this, observe that any short cycle, of length m say, has vertices x+1, x+2, . . . , x+m
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and edges {x+1, x+2}, {x+m−1, x+m} and {i, i+2} for i = x+1, x+2, . . . , x+m−2
where x is some element of Zn. In particular, this short cycle contains the edges
{x, x + 1} and {x, x + 2}. But then it is clear that any long cycle must contain the
edge {x − 1, x + 1}. Hence either the decomposition contains only long cycles, or it
contains exactly one long cycle.

Suppose first that we have only long cycles. Then, since the length of a long cycle
is at least n

2
, we have t ≤ 4. Clearly, t = 1 is not possible. Also, t = 4 is not possible

as t = 4 implies m1 = m2 = m3 = m4 = n
2

and any long cycle of length n
2

contains
only edges of length 2. Thus we have t = 2 or t = 3. If t = 2 then m1 = m2 = n and
Condition 3(ii) is satisfied. If t = 3 then Condition (3)(i) is satisfied.

Now suppose that we have exactly one long cycle and t − 1 short cycles. It
follows from the arguments concerning the structure of short cycles given in the first
paragraph of the proof, that any short cycle has at most two vertices in common
with other short cycles. Thus, the number of vertices which occur in short cycles is
at least Σ − (t − 1) where Σ is the sum of the lengths of the short cycles. Since this
number is at most n, we have Σ ≤ n + t− 1. From this it follows that the long cycle
has length at least 2n − (n + t − 1) = n − t + 1. Thus Condition (3)(ii) is satisfied.
We have shown that Condition (3) is necessary.

We now prove the sufficiency of Conditions (1)–(3). Suppose first that Conditions
(1), (2) and (3)(i) are satisfied. For n

2
≤ m ≤ n and x ∈ Zn, define the m-cycle

C(x, m) to be the cycle containing 2m − n consecutive edges of length 1 starting at
x followed by n − m consecutive edges of length 2. That is, C(x, m) contains the
edges

• {i, i + 1} for i = x, x + 1, x + 2, . . . , x + 2m − n − 1; and

• {i, i + 2} for i = x + 2m − n, x + 2m − n + 2, x + 2m − n + 4, . . . , x − 2.

If n is odd, then the (m1, m2, m3)-decomposition of Circ(n, {1, 2}) is

{C(0, m1), C(2m1 − n, m2), C(2m1 + 2m2 − 2n, m3)}.

If n is even, then the (m1, m2, m3)-decomposition of Circ(n, {1, 2}) is

{C(0, m1), C(2m1 − n + 1, m2), C}

where C is the cycle containing the edges

• {2m1 − n, 2m1 − n + 1},
• {i, i + 2} for i = 2m1 − n + 1, 2m1 − n + 3, . . . , 2m1 + 2m2 − 2n − 1,

• {i, i + 1} for i = 2m1 + 2m2 − 2n + 1, 2m1 + 2m2 − 2n + 2, . . . , n − 1, and

• {i, i + 2} for i = 0, 2, . . . , 2m1 − n − 2.

Now suppose that Conditions (1), (2) and (3)(ii) are satisfied. In this case our
decomposition will have exactly one long cycle, and this long cycle will have length
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mk. Without loss of generality assume k = t. Define g by g = mt − n + t − 1, and
for 3 ≤ m ≤ n define I(x, m) by I(x, m) = {x, x + 1, x + 2, . . . , x + m − 1} (working
modulo n) for each x ∈ Zn. Since n − t + 1 ≤ mt ≤ n it follows immediately that
0 ≤ g ≤ t − 1. If g = 0 then define subsets S1, S2, . . . , St−1 of Zn by S1 = I(0, m1)
and Si+1 = I(max(Si), mi+1) for i = 1, 2, . . . , t − 2. Otherwise, g ≥ 1 and we define
subsets S1, S2, . . . , St−1 of Zn by S1 = I(0, m1), Si+1 = I(max(Si) + 1, mi+1) for
i = 1, 2, . . . , g, and Si+1 = I(max(Si), mi+1) for i = g + 1, g + 2, . . . , t − 2. It is
straightforward to check that S1 ∪ S2 ∪ · · · ∪ St−1 = Zn.

Now recall from the first paragraph of the proof that there is a unique short cycle
on the vertices of I(x, m). Thus we have a unique short cycle (of length mi) on the
vertices of Si for i = 1, 2, . . . , t − 1. The edges not contained in these short cycles
form a long cycle, C say, of length mt. In detail, if we define, for i = 1, 2, . . . , t − 1,
Pi to be the path

min(Si) + 1, min(Si) + 2, . . . , max(Si) − 1, min(Si+1) + 1

if min(Si+1) = max(Si) and to be the path

min(Si) + 1, min(Si) + 2, . . . , max(Si) − 1, min(Si+1), max(Si), min(Si+1) + 1

if min(Si+1) = max(Si) + 1, then C is the cycle P1 ∪ P2 ∪ · · · ∪ Pt−1. �
To prove the next theorem we use the following lemma from [13].

Lemma 6 [13] If n ≥ 7 and F is a 2-regular graph of order n with no 3-cycles then
there is a 2-factorisation of Circ(n, {1, 2, 3}) in which each 2-factor is isomorphic to
F .

Theorem 7 Let n ≥ 7 and m ≥ 3. There exists an m-cycle decomposition of
Circ(n, {1, 2, 3}) if and only if m ≤ n and m divides 3n.

Proof The conditions are clearly necessary for existence. For all n ≥ 7, a 3-cycle
decomposition of Circ(n, {1, 2, 3}) is given by {(i, i + 1, i + 3) : i ∈ Zn}. Thus we
assume m ≥ 4. By Lemma 6, there is an m-cycle decomposition of Circ(mx, {1, 2, 3})
whenever m ≥ 4, x ≥ 1 and mx ≥ 7. Thus we may assume that m does not divide
n. This implies that 3 divides m and m

3
divides n. The proof that there is an m-

cycle decomposition of Circ(n, {1, 2, 3}) when 3 divides m, m
3

divides n and m ≤ n
splits into four cases depending on the congruence class of m modulo 12. For each
value of m we define a sequence Dm = d1, d2, . . . , dm with d1 + d2 + · · · + dm = 0
and |di| ∈ {1, 2, 3} for i ∈ {1, 2, . . . , m} as follows. The subscript on each bracket
indicates the number of integers enclosed by that bracket.

For m ≡ 0 (mod 12) with m ≥ 12, let m = 12x and let D be the following
sequence.

1, 3, 1, 3, . . . , 1, 3,︸ ︷︷ ︸2x
− 1, 3, 3, 1, 3, 1, . . . , 3, 1,︸ ︷︷ ︸2x−2

2, 3, 2, 2, . . . , 2,︸ ︷︷ ︸2x−2
− 1,−2,−2, . . . ,−2,︸ ︷︷ ︸2x−2

−1,−2,−3,−1,−3,−1, . . . ,−3,−1,︸ ︷︷ ︸2x−2

−2,−3,−3,−1,−3,−1, . . . ,−3,−1,︸ ︷︷ ︸2x−2

−2.
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For m ≡ 3 (mod 12) with m ≥ 15, let m = 12x + 3 and let D be the following
sequence.

1, 1, 3, 1, 3, . . . , 1, 3,︸ ︷︷ ︸2x

− 1, 3, 1, 3, 1, . . . , 3, 1,︸ ︷︷ ︸2x

2, 2, . . . , 2,︸ ︷︷ ︸2x+1

− 1,−2,−2, . . . ,−2,︸ ︷︷ ︸2x

−3,−1,−3,−1, . . . ,−3,−1,−3,︸ ︷︷ ︸2x−1

− 3,−3,−1,−3,−1, . . . ,−3,−1,−3.︸ ︷︷ ︸2x−1

For m ≡ 6 (mod 12) with m ≥ 6, let m = 12x + 6, let D be the sequence

3, 2,−1,−3, 1,−2

for m = 6, and let D be following sequence for m ≥ 18.

1, 3, 1, 3, . . . , 1, 3,︸ ︷︷ ︸2x
3, 2, 1, 3, 1, 3, . . . , 1,︸ ︷︷ ︸2x−1

2, 3, 2, 2, . . . , 2,︸ ︷︷ ︸2x−1
− 1,−2,−2, . . . ,−2,︸ ︷︷ ︸2x−1

−1,−2,−3,−1,−3,−1, . . . ,−3,−1,−3,︸ ︷︷ ︸2x−1
− 3, 1,−3,−1,−3,−1, . . . ,−3,−1,︸ ︷︷ ︸2x

− 2.

For m ≡ 9 (mod 12) with m ≥ 9, let m = 12x + 9 and let D be the following
sequence.

1, 1, 3, 1, 3, . . . , 1, 3,︸ ︷︷ ︸2x

3, 3, 1, 3, 1, . . . , 3, 1,︸ ︷︷ ︸2x

2, 2, . . . , 2,︸ ︷︷ ︸2x+2

− 1,−2,−2, . . . ,−2,︸ ︷︷ ︸2x+1

−3,−1,−3,−1, . . . ,−3,−1,−3,︸ ︷︷ ︸2x+1

1,−3,−1,−3,−1, . . . ,−3,−1,−3.︸ ︷︷ ︸2x+1

In each case we define an m-cycle C as follows.

C = (0, d1, d1 + d2, . . . , d1 + d2 + · · · + dm−1)

It is straightforward to verify that the orbit of C under the permutation x �→ x +
m
3

(mod n) is an m-cycle decomposition of Circ(n, {1, 2, 3}). For example, when
m = 9, the cycle C is shown below.

0 1

7

2 3 4

865

The orbit of C under the permutation x �→ x+ 3 (mod 9) is indeed a 9-cycle decom-
position of Circ(n, {1, 2, 3}) since for each part Q of the partition

P = {{0, 3, 6}, {1, 4, 7}, {2, 5, 8}}

of the vertices of C, we have

⋃
a∈Q

{x − a : {a, x} ∈ E(C)} = {−3,−2,−1, 1, 2, 3}.
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In general, one can verify that for each part Q of the partition

P = {{0, m
3
, 2m

3
}, {1, m

3
+ 1, 2m

3
+ 1}, . . . , {m

3
− 1, m

3
+ m

3
− 1, 2m

3
+ m

3
− 1}}

of the vertices of C, we have

⋃
a∈Q

{x − a : {a, x} ∈ E(C)} = {−3,−2,−1, 1, 2, 3}.

�

Since any circuit of length m is necessarily an m-cycle for m ≤ 5, we have the
following Theorem as an immediate corollary of Theorem 1.

Theorem 8 Let n ≥ 7 and let m1, m2, . . . , mt be any sequence of integers with
3 ≤ mi ≤ 5 for i = 1, 2, . . . , t and m1 + m2 + · · · + mt = 3n. Then there exists an
(m1, m2, . . . , mt)-cycle decomposition of Circ(n, {1, 2, 3}).
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