
The Annals of Statistics
2002, Vol. 30, No. 1, 239–257
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The concept of false discovery rate (FDR) has been receiving increasing
attention by researchers in multiple hypotheses testing. This paper produces
some theoretical results on the FDR in the context of stepwise multiple
testing procedures with dependent test statistics. It was recently shown by
Benjamini and Yekutieli that the Benjamini–Hochberg step-up procedure
controls the FDR when the test statistics are positively dependent in a certain
sense. This paper strengthens their work by showing that the critical values
of that procedure can be used in a much more general stepwise procedure
under similar positive dependency. It is also shown that the FDR-controlling
Benjamini–Liu step-down procedure originally developed for independent
test statistics works even when the test statistics are positively dependent in
some sense. An explicit expression for the FDR of a generalized stepwise
procedure and an upper bound to the FDR of a step-down procedure are
obtained in terms of probability distributions of ordered components of
dependent random variables before establishing the main results.

1. Introduction. The main purpose of this paper is to present some formulas
and inequalities providing theoretical insight into when and what stepwise
procedures control the false discovery rate (FDR) at a prespecified level in multiple
hypotheses testing. The FDR, first introduced in multiple testing by Benjamini
and Hochberg (1995), is the expected proportion of erroneously rejected null
hypotheses. With V and R representing, respectively, the number of true null
hypotheses rejected and the total number of null hypotheses rejected in a multiple
testing procedure, let Q = V/R if R > 0 and = 0 if R = 0. Then E(Q) is
the FDR of that procedure. As they have argued, it is an appropriate error rate
to control in many practical situations, particularly where a large number of
null hypotheses are involved. They also put forward an FDR-controlling step-
up procedure that is more powerful than comparable procedures controlling the
traditional familywise error (FWE) rate when the underlying test statistics are
independent. Benjamini and Liu (1999) recently introduced a step-down procedure
with the same property.

The concept of FDR is now being used in a wide variety of applications
[Abramovich and Benjamini (1996), Basford and Tukey (1997), Drigalenko
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and Elston (1997) and Williams, Jones and Tukey (1999)]. It plays a key role
in the development of asymptotically minimax model selection procedures by
Abramovich, Benjamini, Donoho and Johnstone (2000). While the FDR has
been receiving increasing attention by researchers in different fields of statistics,
theoretical progress has not been made at a similar pace.

The FDR-related theoretical results available so far in the literature [Benjamini
and Hochberg (1995) and Benjamini and Liu (1999)] assume that the underlying
test statistics are independent, even though they are actually dependent in
commonly encountered multiple testing situations. Therefore, one particular area
in which the theory on FDR needs to be further developed is when the test
statistics are dependent. In a recent paper, Benjamini and Yekutieli (2001)
took an important first step toward that goal by showing that the Benjamini–
Hochberg step-up procedure indeed controls the FDR in a more general situation
where the test statistics exhibit some form of positive dependence, as in the
case of the multivariate normal distribution with positive correlations and some
other commonly encountered multivariate distributions. Some further theoretical
advancement is made in this article. We establish two additional results, one
extending the work of Benjamini and Yekutieli (2001) to a more general stepwise
procedure and the other answering an open question concerning the Benjamini–Liu
step-down procedure. More specifically, it is proved that, instead of the Benjamini–
Hochberg step-up procedure, if one applies a generalized step-up–step-down
procedure [Tamhane, Liu and Dunnett (1998)] with the same set of critical values,
the FDR can still be controlled not only in the independence case but also in a more
general situation where the test statistics are positively dependent in the sense of
exhibiting positive regression dependency on the subset of statistics corresponding
to true null hypotheses, a property, called the PRDS property, defined by Benjamini
and Yekutieli (2001). Distributions satisfying this property include multivariate
normal distributions that arise in many-to-one comparisons of means with one-
sided alternatives and known variances, absolute values of studentized independent
normals that arise in simultaneous testing of independent group means against
two-sided alternatives and multivariate F that arise in many-to-one comparisons
of variances with one-sided alternatives. The studentized multivariate normal
distributions with positive correlations that arise in many-to-one comparisons of
means with one-sided alternatives and unknown common variance are PRDS
conditional on positive values, providing an example where the FDR is controlled
at a level less than 0.5. In the other result, it is shown that the Benjamini–Liu step-
down procedure controls the FDR when the statistics, under any alternatives, are
positively dependent in the sense of being multivariate totally positive of order 2
(MTP2) [Karlin and Rinott (1980)] and, under null hypotheses, are exchangeable.
The equicorrelated standard multivariate normal with a nonnegative common
correlation arising in many-to-one comparisons with one-sided alternatives in
a balanced one-way layout is an example of such a distribution.
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It is worthwhile to point out that although the consideration of a generalized
step-up–step-down procedure in this paper is mainly motivated by our goal to
extend the scope of a previous result, it is often more appropriate than simply
a step-up or step-down procedure. For instance, in assessing the superiority of
a test drug over placebo and known active controls, it might be necessary to
make some preliminary comparisons to see if the clinical trial is sensitive in the
sense of being able to detect significant differences between at least a specified
number of the known actives and the placebo. A generalized step-up–step-down
procedure, as argued by Tamhane, Liu and Dunnett (1998), is appropriate in this
case.

An important result obtained in this article toward strengthening the work of
Benjamini and Yekutieli (2001) is an expression for the FDR of a generalized step-
up–step-down procedure of order r with any set of critical values written explicitly
in terms of the probability distribution of the ordered components of the underlying
test statistics. Once we have this expression, it becomes clear how to choose the
critical values and what sort of dependence structure of the test statistics is required
in a generalized step-up–step-down procedure to have control of the FDR. This
result, evolving from the previous work of Sarkar and Chang (1997) and Sarkar
(1998) where a similar issue concerning the Simes (1986) test has been resolved,
is different from that of Benjamini and Yekutieli (2001) and covers a larger class of
stepwise procedures, including both step-up and step-down procedures. An upper
bound to the FDR of a step-down procedure has also been derived using additional
results on ordered random variables before answering the open question related to
the Benjamini–Liu procedure. The MTP2 property provides some key inequalities,
thereby playing a vital role in the development of the main results.

The setup of the paper is as follows. Section 2 recalls the generalized step-
up–step-down procedure of order r in terms of p-values and the definition of
the PRDS property with examples. Some useful formulas related to the FDR of
a generalized step-up–step-down procedure and an inequality related to the FDR
of a step-down procedure are reported in Section 3. The main results are proved in
Section 4. Proofs of most of the technical results and formulas are deferred to the
Appendix.

2. Preliminaries. We will recall two things in this section, Tamhane–Liu–
Dunnett’s generalized step-up–step-down procedure and Benjamini–Yekutieli’s
PRDS property.

2.1. Generalized step-up–step-down procedure of order r . Suppose there are
n null hypotheses H1, . . . ,Hn that are to be simultaneously tested using the
corresponding observed p-values p1, . . . , pn. Let the p-values be ordered as
p1:n ≤ · · · ≤ pn:n with the corresponding null hypotheses H1:n, . . . ,Hn:n, respec-
tively. Then given the critical values 0 ≤ α1:n ≤ · · · ≤ αn:n ≤ 1, a generalized
step-up–step-down test procedure of order r starts with pn−r+1:n. If pn−r+1:n >
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αn−r+1:n, the test accepts Hn−r+1:n, . . . ,Hn:n and goes to general step (a); other-
wise, it rejects H1:n, . . . ,Hn−r+1:n and goes to general step (b).

GENERAL STEP (a). Starting with i = n − r + 1, the test starts with pi−1:n.
If pi−1:n ≤ αi−1:n, testing stops by rejecting H1:n, . . . ,Hi−1:n; otherwise, it accepts
Hi−1:n and setting i = i − 1 returns to the beginning of this step. For i = 1, the test
stops.

GENERAL STEP (b). Starting with i = n − r + 1, the test starts with pi+1:n.
If pi+1:n ≥ αi+1:n, testing stops by accepting Hi+1:n, . . . ,Hn:n; otherwise, it
rejects Hi+1:n and setting i = i + 1 returns to the beginning of this step. For i = n,
the test stops.

When r = 1 (or n), a generalized step-up–step-down procedure of order r is an
ordinary step-up (or step-down) procedure. Readers are referred to Finner (1999),
Finner and Roters (1998, 1999) and Liu (1996) for some interesting theoretical
results related to step-up and step-down tests.

2.2. The PRDS property. An n-dimensional random vector X = (X1, . . . ,Xn)

or the corresponding multivariate distribution is said to be positive regression
dependent on a subset {Xi, i ∈ M}, or simply on M (PRDS on M), where
M ⊆ {1, . . . , n}, if

P {X ∈ C|Xi} is nondecreasing (nonincreasing) in Xi for each i ∈ M,(2.1)

for any increasing (decreasing) set C. A set C is increasing (decreasing) if and
only if x = (x1, . . . , xn) ∈ C implies that x′ = (x′

1, . . . , x
′
n) ∈ C for any xi ≤ x′

i

(xi ≥ x′
i ), i = 1, . . . , n. For our main result on the FDR-controlling property of

a generalized step-up–step-down procedure, we require the test statistics to have
a multivariate distribution that is PRDS on I0 = {1, . . . , n0}, that is, on the subset
of statistics (X1, . . . ,Xn0) corresponding to the true null hypotheses. Before we
give examples of such distributions, it is useful to observe that a more restrictive
property, that is,

E
{
φ(X)|Xi

}
is nondecreasing (nonincreasing) in Xi for all i = 1, . . . , n,(2.2)

for any coordinatewise nondecreasing (nonincreasing) function φ(X) of X, is
actually implied by the multivariate totally positive of order 2 (MTP2) property
[Karlin and Rinott (1980)]. If the probability density f (x1, . . . , xn) of X satisfies
the inequality

f
(
min(x1, y1), . . . ,min(xn, yn)

)
f

(
max(x1, y1), . . . ,max(xn, yn)

)
≥ f (x1, . . . , xn)f (y1, . . . , yn)

for any two points (x1, . . . , xn) and (y1, . . . , yn), then X or its distribution is
said to be MTP2. The multivariate distribution of independent test statistics is
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the most trivial example of an MTP2 distribution. As discussed in Karlin and
Rinott (1980), Sarkar and Chang (1997) and Sarkar (1998), the multivariate normal
distribution with zero means and nonnegative correlations is MTP2. Notice that
if X is MTP2, then so is X+µ. Therefore, the multivariate normal distribution with
any means and nonnegative correlations is MTP2. Next, let Xi = (ν0/νi)(Vi/V0),
i = 1, . . . , n, where Vi ∼ σ 2

i χ
2
νi

, i = 0,1, . . . , n, and are independent. Then the
joint density of X = (X1, . . . ,Xn), which is that of multivariate F , is of the
form ∫ ∞

0

n∏
i=1

fi(xi, y)g(y) dy,

where

fi(x, y) =
[
(2θiy)

νi/2!

(
νi

2

)]−1

exp
(
− xi

2θiy

)
x
νi/2−1
i , θi = ν0σ

2
i

νiσ
2
0

,

for i = 1, . . . , n, and g(y) is the density of 1/χ2
ν0

. Since fi(x, y) is TP2 in (x, y)

for each i, this integral is MTP2 [see, e.g., Sarkar and Chang (1997)]. Thus, the
multivariate distribution of independent test statistics, multivariate normal with
nonnegative correlations, and multivariate F are all PRDS on any subset.

The MTP2 properties of the studentized multivariate normal distribution with
nonnegative correlations and absolute values of studentized independent normals
are not obvious. Nevertheless, the property (2.1) with I0 corresponding to the true
null hypotheses can be verified, conditional on positive values for the student-
ized multivariate normal distribution and without any such condition for absolute-
valued studentized independent normals. Below we describe briefly how these can
be verified, although similar results were independently derived by Benjamini and
Yekutieli (2001) using different arguments.

Let Xi = √
νYi/S, i = 1, . . . , n, where Y = (Y1, . . . , Yn) is multivariate normal

with unit variances and nonnegative correlations and S2 ∼ χ2
ν independently of Y.

Then, with ψ(Yi, S) = P [Y ∈ D(S)|Yi, S}, where D(S) = {Y : (
√
νY1/S, . . . ,√

νYn/S) ∈ C},
P {X ∈ C|Xi} = ES

[
ψ(Yi, S)|Xi,S

]
,

= ES∗
[
ψ

(
S∗Ui,S

∗(1 − U
2

i )
1/2)|Ui,S

∗]
,

(2.3)

where Ui = Yi/S
∗, S∗2 = S2 + Y 2

i . Now note that, for each i ∈ I0, Ui and S∗2

are independent. Furthermore, if C is increasing and satisfies a′C ⊂ aC for any
0 < a < a′ (e.g., if C is of the form

∏n
i=1[ai,∞) with positive ai’s), then ψ(Yi, S)

is increasing in Yi for fixed S, because of the MTP2 property of Y, and decreasing
in S for fixed Yi , because D(S) is decreasing in S. Therefore, the probability
in (2.3) is increasing in Ui , and hence in Xi , as long as Xi > 0.

The distribution of |Y| = (|Y1|, . . . , |Yn|) is not MTP2 unless the Yi ’s are uncor-
related. Making the same kind of arguments as above for |X| = (|X1|, . . . , |Xn|)
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when the underlying correlations are 0, we see that this is PRDS on I0; that is, the
absolute values of studentized independent normals are PRDS on I0.

3. Some useful formulas and inequalities. We present some lemmas in this
section, with proofs given in the Appendix, providing the formulas and inequal-
ities required to prove our main results in the next section. Suppose that the null
hypothesesH1, . . . ,Hn are tested using some continuous test statistics X1, . . . ,Xn,
respectively, that are identically, not necessarily independently, distributed under
the null hypotheses. For any J ⊆ {1, . . . , n}, we will use the notation X1:J ≤ · · · ≤
X|J |:J for the ordered components of the subset {Xi, i ∈ J }; sometimes, however,
we will call them X1:n ≤ · · · ≤ Xn:n when J = {1, . . . , n}. Since a left-tailed test
based on Xi can be converted to a right-tailed test based on some suitable transfor-
mation of Xi , without any loss of generality only right-tailed tests are being con-
sidered. Let H1:n, . . . ,Hn:n be the hypotheses corresponding to X1:n, . . . ,Xn:n,
respectively. Then the step-up–setp-down procedure of order r in terms of the
Xi:n’s and the critical values c1:n ≤ · · · ≤ cn:n, where Pr(X1 ≥ ci:n) = αn−i+1:n,
for i = 1, . . . , n, starts with Xr :n. If Xr :n < cr :n, it accepts H1:n, . . . ,Hr :n and con-
tinues to test Hr+1:n, . . . ,Hn:n in a step-up manner using (Xr+1:n, . . . ,Xn:n) and
(cr+1:n, . . . , cn:n). Otherwise, it rejects Hr :n, . . . ,Hn:n and continues to test
H1:n, . . . ,Hr−1:n in a step-down manner using (X1:n, . . . ,Xr−1:n) and (c1:n, . . . ,
cr−1:n).

Let us suppose, without any loss of generality, that out of the total n null hy-
potheses, the first n0 hypotheses H1, . . . ,Hn0 are the true null hypotheses and the
rest are false. Partitioning the space of (X1, . . . ,Xn) in terms of the disjoint sub-
sets

Ar
j,n = {Xj :n < cj :n,Xj+1:n ≥ cj+1:n, . . . ,Xr :n ≥ cr :n} for j = 0,1, . . . , r − 1

= {Xr :n < cr :n, . . . ,Xj :n < cj :n,Xj+1:n ≥ cj+1:n} for j = r, . . . , n,

where Ar
0,n = {X1:n ≥ c1:n, . . . ,Xr :n ≥ cr :n} and Ar

n,n = {Xr :n < cr :n, . . . ,Xn:n <

cn:n}, and observing that

Ar
j,n ≡ {R = n− j}, j = 0,1, . . . , n,

we have

FDR = E
{
V I (R > 0)/R

}

=
n−1∑
j=0

1

n − j
E

{
V I (R = n− j)

}

=
n−1∑
j=0

1

n − j

n0∑
i=1

E
{
I (Hi is rejected, R = n − j)

}
.

(3.1)
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Once the event {R = n − j} occurs, resulting in acceptance of H1:n, . . . ,Hj :n
and rejection of Hj+1:n, . . . ,Hn:n, the hypotheses Hi , i = 1, . . . , n0, will be
rejected if and only if Xi ≥ cj+1:n. Thus, we have

FDR =
n0∑
i=1

n−1∑
j=0

1

n− j
P {Xi ≥ cj+1:n, R = n − j}.(3.2)

Before we proceed further to obtain a more explicit expression for (3.2), it is
important to note that the following lemma, in addition to being useful for a later
proof, provides a step in checking why (3.2) reduces to P {R > 0} once all the
hypotheses are assumed to be true.

LEMMA 3.1.

n∑
i=1

P {Xi ≥ cj+1:n, R = n− j} = (n− j)P {R = n− j}.(3.3)

The following lemma gives an explicit expression for the FDR of a generalized
step-up–step-down procedure of order r with any set of critical values in terms
of the probability distribution of the ordered components of the underlying test
statistics.

LEMMA 3.2. The FDR of a generalized step-up–step-down procedure of
order r for testing n null hypotheses H1, . . . ,Hn in terms of right-tailed tests based
on X1, . . . ,Xn and critical values c1:n ≤ · · · ≤ cn:n is

FDR = 1

n − r + 1

n0∑
i=1

P {Xi ≥ cr :n}

+
n0∑
i=1

r−1∑
j=1

E

[
P {Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n|Xi}

×
{
I (Xi ≥ cj :n)
n− j + 1

− I (Xi ≥ cj+1:n)
n− j

}]

+
n0∑
i=1

n−1∑
j=r

E

[
P {Xr :n < cr, . . . ,Xj :n < cj :n|Xi}

×
{
I (Xi ≥ cj+1:n)

n− j
− I (Xi ≥ cj :n)

n − j + 1

}]
,

(3.4)

where the probabilities are determined assuming that H1, . . . ,Hn0 are the true
hypotheses and the rest are false.
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Next, we will present a lemma that provides an upper bound to the FDR of
a step-down procedure (i.e., when r = n). Let Xn0+1, . . . ,Xn be the statistics
corresponding to the false hypotheses. Then, with I1 = {n0+1, . . . , n}, define
Bj :I1 = {Xj :I1 < cn0+j :n,Xj+1:I1 ≥ cn0+j+1:n, . . . ,Xn1:I1 ≥ cn:n}, which is the
event that the step-down procedure based on (Xn0+1, . . . ,Xn) and the critical
values (cn0+1:n, . . . , cn:n) will accept j and reject n1 − j of the false hypotheses
for j = 0, . . . , n1.

LEMMA 3.3. For a step-down procedure for testing n null hypotheses
H1, . . . ,Hn in terms of right-tailed tests based on X1, . . . ,Xn and critical values
c1:n ≤ · · · ≤ cn:n, we have

FDR ≤
n1∑
j=0

n0 + j

n
P {Xn0:I0 ≥ cn0+j :n,Bj,I1}.(3.5)

The next lemma presents a result on MTP2 distributions that will be used later
to determine critical values of an FDR-controlling step-down procedure.

LEMMA 3.4. Let Xn0:I0 = max(Xi, i ∈ I0). If (X1, . . . ,Xn) is MTP2, then,
for any fixed 1 ≤ k ≤ n0, the conditional distribution of (Xn0:I0,Xn0+1, . . . ,Xn)

given Xn0:I0 = Xk is MTP2.

4. Main results. The two main results of this paper are presented with proofs
in this section.

THEOREM 4.1. Suppose that we have a generalized step-up–step-down
procedure of order r involving right-tailed tests based on continuous test statistics
(X1, . . . ,Xn) that are identically distributed with the common cdf F(x) under
the true null hypotheses. If the joint distribution of (X1, . . . ,Xn) is PRDS on the
subset of test statistics corresponding to the true null hypotheses, conditional on
{Xi > a, i = 1, . . . , n} for some fixed a, then the FDR of this procedure is less than
or equal to n0α/n, where 0 < α < 1 −F(a), if the critical values c1:n ≤ · · · ≤ cn:n
satisfy F(cj :n) = 1 − (n− j + 1)α/n for j = 1, . . . , n.

PROOF. Our proof relies on Lemma 3.2. First, note that

I (Xi ≥ cj :n)
n− j + 1

− I (Xi ≥ cj+1:n)
n− j

≥ or ≤ 0(4.1)

according as Xi ≤ or ≥ cj+1:n. Also, since cj :n > a for all j = 1, . . . , n and
{Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n} is an increasing set, the conditional probability
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P {Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n|Xi} is increasing in Xi > a for all i = 1, . . . , n0,
j = 1, . . . , r − 1 under the assumed PRDS condition. Therefore,

E

[
P {Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n|Xi}

×
{
I (Xi ≥ cj :n)
n − j + 1

− I (Xi ≥ cj+1:n)
n − j

}]

≤ P {Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n|Xi = cj+1:n}

×
{
P (Xi ≥ cj :n)
n − j + 1

− P (Xi ≥ cj+1:n)
n − j

}
(4.2)

for all i = 1, . . . , n0, j = 1, . . . , r − 1. Similar arguments can be made to obtain

E

[
P {Xr :n < cr :n, . . . ,Xj :n < cj :n|Xi}

×
{
I (Xi ≥ cj+1:n)

n− j
− I (Xi ≥ cj :n)

n − j + 1

}]

≤ P {Xr :n < cr :n, . . . ,Xj :n < cj :n|Xi = cj+1:n}

×
{
P (Xi ≥ cj+1:n)

n− j
− P (Xi ≥ cj :n)

n − j + 1

}
(4.3)

for all i = 1, . . . , n0, j = r, . . . , n− 1. The theorem then follows by applying (4.2)
and (4.3) to Lemma 3.2. �

REMARK 4.1. The above theorem strengthens the work of Benjamini and
Yekutieli (2001) by extending it to a more general scenario covering both step-
up and step-down procedures. We establish that the FDR of a generalized step-
up–step-down procedure can be controlled at any 0 < α < 1 if the test statistics
are independent, or have a joint distribution that is multivariate normal with
positive correlations, absolute-valued multivariate t corresponding to independent
normals or multivariate F . For absolute-valued multivariate t corresponding to
dependent normals with nonnegative correlations, the FDR can be controlled at
a value less than 0.5. For example, in many-to-one comparisons of means in
a one-way layout with one-sided alternatives, a generalized step-up–step-down
procedure can control the FDR. Other specific situations where this theorem
is applicable involve simultaneous testing of the means of several independent
populations with a common but unknown variance against one- or two-sided
alternatives and many-to-one comparisons of variances in a balanced one-way
layout with one-sided alternatives. The necessary formulas developed in this article
are, however, different, providing new results in the area of ordered random
variables.
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In the case of r = 1, that is, for a step-up procedure, a slightly stronger result
than what is stated above actually follows when the statistics are independent. No-
tice that

{Xr :n < cr :n, . . . ,Xj :n < cj :n, Xi ≥ ck:n}
= {Xr :Ji < cr :n, . . . ,Xj :Ji < cj :n, Xi ≥ ck:n}

for all k ≥ j , 1 ≤ r ≤ j ≤ n − 1, where Ji = {1, . . . , n} − {i} and X1:Ji ≤ · · · ≤
Xn−1:Ji are the ordered components of {Xj, j ∈ Ji}. Hence, when the Xi’s are
independent, we have equality in (4.3), implying that, for a step-up test involving
independent test statistics,

FDR = n0

n

[
1 − F(c1:n)

] +
n0∑
i=1

n−1∑
j=1

P {Xr :Ji < cr :n . . . ,Xj :Ji < cj :n}

×
{ [1 − F(cj+1:n)]

n− j
− [1 − F(cj :n)]

n− j + 1

}
.

(4.4)

This becomes exactly equal to n0α/n when the critical values satisfy the condition
stated in Theorem 4.2 with r = 1. This is what Benjamini and Yekutieli (2001)
have proved using different arguments.

We have a new result here on the FDR in a step-down procedure. In situations
where the Benjamini–Hochberg step-up procedure controls the FDR, a step-down
procedure with the same set of critical values also controls the FDR. It may not
be a surprising result in the context of the FWE rate, because one can see that the
event {Rr ≥ k}, where Rr is the number of rejections in a generalized step-up–
step-down procedure of order r , which is

n−k⋃
j=0

Ar
j,n = {Xr :n < cr :n, . . . ,Xn−k+1:n < cn−k+1:n}c

for k = 0,1, . . . , n− r

= {Xn−k+1:n ≥ cn−k+1:n, . . . ,Xr :n ≥ cr :n}
for k = n − r + 1, . . . , n,

(4.5)

is decreasing in r , implying that both Vr , the number of false rejections, and Rr are
stochastically decreasing in r . Therefore, controlling the FWE of a step-up proce-
dure will ensure the same property for the other step-up–step-down procedures,
including the step-down procedure, with the same set of critical values. This is not
so obvious in the context of the FDR. In other words, whether or not the probabil-
ity distribution of Vr/Rr , conditional on {Rr > 0}, is stochastically decreasing in r

is not clear. Still, why is it an important result that both step-down and step-up pro-
cedures corresponding to the same set of critical values control the FDR even if the
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step-up procedure is more powerful in the sense of ensuring an increased number
of rejections? An answer lies in Abramovich, Benjamini, Donoho and Johnstone
(2000). In the model selection problem they considered, the optimal penalized
version is between the step-down (backward elimination) and step-up (forward se-
lection) procedures with the same set of critical values that are known to control
the FDR of the step-up procedure. They have shown that asymptotically, with the
number of parameters increasing, the stopping points of the two procedures are
close to each other, and therefore both control the FDR. The present work proves
that both forward selection and backward elimination versions control the FDR in
finite problems.

The above FDR-controlling step-down procedure is different from the Benja-
mini–Liu (1999) step-down procedure where the critical values cj :n’s are such that

F(cj :n) =
[
1 − min

(
1,

n

j
α

)]1/j

, j = 1, . . . , n.(4.6)

They have proved that this step-down procedure controls the FDR at α when the
statistics are independent. What happens to the FDR of this procedure when the
statistics are dependent? This is what we are going to answer next.

THEOREM 4.2. The FDR of the Benjamini–Liu step-down procedure is
controlled at α if the underlying test statistics are MTP2 under any alternatives
and exchangeable when the hypotheses are true.

PROOF. Our proof relies on Lemma 3.3. Write Bj,I1 , for j = 0,1, . . . , n1, as
Bj,I1 = Cj+1,I1 − Cj,I1 , where Cj,I1 = {Xj :I1 ≥ cn0+j :n, . . . ,Xn1:I1 ≥ cn:n}, with
C0,I1 and Cn1+1:I1 being the null and sure events, respectively. The right-hand side
of (3.5) can then be expressed as follows:

1

n

n1∑
j=0

(n0 + j)P {Xn0:I0 ≥ cn0+j :n,Cj+1,I1 − Cj,I1}

= P {Xn0:I0 ≥ cn:n} + 1

n

n1∑
j=1

[
(n0 + j − 1)P {Cj :I1,Xn0:I0 ≥ cn0+j−1:n}

− (n0 + j)P {Cj :I1,Xn0:I0 ≥ cn0+j :n}]
= P {Xn0:I0 ≥ cn:n}

+ 1

n

n1∑
j=1

E
[
P {Cj :I1|Xn0:I0}

{
(n0 + j − 1)I (Xn0:I0 ≥ cn0+j−1:n)

− (n0 + j)I (Xn0:I0 ≥ cn0+j :n)
}]
.

(4.7)
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Now suppose that the following condition holds:

E
{
φ(Xn0+1, . . . ,Xn)|Xn0:I0

}
is nondecreasing in Xn0:I0(4.8)

for any coordinatewise nondecreasing function φ of (Xn0+1, . . . ,Xn). Since Cj,I1

is nondecreasing in (Xn0+1, . . . ,Xn), we get, using the kind of arguments made
in (4.2), that

E
[
P {Cj,I1|Xn0:I0}

{
(n0 + j − 1)I (Xn0:I0 ≥ cn0+j−1:n)

− (n0 + j)I (Xn0:I0 ≥ cn0+j :n)
}]

≤ P {Cj :I1|Xn0:I0 = cn0+j :n}{(n0 + j − 1)P (Xn0:I0 ≥ cn0+j−1:n)
− (n0 + j)P (Xn0:I0 ≥ cn0+j :n)

}
.

(4.9)

Using this in the last line of (4.7) and going back to the first line, we finally have

FDR ≤ 1

n

n1∑
j=0

(n0 + j)P {XI0:n0 ≥ cn0+j :n}

× [
P {Cj+1,I1|Xn0:I0 = cn0+j+1:n} − P {Cj,I1|Xn0:I0 = cn0+j :n}].

≤ 1

n
max

0≤j≤n1

[
(n0 + j)P {Xn0:I0 ≥ cn0+j :n}](4.10)

×
n1∑
j=0

[
P {Cj+1,I1|Xn0:I0 = cn0+j+1:n} − P {Cj,I1|Xn0:I0 = cn0+j :n}]

= 1

n
max

0≤j≤n1

[
(n0 + j)P {Xn0:I0 ≥ cn0+j :n}].

The second inequality in (4.10) uses the fact that the difference P {Cj+1,I1|Xn0:I0 =
cn0+j+1:n} − P {Cj,I1|Xn0:I0 = cn0+j :n}, because of condition (4.8), is greater
than or equal to P {Bj,I1|Xn0:I0 = cn0+j :n} and hence is nonnegative for all j =
0,1, . . . , n1. Since Xn0:I0 <X|J |:J for every J ⊇ I0, the FDR in (4.10) is less than
or equal to α for any n0 if the cj :n’s satisfy

j

n
P

{
max(X1, . . . ,Xj ) ≥ cj :n

} ≤ α for all j = 1, . . . , n,(4.11)

assuming that all the hypotheses are true. When the Xj ’s are independent, the
cj :n’s satisfying (4.11) are those in (4.6) given by Benjamini and Liu (1999). The
same cj :n’s will satisfy (4.11) with dependent Xj ’s if the following property holds,
at least when the underlying hypotheses are true:

P {Xj ≤ cj :n, j = 1, . . . , n} ≥
n∏

j=1

P {Xj ≤ cj :n} for all (c1:n, . . . , cn:n).(4.12)
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To see that conditions (4.8) and (4.12) hold for the multivariate distributions
considered in the theorem, first note that

E
{
φ(Xn0+1, . . . ,Xn)|Xn0:I0 = x

}

=
n0∑
k=1

E
{
φ(Xn0+1, . . . ,Xn)|Xn0:I0 = x, Xk = Xn0:I0

}

×P {Xk = Xn0:I0 |Xn0:I0 = x},
which reduces to

1

n0

n0∑
k=1

E
{
φ(Xn0+1, . . . ,Xn)|Xn0:I0 = x, Xk = Xn0:I0

}
(4.13)

because of the exchangeability condition of the Xj ’s under the true hypotheses.
Since the Xj ’s are also MTP2 under any alternatives, each of the conditional ex-
pectations in (4.13), and hence that in (4.8), with nondecreasing φ is nondecreas-
ing in x. This is because of Lemma 2.4. The condition (4.12), which is the posi-
tive quadrant dependence condition, is a consequence of the MTP2 property [see,
e.g., Karlin and Rinott (1980)]. Thus, the theorem is proved. �

REMARK 4.2. Multivariate distributions satisfying the properties stated in
Theorem 4.2 include those of i.i.d. test statistics, and multivariate normal with
nonnegative common correlations. For example, in many-to-one comparisons
of means in a balanced one-way layout with one-sided alternatives and known
variances, the Benjamini–Liu procedure controls the FDR.

It is to be noted that the step-down procedure with the critical values
satisfying (4.11) actually provides a modification of the Benjamini–Liu procedure
for the dependence case. If the joint distribution of (X1, . . . ,Xj ) is completely

specified under
⋂j

i=1 Hi , for all j = 1, . . . , n, and the conditions stated in
Theorem 4.2 hold, then it controls the FDR at α.

In the Benjamini–Liu procedure, cj :n = −∞ for j ≤ [nα]. Therefore, if it
continues up to n − [nα] steps without accepting any of the null hypotheses,
it stops and declares all of them to be false. Some null hypotheses, even with
extremely small values of the corresponding test statistics, may end up being
rejected. This particular feature, as Benjamini and Liu (1999) have argued, is not
quite unrealistic. Since the hypotheses are being tested simultaneously, a few false
rejections are allowed in controlling the FDR when many correct rejections have
already been made. One may, however, want to protect against rejecting a null
hypothesis with a small value of the corresponding test statistic by restricting all
the test statistics to have values more than a certain prespecified number. This is not
going to inflate the FDR in the situations stated in Theorem 4.2 because the MTP2
as well as the exchangeability conditions still holds for the conditional distribution
on a set like {Xi ≥ a, i = 1, . . . , n} for any fixed a.
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APPENDIX

PROOF OF LEMMA 3.1. First note that the event {R = n − j}, that is, Ar
j,n,

can be written as
⋃

J AJ , where the union is taken over all J ⊆ {1, . . . , n} such
that |J | = j and the AJ ’s are the following disjoint subsets:

AJ =
{
max
k∈J

Xk < cj :n, X1:J c ≥ cj+1:n, . . . ,Xr−j :J c ≥ cn:n
}

for j = 0,1, . . . , r − 1,

=
{
Xr :J < cr :n, . . . ,Xj :J < cj :n, min

k∈J c
Xk ≥ cj+1:n

}

for j = r, . . . , n.

Since {Xi ≥ cj+1:n,AJ } = AJ if i ∈ J c and =∅ otherwise, we have

n∑
i=1

P {Xi ≥ cj+1,n, R = n − j} =
n∑

i=1

∑
J :J c�i

P {AJ }

= ∑
J

∑
i:i∈J c

P {AJ }

= (n− j)
∑
J

P {AJ }

= (n− j)P {R = n− j}.
Thus, the lemma follows. �

PROOF OF LEMMA 3.2. First note that
r−1∑
j=0

1

n − j
P {Xi ≥ cj+1:n, R = n− j}

=
r∑

j=1

1

n − j + 1
P {Xi ≥ cj :n, R ≥ n− j + 1}

−
r−1∑
j=1

1

n− j
P {Xi ≥ cj+1:n, R ≥ n− j + 1}(A.1)

= 1

n− r + 1
P {Xi ≥ cr :n, R ≥ n − r + 1}

+
r−1∑
j=1

E

[
P {R ≥ n− j + 1|Xi}

{
I (Xi ≥ cj :n)
n− j + 1

− I (Xi ≥ cj+1:n)
n− j

}]
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= 1

n− r + 1
P {Xr :n ≥ cr :n, Xi ≥ cr :n}

+
r−1∑
j=1

E

[
P {Xj :n ≥ cj :n, . . . ,Xr :n ≥ cr :n|Xi}

×
{
I (Xi ≥ cj :n)
n − j + 1

− I (Xi ≥ cj+1:n)
n − j

}]
.

The last equality follows from (4.5). Also,
n−1∑
j=r

1

n− j
P {Xi ≥ cj+1:n, R = n − j}

=
n−1∑
j=r

1

n− j
P {Xi ≥ cj+1:n, R ≤ n− j}

−
n−1∑

j=r+1

1

n − j + 1
P {Xi ≥ cj :n, R ≤ n− j}

= 1

n − r + 1
P {Xi ≥ cr :n, R ≤ n − r}

−
n−1∑
j=r

E

[
P {R ≤ n− j |Xi}

×
{
I (Xi ≥ cj :n)
n − j + 1

− I (Xi ≥ cj+1:n)
n− j

}]

= 1

n − r + 1
P {Xr :n < cr :n, Xi ≥ cr :n}

+
n−1∑
j=r

E

[
P {Xr :n < cr :n, . . . ,Xj :n < cj :n|Xi}

×
{
I (Xi ≥ cj+1:n)

n− j
− I (Xi ≥ cj :n)

n − j + 1

}]
.

(A.2)

Again, (4.5) is used in the last equality of (A.2). Combining (A.1) and (A.2), we
get the proof of Lemma 3.2. �

PROOF OF LEMMA 3.3. The FDR of the step-down procedure with critical
values c1:n ≤ · · · ≤ cn:n is given by

FDR =
n0∑
i=1

n−1∑
j=0

1

n − j
P {Xi ≥ cj+1:n, R = n− j},(A.3)

with R still representing the total number of rejections. From Lemma 3.1, we note
that (A.3) reduces to P {Xn:n ≥ cn:n} if we extend the first summation up to i = n.
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Therefore, we can write (A.3) as

FDR = P {Xn:n ≥ cn:n} −
n∑

i=n0+1

n−1∑
j=0

1

n − j
P {Xi ≥ cj+1:n, R = n− j}.(A.4)

The first probability in (A.4) can be expressed as

P {Xn:n ≥ cn:n}
= P {Xn1:I1 ≥ cn:n} + P {Xn0:I0 ≥ cn:n, Xn1:I1 < cn:n}.(A.5)

Let R∗ denote the total number of rejections in the step-down procedure based
on (Xn0+1, . . . ,Xn) and the critical values (cn0+1:n, . . . , cn:n). Then the double
summation in (A.4) can be written as

n1∑
k=0

n∑
i=n0+1

n−1∑
j=0

1

n− j
P {Xi ≥ cj+1:n, R = n− j, R∗ = n1 − k}.(A.6)

Since cj+1:n ≤ cn0+k+1:n for j ≤ n0 + k, (A.6) is greater than or equal to

n1−1∑
k=0

n∑
i=n0+1

n0+k∑
j=0

1

n − j
P {Xi ≥ cn0+k+1:n, R = n− j, R∗ = n1 − k}

=
n1−1∑
k=0

n0+k∑
j=0

n1 − k

n − j
P {R = n− j, R∗ = n1 − k}.

(A.7)

The equality in (A.7) follows from the result

n∑
i=n0+1

P {Xi ≥ cn0+k+1:n, R∗ = n1 − k|R} = (n1 − k)P {R∗ = n1 − k|R},

which can be proved as in Lemma 3.1.
We will now prove, using the following supporting result (Result A.1) on

ordered random variables that (A.7) is greater than or equal to

P {Xn1:I1 ≥ cn:n} −
n1−1∑
k=0

n0 + k

n
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k}.(A.8)

Once it is proved, we can use (A.5) and (A.8) in (A.4) to obtain

FDR ≤
n1−1∑
k=0

n0 + k

n
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k}

+P {Xn0:I0 ≥ cn:n, R∗ = 0},
proving the lemma. �
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RESULT A.1. For any fixed a1 ≤ · · · ≤ an and J ⊆ {1, . . . , n},
{Y1:n ≥ a1, . . . , Yn:n ≥ an, Y1:J c ≥ a|J |+1, . . . , Y|J c|:J c ≥ an}

= {Y1:J ≥ a1, . . . , Y|J |:J ≥ a|J |, Y1:J c ≥ a|J |+1, . . . , Y|J c|:J c ≥ an}.
PROOF. To prove the desired inequality, that is, that (A.7) is greater than

or equal to (A.8), we first note that, given Bk,I1 = {R∗ = n1 − k}, k of the
n1 random variables Xn0+1, . . . ,Xn are all less than cn0+k:n and the ordered
components of the remaining n1 − k random variables are greater than or equal
to cn0+k+1:n, . . . , cn:n, respectively. Therefore, for every fixed k = 0, . . . , n1 − 1,
we have

n0+k∑
j=0

n1 − k

n− j
P {R = n − j, R∗ = n1 − k}

=
n0+k∑
j=0

n1 − k

n− j

∑
J :|J |=k

P
{
Xj :n < cj :n, Xj+1:n ≥ cj+1:n, . . . ,Xn:n ≥ cn:n,

max
i∈J

Xi < cn0+k:n, X1:I1\J ≥ cn0+k+1:n, . . . ,

Xn1−k:I1\J ≥ cn:n
}

=
n0+k∑
j=0

n1 − k

n− j

∑
J :|J |=k

P {Xj :I0∪J < cj :n, Xj+1:I0∪J ≥ cj+1:n, . . . ,

Xn0+k:I0∪J ≥ cn0+k:n, R∗ = n1 − k},

(A.9)

where J ⊆ I1, I1 \ J = I1 − J and, for each J with |J | = k, X1:I0∪J ≤ · · · ≤
Xn0+k:I0∪J are the ordered components of the (n0 + k)-dimensional set containing
(X1, . . . ,Xn0) and (Xi, i ∈ J ). Then

{Xj :n ≥ cj :n, . . . ,Xn:n ≥ cn:n,X1:I1\J ≥ cn0+k+1:n, . . . ,Xn1−k:I1\J ≥ cn:n}
= {Xj :I0∪J ≥ cj :n, . . . ,Xn0+k:I0∪J ≥ cn0+k:n,

X1:I1\J ≥ cn0+k+1:n, . . . ,Xn1−k:I1\J ≥ cn:n}
for j = 0, . . . , n0 + k − 1, which is obtained from Result A.1 with ai = −∞ for
i = 1, . . . , j and = ci:n for i = j + 1, . . . , n, provides the last step in (A.9). The
summation in (A.9) without the (n0 + k)th term is greater than or equal to

n1 − k

n

n0+k−1∑
j=0

∑
J :|J |=k

P {Xj :I0∪J < cj :n, Xj+1:I0∪J ≥ cj+1:n, . . . ,

Xn0+k:I0∪J ≥ cn0+k:n, R∗ = n1 − k}
= n1 − k

n

∑
J :|J |=k

P {Xn0+k:I0∪J ≥ cn0+k:n, R∗ = n1 − k}

= n1 − k

n
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k},

(A.10)



256 S. K. SARKAR

whereas, from the last expression in (A.9), we see that the (n0 + k)th term is

∑
J :|J |=k

P
{
Xn0:I0 < cn0+k:n, max

i∈J
Xi < cn0+k:n, R∗ = n1 − k

}

= P {Xn0:I0 < cn0+k:n, R∗ = n1 − k}.
(A.11)

The last equality in (A.10) follows from the fact that
{
Xn0+k:I0∪J ≥ cn0+k:n, max

i∈J
Xi < cn0+k:n

}

=
{
Xn0:I0 ≥ cn0+k:n, max

i∈J
Xi < cn0+k:n

}
.

Applying (A.10) and (A.11) to (A.9), we get that (A.7) is greater than or equal to

n1−1∑
k=0

P {Xn0:I0 < cn0+k:n, R∗ = n1 − k}

+
n1−1∑
k=0

n1 − k

n
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k}

=
n1−1∑
k=0

P {R∗ = n1 − k}

−
n1−1∑
k=0

(
1 − n1 − k

n

)
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k}

= P {Xn1:I1 ≥ cn:n} −
n1−1∑
k=0

n0 + k

n
P {Xn0:I0 ≥ cn0+k:n, R∗ = n1 − k},

which is (A.8). This proves the desired inequality and finally Lemma 3.3. �

PROOF OF LEMMA 3.4. Let f (x1, . . . , xn) denote the joint density of
(X1, . . . ,Xn). If f is MTP2, then, for any fixed 1 ≤ k ≤ n0, the joint density of
(Xn0:I0,Xn0+1, . . . ,Xn), conditionally given Xk = Xn0:I0 = x, which is propor-
tional to

∫
· · ·

∫
f (x1, . . . , xk−1, x, xk+1, . . . , xn)

n0∏
j=1( �=k)

I (xj ≤ x)

n0∏
j=1( �=k)

dxj ,(A.12)

is also MTP2. This is because of the fact that the integrand in (A.12) is MTP2, as
both

∏n0
j=1( �=k) I (xj ≤ x) and f are MTP2, and the property that an integral of an

MTP2 function is also MTP2 [see, e.g., Karlin and Rinott (1980)]. �
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