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Abstract Geographic Routing is a family of routing algorithms that uses geographic
point locations as addresses for the purposes of routing. Such routing algorithms
have proven to be both simple to implement and heuristically effective when applied
to wireless sensor networks. Greedy Routing is a natural abstraction of this model in
which nodes are assigned virtual coordinates in a metric space, and these coordinates
are used to perform point-to-point routing.

Here we resolve a conjecture of Papadimitriou and Ratajczak that every 3-
connected planar graph admits a greedy embedding into the Euclidean plane. This
immediately implies that all 3-connected graphs that exclude K3,3 as a minor admit a
greedy embedding into the Euclidean plane. We also prove a combinatorial condition
that guarantees nonembeddability. We use this result to construct graphs that can be
greedily embedded into the Euclidean plane, but for which no spanning tree admits
such an embedding.

Keywords Greedy embedding · Papadimitriou–Ratajczak conjecture · Christmas
cactus graph · Excluded minor

1 Introduction

1.1 Background

The study of routing has a long and rich history. But for many important classes of
routing problems, routing schemes that are both simple and provably effective have
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so far been elusive. In particular, scalable wireless sensor networks require point-to-
point communication, but such ad hoc networks admit no global hierarchical address-
ing scheme, and there are still no broadly accepted, scalable point-to-point routing
schemes despite numerous proposals. Geographic Routing is a family of routing al-
gorithms that uses geographic point locations as addresses for the purposes of routing.
Such routing algorithms have proven to be both simple to implement and heuristically
effective when applied to wireless sensor networks.

Recent work on routing protocols for wireless sensor networks [2, 7] has focused
particular attention on a class of “greedy” algorithms wherein a packet at a node u

that is destined for a node v is simply forwarded to any neighbor u′ of u for which
d(u′, v) < d(u, v), where d(x, y) is the Euclidean distance between the locations of x

and y in the plane. For such an algorithm to guarantee delivery, it must be the case
that for every u and v, such a u′ exists (i.e., that wherever a packet is in the network,
there is always a next hop that gets the packet closer in Euclidean distance to its
ultimate destination).

Rao et al. [10] proposed a natural abstraction of this model in which nodes are
assigned virtual coordinates in a metric space, and these coordinates are used to per-
form point-to-point routing.

Definition 1 A graph G = (V ,E) is said to have a greedy embedding into a metric
space (X,d) if there is a function f : V → X such that for every pair of distinct
nodes u,v ∈ V , there exists a neighbor u′ of u in G such that d(f (u′), f (v)) <

d(f (u), f (v)).

Papadimitriou and Ratajczak [9] considered the case where (X,d) is the Euclid-
ean plane and gave simple examples of graphs which have a greedy embedding
(e.g., Hamiltonian graphs) and graphs that admit no greedy embedding into the
Euclidean plane (e.g., Kr,6r+1). Papadimitriou and Ratajczak conjectured that all 3-
vertex-connected planar graphs admit a greedy embedding into the Euclidean plane.
Throughout this paper, we will be interested only in vertex connectivity, so we will
shorten k-vertex-connected to k-connected.

Conjecture 1 [9] All 3-connected planar graphs admit a greedy embedding into the
Euclidean plane.

Papadimitriou and Ratajczak [9] proved that all 3-connected planar graphs admit
a greedy-type embedding in 3-dimensions, although for their result, the notion of a
greedy embedding is slightly different than the standard definition because the dis-
tance function they use is not a metric. Kleinberg [8] considered the case in which
(X,d) is the hyperbolic plane and showed that every tree (and consequently every
graph) has a greedy embedding in the hyperbolic plane. Dhandapani [3] recently
proved that all triangulated 3-connected planar graphs admit a greedy embedding
into the Euclidean plane; this is a relaxation of the Papadimitriou–Ratajczak Conjec-
ture. His proof made use of Schnyder Realizers, and used the geometric properties of
Schnyder Drawings to find a greedy embedding.
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Eppstein and Goodrich [4] considered the problem of finding a greedy embed-
ding that can be represented succinctly. Many theoretical results on greedy embed-
dings (including those presented here) require the bit complexity of representing the
greedy embedding to exceed the bit complexity of describing the adjacency matrix of
the graph. In [4], Eppstein and Goodrich are able to support greedy routing (in hyper-
bolic space) but substantially improve the bit-complexity of representing the virtual
coordinates used by the algorithm. Additionally, Goorich and Strash [6] presented
variants of some embeddings given here and were able to obtain similar improve-
ments in the case of greedy embeddings into the Euclidean plane.

1.2 Our Results

Here we resolve the Papadimitriou–Ratajczak Conjecture. In fact, we construct a
greedy embedding into the Euclidean plane for all circuit graphs (which general-
ize 3-connected planar graphs). We can apply a theorem in [9] which states that if a
3-connected graph G does not contain K3,3 as a minor, then G contains a spanning
3-connected planar subgraph. If any spanning subgraph of G admits a greedy embed-
ding (into a particular metric space (X,d)), then G also admits a greedy embedding
into this metric space. So this immediately implies that all 3-connected graphs that
exclude K3,3 as a minor admit a greedy embedding into the Euclidean plane.

Additionally, we provide the first examples of graphs of degree at most 3 that
admit no such embedding. We also prove a combinatorial condition that guarantees
nonembeddability, and this condition provides a certificate for nonembeddability that
can be verified in linear time. We use this result to construct graphs that can be greed-
ily embedded into the Euclidean plane, but for which no spanning tree admits such
an embedding.

Perhaps of independent interest, we make use of a decomposition theorem due
to Gao and Richter [5]. This is, to the best of our knowledge, this decomposition
theorem’s first use in theoretical computer science. We use this theorem to find a
spanning subgraph that can be greedily embedded into the Euclidean plane, and we
believe that this technique can be generally applicable for finding particular types of
spanning subgraphs in circuit graphs as needed.

2 A Greedy Embedding for Circuit Graphs

Circuit graphs are a relaxation of 3-connected planar graphs. In this section, we
prove that all circuit graphs contain a spanning Christmas cactus graph and pro-
vide a polynomial-time algorithm to find such a spanning subgraph. We then con-
struct a greedy embedding into the Euclidean plane for all Christmas cactus graphs.
This proves the Papadimitriou–Ratajczak Conjecture. As a corollary, any 3-connected
graph that excludes K3,3 as a minor admits a greedy embedding into the Euclidean
plane.
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Fig. 1 A Christmas cactus graph G generated by the tree T . The nodes in U are denoted with a ∗, and
the edge in F is circled

2.1 Christmas Cactus Graphs

A cactus graph is a graph for which every edge is part of at most one cycle. In
what follows, we will be interested in a special type of cactus graph that we call a
Christmas cactus graph.

Definition 2 A Christmas cactus graph G = (V ,E) is a connected cactus graph for
which the removal of any node v ∈ V disconnects G into at most two components.

It is well known that a cactus graph can be constructed from a tree by replacing
edges with cycles of arbitrary size. Similarly, a Christmas cactus graph can be con-
structed from a tree by replacing nodes with cycles and contracting edges that are not
in cycles. It is easy to see that we can alternatively define a Christmas cactus graph
as any graph that can be generated by the following procedure:

Step 1. Let T be a tree, and let U be any subset of nodes of T that contains every
node with degree at least 3 in T .

Step 2. (Repeat) For each node u ∈ U , replace u with a cycle Cu of arbitrary length
so that all neighbors of u (in the current graph) are connected by an edge to a distinct
node in Cu.

Step 3. Let F be any set of edges in the graph resulting from Step 2 which are not
contained in a cycle.

Step 4. Contract out the edges in F .

For example, these steps are shown in Fig. 1.
Simple cycles in a Christmas cactus graph are not necessarily node-disjoint be-

cause a path connecting two node-disjoint cycles can be contracted. However, for
any two simple cycles C1 and C2, |C1 ∩ C2| ≤ 1 and for any three simple cycles
C1,C2, and C3, |C1 ∩ C2 ∩ C3| = 0.

2.2 Circuit Graphs

Barnette [1] introduced the class of graphs known as circuit graphs, which he defined
to be graphs obtained by deleting a vertex from a 3-connected planar graph. Circuit
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Fig. 2 Obtaining a spanning
closed 2-walk from a spanning
Christmas cactus graph

graphs are a relaxation of 3-connected planar graphs but provide a more convenient
class of graphs on which to construct inductive proofs. Gao and Richter [5] proved
rich structural theorems about the class of circuit graphs and used these results to
inductively prove that all circuit graphs contain a spanning closed 2-walk, i.e., a walk
that starts and ends at some vertex u and visits all vertices in G at least once and at
most twice. Here we will use these structural results to prove that any 3-connected
planar graph (or more generally any circuit graph) contains a spanning Christmas
cactus graph. We will then give a greedy embedding for any Christmas cactus graph
into the Euclidean plane, and this will prove the Papadimitriou–Ratajczak Conjecture.

We take a short detour to provide intuition as to why the notion of a greedy embed-
ding into the Euclidean plane should be at all related to the existence of a spanning
closed 2-walk. We note that any graph that contains a Hamiltonian cycle also ad-
mits a greedy embedding into the Euclidean plane. The reason is that if any spanning
subgraph of G admits a greedy embedding into the Euclidean plane, then G also ad-
mits a greedy embedding into the Euclidean plane. Also, any cycle admits a greedy
embedding into the Euclidean plane, and this implies the claim.

However, not all 3-connected planar graphs contain a Hamiltonian cycle. So we
cannot hope to prove the Papadimitriou–Ratajczak Conjecture by finding a Hamil-
tonian cycle. A spanning closed 2-walk is a relaxation of a Hamiltonian cycle, and
such a walk still maintains almost enough structure so that we can reconstruct a
greedy embedding into the Euclidean plane from such a walk.

We can consider a spanning Christmas cactus graph to be a type of spanning closed
2-walk:

Claim 1 Any graph G that contains a spanning Christmas cactus graph also con-
tains a spanning closed 2-walk.

Moreover, such a walk can be obtained by performing a depth first search of the
tree T that generated the spanning Christmas cactus graph; see Fig. 2.

So here we will use the results of Gao and Richter [5] to prove the existence of a
particular type of spanning closed 2-walk—a spanning Christmas cactus graph—in
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every circuit graph. From this spanning subgraph we will construct a greedy embed-
ding into the Euclidean plane. Gao and Richter equivalently define a circuit graph as
follows:

Definition 3 A circuit graph is an ordered pair (G,C) such that:

1. G is 2-connected, and C is a polygon in G.
2. There is a noncrossing embedding of G in the plane such that C bounds an infinite

face.
3. If (H,K) is a 2-separation1 of G, then C � H and C � K .

A 3-connected planar graph is a circuit graph because G can be embedded using
Tutte’s rubber band embedding and any 2-separation (H,K) such that C ⊂ H would
imply that G is not 3-connected. We next review some key structural properties of
circuit graphs:

Lemma 1 [5] Let (G,C) be a circuit graph embedded in the plane (such that no
edges are crossing), and let C1 be any polygon in G. Then the subgraph G1 con-
taining C1 and all nodes and edges inside C1 (in the plane embedding) is a circuit
graph.

Definition 4 [5] A connected graph G is a chain of blocks if each block of G contains
at most two cut vertices and each cut vertex2 lies in exactly two blocks. Then a chain
of blocks can be written as B1, b1,B2, . . . , bk−1,Bk such that the common vertex of
blocks Bi and Bi+1 is bi . Then a plane chain of blocks is a chain of blocks and a
plane embedding such that for all j ,

⋃
i 	=j Bi is in the infinite face of Bj .

Because each cut vertex is in exactly two blocks, each bi must be distinct. A block
is called trivial if the block is just the edge bi, bi+1. Then the seminal work of Gao
and Richter gives the following structural result for circuit graphs (see Fig. 3).

Theorem 1 [5] Let (G,C) be a circuit graph, and let x, y ∈ C be distinct. Then
there exists a partition of V (G) − V (C) into V1,V2, . . . , Vm and distinct vertices
v1, v2, . . . , vm ∈ V (C) − {x, y} such that the graph induced by Vi ∪ {vi} is a plane
chain of blocks Bi,1, bi,1, . . . , bi,k−1,Bi,k such that vi ∈ V (Bi,1)−bi,1 and each non-
trivial block Bi,j has an outer polygon Ci,j such that (Bi,j ,Ci,j ) is a circuit graph.3

Gao and Richter use this structural result to find a spanning closed 2-walk that
visits x, y only once, in any circuit graph by induction. In what follows, we use this

1A k-separation of a graph H = (V ,E) is a pair H1,H2 of edge disjoint subgraphs of H , each with at
least k + 1 vertices, such that H = H1 ∪ H2 and |V (H1) ∩ V (H2)| = k.
2A cut vertex is a vertex that when removed from G, disconnects the graph.
3Gao and Richter actually state that Bi,j is a block, but from the construction of this block in the proof
of the theorem it is clear that Bi,j is a subgraph containing all nodes and edges inside (and including)
a polygon Ci,j in G. This implies that (Bi,j ,Ci,j ) is a circuit graph, and Gao and Richter explicitly
state this when actually invoking the structural theorem to prove that all circuit graphs contain a closed,
spanning 2-walk.
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Fig. 3 A plane chain of blocks

structural result to find a spanning subgraph in any circuit graph that can be greedily
embedded in the plane. We will use δG(x) to denote the degree of x in G. The proof
of this theorem given by Gao and Richter is constructive and can be used to find such
a decomposition in polynomial time, given the planar drawing of the circuit graph.

Theorem 2 For any circuit graph (G,C) and distinct x, y ∈ C, there exists a Christ-
mas cactus graph T (G) that spans G such that x, y are jointly in a cycle and
δT (G)(x) = δT (G)(y) = 2, and such a subgraph can be found in polynomial time.

Proof The proof is by induction on the number of vertices in the circuit graph
(G,C). Let x, y ∈ V (C) be distinct. Applying Theorem 1, there exists a parti-
tion of V (G) − V (C) into V1,V2, . . . , Vm and distinct vertices v1, v2, . . . , vm ∈
V (C) − {x, y} such that the graph induced by Vi ∪ {vi} is a plane chain of blocks
Bi,1, bi,1, . . . , bi,k−1,Bi,k , vi ∈ V (Bi,1) − bi,1 and each nontrivial block Bi,j has an
outer polygon Ci,j such that (Bi,j ,Ci,j ) is a circuit graph.

By the definition of a plane chain of blocks, each cut vertex bi,k must be distinct.
The chain of blocks Bi,1, bi,1, . . . , bi,k−1,Bi,k is a plane chain of blocks w.r.t. the
original plane embedding. vi is on the infinite face in G, and this implies that vi ∈ Ci,1
because vi must be in the infinite face in (Bi,1,Ci,1). Choose bi,0 = vi and bi,k to be
any vertex ∈ Bi,k − bi,k−1 that is contained in the infinite face Ci,k . If Bi,k is a trivial
block, then just choose bi,k to be the remaining endpoint. Directly from the structural
theorem, vi ∈ Bi,1 − bi,1. Then each bi,j is distinct, and contained in both infinite
faces Ci,j and Ci,j+1.

By induction each (nontrivial) Bi,j has a Christmas cactus spanning subgraph such
that bi,j−1, bi,j are jointly on a simple cycle and δT (Bi,j )(bi,j−1), δT (Bi,j )(bi,j ) = 2.
Then join the spanning Christmas cactus graph of Bi,j to the spanning Christmas
cactus graph of Bi,j+1 by joining bi,j in each spanning Christmas cactus graph by an
edge, and contracting the edge.

If the neighboring block in the plane chain is a trivial block, then just connect
a nontrivial block to the next nontrivial block by a path of the trivial blocks. If
Bi,1 is not trivial, then the result is a Christmas cactus spanning subgraph for the
plane chain of blocks Bi,1, bi,1, . . . , bi,k−1,Bi,k such that vi is on a cycle and has
δT (Bi,1,...,k)(vi) = 2. If Bi,1 is trivial, then the result is a Christmas cactus spanning
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Fig. 4 Connecting spanning Christmas cactus graphs in a plane chain of blocks

subgraph for the plane chain of blocks Bi,1, bi,1, . . . , bi,k−1,Bi,k such that vi is not
on a cycle and δT (Bi,1,...,k)(vi) = 1.

Then consider the base cycle V (C) and join the spanning Christmas cactus graph
of each induced plane chain of blocks Vi ∪ {vi} to the node vi on the cycle by an
edge, and contract the edge as in Fig. 4.

The result is a spanning Christmas cactus graph of G such that x, y are jointly
on a cycle and δT (G)(x), δT (G)(y) = 2, and the theorem is true by induction. This
construction also yields a polynomial-time algorithm because each decomposition is
polynomial-time constructible and x, y do not appear in the decomposition, and so
the number of decompositions that must be computed is bounded by n

2 . �

2.3 Constructing a Greedy Embedding

In this section, we construct a greedy embedding for any Christmas cactus graph in
the Euclidean plane.

Let G be an arbitrary Christmas cactus graph, and let F be the set of edges in G

that are not contained in a simple cycle. For the purposes of this construction, all
edges in F will be considered to be simple cycles (on two nodes). Then every edge
in G is contained in exactly one simple cycle.

Definition 5 A depth tree T w.r.t. G is a tree that contains a node for each simple
cycle in G, where nodes in T are connected iff |V (C1) ∩ V (C2)| = 1.

Select an arbitrary node of T to serve as the “root” and define the depth of a cycle
in the graph G as the depth of the corresponding node in T . Then define the depth of
any node in G to be the minimum depth of any cycle containing that node. G will be
embedded on concentric semi-circles of radius 1 = R0 < R1 < R2 < · · · such that all
nodes at depth i will be embedded on the semi-circle of radius Ri . Let the center of
all the semi-circles be the origin.

For any cycle C = (p, x1, . . . , xm) at depth k > 0, there will be a unique node on
the cycle that is at depth k − 1, and all remaining nodes will be at depth k. Assume
that for the cycle C, the unique node on the cycle that is at depth k − 1 is p. Then p

will be embedded on the semi-circle at radius Rk−1, and node x1 will be placed at
the intersection of the semi-circle of radius Rk and the ray that contains p and the
origin. The remaining nodes (if any) x2, . . . , xm will be embedded on the semi-circle
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Fig. 5 Embedding a Christmas cactus graph on concentric semi-circles

of radius Rk such that the nodes x1, x2, . . . , xm appear in clock-wise order along the
semi-circle of radius Rk at a distance to be specified shortly. See Fig. 5.

Definition 6 A node u ∈ G is a descendant of the cycle C at depth k if after removing
all edges in C from G, node u is not in the component that also contains node p, the
unique node in C at depth k − 1.

A node u in the cycle C at depth k, which is not the unique node in C at depth
k − 1, is also a descendant of the cycle C by this definition.

The embedding will proceed in phases, and at the end of phase i all nodes at depth
≤ i will be placed. To simplify the analysis, after each phase (and subphase), we will
preserve the greedy property that the subgraph induced by all currently placed nodes
along with the current embedding must exhibit the greedy routing property. Formally,
if at the end of a subphase, the set of nodes in G already placed is P and the subgraph
induced by P is GP , then for all s, t ∈ P , there exists a node u (adjacent to s in GP )
such that d(u, t) < d(s, t).

We will use a geometric lemma to establish the properties needed for this embed-
ding scheme. Consider the coordinates (assume ε > 0 and 0 ≤ α,β ≤ π )

c = (0,1 + z)

b = (− sinβ, cosβ)

a = (−(1 + ε) sin(β − α), (1 + ε) cos(β − α)
)

subject to the constraints

0 < α,β ≤ π

2

0 < ε ≤ 1 − cosβ

6
0 ≤ z ≤ ε

sinα ≤ ε(1 − cosβ)

2(1 + ε)



Discrete Comput Geom (2010) 44: 686–705 695

Claim 2 d
dz

(d(a, c)2 − d(b, c)2) < 0.

Proof

d

dz

(
d(a, c)2 − d(b, c)2)

= 2
(
1 + z − (1 + ε) cos(β − α)

) − 2(1 + z − cosβ)

= 2
(
cosβ − (1 + ε) cos(β − α)

)

= 2
(
cosβ − (1 + ε)(cosβ cosα + sinβ sinα)

)

≤ 2 cosβ
(
1 − (1 + ε) cosα

)

< 0

where the last inequality follows because sinα ≤ ε
1+ε

and cosα ≥ 1 − ε2

(1+ε)2 =
1+2ε

(1+ε)2 > 1
1+ε

. �

Hence d(a, c)2 − d(b, c)2 is minimized for z = ε.

Claim 3 d(a, c) − d(b, c) ≥ ε2.

Proof By Claim 1,

d(a, c)2 − d(b, c)2

≥ (1 + ε)2 sin2(β − α) − sin2 β

+ (1 + ε)2(1 − cos(β − α)
)2 − (1 + ε − cosβ)2

≥ (1 + ε)2 sin2(β − α) − 2(1 + ε)(1 − cosβ)

+ (1 + ε)2(1 − cos(β − α)
)2 − ε2

= 2(1 + ε)2(1 − cos(β − α)
) − 2(1 + ε)(1 − cosβ) − ε2

= −ε2 + 2(1 + ε)
(
ε + cosβ − (1 + ε) cos(β − α)

)

≥ −ε2 + 2(1 + ε)
(
ε + cosβ − (1 + ε)(cosβ + sinα)

)

= −ε2 + 2(1 + ε)
(
ε(1 − cosβ) − (1 + ε) sinα

)

≥ −ε2 + (1 + ε)ε(1 − cosβ)

≥ 5ε2

Then

d(a, c) − d(b, c) = d(a, c)2 − d(b, c)2

d(a, c) + d(b, c)

≥ 1

5

(
d(a, c)2 − d(b, c)2)

≥ ε2

since d(a, c) + d(b, c) ≤ 5. �
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For notational convenience, given an embedding f : V → R2, define the angle
∠a, b, c on nodes a, b, c,∈ V (G) as the angle formed by the rays (f (b), f (a)) and
(f (b), f (c)).

Theorem 3 For any Christmas cactus graph G, there exists a greedy embedding of G

into the Euclidean plane.

Proof Assume that every edge is in a simple cycle by considering any edge not in a
simple cycle as a 2-cycle. Construct the depth tree T w.r.t. G, and root T at an arbi-
trary node. Trace out a semi-circle of radius 1 centered at the origin. Suppose that the
cycle C in G at depth 0 contains m nodes, C = (1,2, . . . ,m). Then divide the semi-
circle of radius R0 into m equal angle sectors and place node i at the beginning of
the ith sector. The arc subtended by 1,2, . . . ,m is strictly smaller than the perimeter
of the semi-circle of radius R0 = 1 because no node is placed at the end of the mth
sector.

For any triple (a, a + 1, c) such that c > a, the angle ∠a, a + 1, c is strictly larger
than π

2 and d(a+1, c) < d(a, c). Similarly, for any triple (a, c−1, c) such that c > a,
the angle ∠a, c − 1, c is strictly larger than π

2 and d(a, c − 1) < d(a, c). Hence this
embedding is greedy.

This establishes the base case for the inductive construction. Now assume that all
nodes at depth ≤ i have been placed and that the induced subgraph on these nodes,
Gi , along with the embedding on concentric semi-circles (as described earlier) is
greedy.

Definition 7 If all nodes in Gi have been embedded so that this embedding exhibits
the greedy property, then for all s, t ∈ Gi , there exists u ∈ Gi such that (u, s) ∈ E(Gi)

and d(u, t) < d(s, t). Fix ns,t = u and define δ(Gi) = mins,t d(s, t) − d(t, ns,t ).

Then draw a ball Bu of radius δ(Gi)/3 around each node u ∈ Gi . Clearly if a
node t at depth i + 1 such that (u, t) ∈ E(G) is placed in Bu, then for any node
s ∈ Gi, 	= t , the neighbor ns,t that is strictly closer to t will also be strictly closer
to u. And if s = t ∈ Gi , then the neighbor u will be strictly closer to u.

Definition 8 Let β(Gi) be defined as the minimum (nonzero) angle over all s, t at
depth ≤ i from s to the origin, to t in the current embedding.

Assume that all nodes at depth ≤ i have been placed and that the subgraph in-
duced by these nodes along with the embedding exhibits the greedy property. We
must embed all cycles at depth i + 1 and preserve the greedy property.

Subphase: For each cycle C at depth i+1, C = (p, x1, . . . , xm), let p be the unique
node in the cycle at depth i. Call x1 the representative node for the cycle C (choose
an orientation of C at random and choose the next node after p). Let the radius of the
outermost semi-circle in the current embedding be Ri and define δ(Gi) and β(Gi) as

before w.r.t. the current embedding. Also, define ε = min(
δ(Gi)

3 ,Ri
1−cos 2

3 β(Gi)

6 ).
Place each representative node x1 at the intersection of the semi-circle of radius

Ri+1 = Ri + ε and the ray containing both the origin and p. Let P be the set of
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currently placed nodes (all nodes at depth ≤ i and one representative node for each
cycle at depth i + 1). We will show that the subgraph induced by these nodes, along
with the current embedding, exhibits the greedy property:

For any nodes s, t ∈ Gi , there is trivially a node u (adjacent to s in Gi ) in the
current embedding such that d(u, t) < d(s, t) because the nodes in Gi along with
the embedding of these nodes exhibited the greedy property (and the embedding of
nodes in Gi has not been changed) by induction. For any nodes s, t such that s ∈ Gi

and t is a representative node for a cycle C at depth i + 1, we have that t is in the ball
Bp of radius δ(Gi)

3 centered around the node p in C that is the unique node in C at
depth i. Then (t,p) is an edge in G, and all s ∈ Gi have a (already placed) neighbor
that is strictly closer to t .

Lastly, consider routing from a node s that is a representative node on a cycle C at
depth i + 1 to any node that has already been placed. Again, let p be the unique node
in C that is at depth i. By construction, the perpendicular bisector to the segment sp
contains all nodes currently placed, except s, on the same side as p:

Trivially, any node t at depth ≤ i will be on the same side of the perpendicular
bisector to sp as the node p because the perpendicular bisector is a parallel shift of
the tangent to the semi-circle of radius Ri at the point p. And for any node t that is
placed on the semi-circle at radius Ri+1, the angle from t to the origin to s will be at
least β(Gi), and by the geometric lemma (choosing α = 0), this node will also be on
the p side of the perpendicular bisector to sp. Thus p is strictly closer to t than s is
to t for any node t at depth i + 1 that has been placed in this subphase.

All cases are covered: the subgraph on the currently embedded nodes, along with
the current embedding, is greedy because for all s, t , there is an already placed neigh-
bor of s that is strictly closer to t .

Subphase: For a cycle C = (p, x1, . . . , xm) at depth i + 1, only the unique node p

at depth i and the representative node x1 have been embedded so far. The embedding
must now be extended to include all nodes at depth i + 1, and this is done by placing
nodes x2, . . . , xm in clockwise order around the semi-circle of radius Ri+1 starting
from the location of node x1.

Let G1
i be the subgraph induced by all nodes already placed. Define δ(G1

i ) as
before. Note that this difference is now defined over all s, t that have already been
placed, which includes all nodes that are at depth ≤ i and all nodes that are depth i+1
that are representative nodes for a cycle at depth i + 1. Also define ε = Ri+1 − Ri

and note that β(G1
i ) = β(Gi).

Then place nodes x2, . . . , xm on the semi-circle of radius Ri+1 at even intervals
starting from the (already fixed) location of x1 such that the angle (in radians) from x1

to the origin to xm is α ≤ min(
δ(G1

i )

3 ,
β(Gi)

3 ) and such that sinα ≤ ε(1−cos 2
3 β(Gi))

2(1+ε)
.

Place all nodes on a cycle at depth i + 1 that have not already been placed, according
to this rule. The induced subgraph on all placed nodes after this subphase, along with
the embedding, will exhibit the greedy property:

Now all nodes at depth ≤ i + 1 have been placed. Consider all pairs s, t ∈ Gi+1.
Again, if s, t ∈ G1

i , then there will still be a neighbor of s that is strictly closer.

If s ∈ G1
i , and t is placed in this subphase, then t is at most distance

δ(G1
i )

3 from
the representative node u on the same cycle. s 	= u will have a neighbor that is strictly
closer to this representative node u, and this same neighbor will also be strictly closer
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to t . If s = u, then s and t will be connected by a path on the semi-circle of radius
Ri+1, and each successive node on this path will be strictly closer to t .

The only remaining case is where s is a node that is placed in this subphase:
Any node that is not in the set x2, x3, . . . , xm cannot be strictly contained in the

sector from x1 to the origin to xm because we chose α ≤ β(Gi)
3 . Then if s is not x1 or

xm, s will have a neighbor that is strictly closer to t , choosing the next node on the
path x1, x2, . . . , xm radially in the direction of t .

The case in which s = x1 has already been covered because the node x1 ∈ G1
i .

Then suppose s = xm. If t is in the set x1, . . . , xm, then choosing the next node on the
path x1, x2, . . . , xm radially in the direction of t and s will have a neighbor strictly
closer to t . And if t is not in the set x1, . . . , xm, then α ≤ 1

3β(Gi), and this implies
that the angle from p to the origin to the node t is at least 2

3β(Gi). By the geometric
lemma, d(xm, t) − d(p, t) > 0, and p is strictly closer to t .

Then all cases are covered, and the subgraph on the currently embedded nodes,
along with the current embedding, is greedy because for all s, t , there is an already
placed node that is strictly closer to t .

This completes the inductive construction, because all nodes at depth ≤ i +1 have
been placed. This also completes the proof that all Christmas cactus graphs can be
greedily embedded in the Euclidean plane. �

Corollary 1 Any 3-connected graph G that excludes K3,3 as a minor admits a greedy
embedding into the Euclidean plane.

We can apply a theorem in [9] which states that if a 3-connected graph G does not
contain K3,3 as a minor, then G contains a spanning 3-connected planar subgraph.
Using the results of this section, this immediately implies the corollary.

3 Greedy Embeddings for Trees

In this section, we give the first examples of graphs of degree at most 3 that admit
no greedy embedding into the Euclidean plane. We also prove a combinatorial con-
dition that guarantees nonembeddability, and this condition provides a certificate for
nonembeddability that can be verified in linear time. We use this result to construct
graphs that can be greedily embedded into the Euclidean plane, but for which no
spanning tree admits such an embedding.

Barnette [1] proved that all 3-connected planar graphs contain a spanning tree of
maximum degree at most 3. Given any spanning closed 2-walk, we can construct a
spanning tree of maximum degree at most 3 using only edges traversed by such a
walk. So Barnette’s Theorem is implied by the result of Gao and Richter [5]. We
showed that a particular type of spanning closed 2-walk—a spanning Christmas cac-
tus graph—is enough to construct a greedy embedding into the Euclidean plane. And
as a corollary to the results we present in this section, a sufficiently large complete
binary tree admits no greedy embedding into the Euclidean plane. So, the results
due to Gao and Richter are almost enough to guarantee a greedy embedding into the
Euclidean plane, but the results of Barnette [1] are not sufficient.
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3.1 Irreducible Triples

Definition 9 An irreducible triple is a triple {b, c, d} of nodes in a graph G such that
deg(b) = 3 and (b, c), (b, d) ∈ E(G) and removing either (b, c) or (b, d) disconnects
the graph. The parent of an irreducible triple {b, c, d} is the unique node a /∈ {b, c, d}
such that (a, b) ∈ E(G).

Definition 10 Two irreducible triples {b, c, d} and {x, y, z} are said to be indepen-
dent if {b, c, d} ∩ {x, y, z} = ∅ and if deleting edges (b, c), (b, d), (x, y), and (x, z)

leaves b and x connected. A set of irreducible triples is mutually independent if the
irreducible triples are pairwise independent.

Lemma 2 Consider any set of three or more mutually independent irreducible
triples Λ. Let a be the parent of any irreducible triple in the set. Then for all ir-
reducible triples {x, y, z} in the set Λ, {a} ∩ {x, y, z} = ∅ (including the triple for
which a is the parent).

Proof Clearly any parent a of an irreducible triple {b, c, d} cannot intersect {b, c, d}
directly from the definition of parent. Suppose that there is a set of three or more
mutually independent triples in a graph G and that the parent a of an irreducible
triple {b, c, d} is contained in another irreducible triple {x, y, z}. Suppose that a = y.
Then deleting the edge (x, y) disconnects G, but b is still connected to y. This implies
that b is not still connected to x. This contradicts the definition of independence.

Suppose that a = x. Then Γ (b) = {x, c, d} and Γ (x) = {b, y, z} because x is the
parent of the triple {b, c, d} and b is the parent of the triple {x, y, z}. Then consider
a third irreducible triple in the set of three or more mutually independent irreducible
triples, {l,m,n}.

By the definition of an irreducible triple, deleting the edge (b, c) must partition G

into components C1,C2. Deleting the edge (b, d) also partitions G into two compo-
nents. Note that (b, d) cannot connect C1 and C2 that resulted from deleting (b, c).
Then deleting (b, d) after deleting (b, c) must partition G into three components, one
of which contains b, one of which contains c, and one of which contains d . Continu-
ing the argument, deleting edges (b, c), (b, d), (x, y), and (x, z) partitions G into five
components, one of which contains b and x, one of which contains c, one of which
contains d , one of which contains y, and one of which contains z. The component
that contains b and x contains only the nodes b and x, because deg(b) = deg(x) = 3
before deleting two of the edges incident to b and two of the edges incident to x.

Node l must be contained in a different component than b and x. Let this com-
ponent be the component that contains y. Then {l,m,n} would not be independent
from {x, y, z} because deleting the edge (x, y) from G would leave l and x in differ-
ent components, and this contradicts the definition of independence.

Thus if there is a set of three or more mutually independent irreducible triples,
then the parent a of any irreducible triple {b, c, d} in the set cannot be contained in
any other triple in the set. �

Lemma 3 For any set of three or more mutually independent triples, let {b, c, d}
and {x, y, z} be two irreducible triples in the set, and let a,w be the respective
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parents of these irreducible triples (note that a and w are not guaranteed to be
distinct). Then any simple path from y to c in the graph G must be of the form
(y, x), (x,w), . . . , (a, b), (b, c). Any simple path from x to c must be of the form
(x,w), . . . , (a, b), (b, c). And any simple path from x to b must be of the form
(x,w), . . . , (a, b).

Proof The proof immediately follows from the previous lemma. �

We will implicitly use the path lemma throughout the proof that any graph G

containing a set of six or more mutually independent irreducible triples cannot be
greedily embedded. Let S = ∪{b, c, d} be the set of all nodes in any irreducible triple
in the set. Let {b, c, d} be a particular irreducible triple in the set, and let a be the
parent of this triple. Suppose that G admits a greedy embedding f : V → R2. Con-
sider the halfspace Hb that is bounded by the perpendicular bisector to f (b), f (c)

that contains f (b). This halfspace must contain S/{c} from the path lemma, because
the only simple paths from c to a node t ∈ S/{c} must begin by traversing the edge
(c, b). Similarly, the halfspace Ha that is bounded by the perpendicular bisector to
f (a), f (b) and contains f (a) must contain S/{b, c, d} again from the path lemma.

Lemma 4 Let G be a graph that admits a greedy embedding f : V → R2 into the
Euclidean plane, and let (p, x) ∈ E(G) be an edge such that deleting (p, x) discon-
nects G. Let Cx be the component containing x that results from deleting the edge
(p, x), and let z be an arbitrary node /∈ Cx . Then {x} = Wz = arg minw∈Cx ‖f (w) −
f (z)‖2.

Proof Suppose that Wz 	= {x} and there is a node w ∈ arg minw∈Cx ‖f (w) − f (z)‖2
such that w 	= x. All the neighbors of w are in Cx , and no node in Cx is strictly closer
to z. Then there is no neighbor of w that is strictly closer to z, and f is not a greedy
embedding. �

Lemma 5 Let G be a graph that admits a greedy embedding f : V → R2 into the
Euclidean plane and that contains an irreducible triple {b, c, d}. Then any greedy
embedding into the Euclidean plane must map the nodes b, c, d to points in R2 such
that the angle ∠f (c)f (b)f (d) > π

3 .

Proof Suppose that the angle ∠f (c)f (b)f (d) is ≤ π
3 . Then by the law of sines, the

side (c, d) cannot be the strictly largest side in the triangle (c, b, d). Let (b, d) be the
largest side in the triangle. Node d /∈ Cc, and c must be the closest node in Cc (the
component that results from deleting the edge (b, c)) to d . When routing from node c

to node d , node b must be selected for the next hop. However d(b, d) ≥ d(c, d), and
this embedding cannot be greedy. �

Claim 4 Any graph that contains two independent irreducible triples {b, c, d} and
{x, y, z}—where Γ (b) = {a, c, d}, Γ (x) = {w,y, z}—cannot be greedily embedded
so that f (a) is contained in a side of the angle ∠f (c)f (b)f (d) that is ≤ π and f (w)

is contained in a side of the angle ∠f (y)f (x)f (z) that is ≤ π .
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Fig. 6 Embedding a quadruple
{a, b, c, d} such that f (a) is
contained in a side of the angle
∠f (c)f (b)f (d) that is < π

Proof Assume that both ∠f (c)f (b)f (d) and ∠f (y)f (x)f (z) 	= π . Consider a
greedy embedding of the quadruple {a, b, c, d} depicted in Fig. 6.

If the embedding is greedy, then there must be a path from a to c such that the
distances to the destination node, c, are strictly decreasing along this path. There
must also be such a path from a to d . Any such path contains b as an intermedi-
ary node, and this implies that d(f (b), f (c)) < d(f (a), f (c)) and d(f (b), f (d)) <

d(f (a), f (d)). This implies that f (c) and f (d) must be contained on the b side of the
line H3. As a result, the segment (bc, bd) must be contained on the b side of H3 be-
cause the line segment is contained in the convex hull of the points f (c), f (d), f (b).

Using a similar argument, all nodes in G not in {b} ∪ Cc ∪ Cd must be strictly
contained in the triangle (p, q, r), because all nodes in G not in {b} ∪ Cc ∪ Cd must
be strictly on the b side of H1, strictly on the b side of H2 and strictly on the a side of
H3, respectively. Because the segment (bc, bd) is contained on the b side of H3, we
can relax this constraint to the requirement that all nodes in G not in {b} ∪ Cc ∪ Cd

must be strictly contained in the triangle (bc, bd,p).
An identical argument holds for the quadruple {w,x, y, z}, and all nodes in G not

in {x} ∪ Cy ∪ Cz must be strictly contained in the triangle (xy, xz, o).
Consider the point bc. This lies in the convex hull of f (b), f (c), and any convex

body (specifically the triangle (xy, xz, o)) that strictly contains f (b) and f (c) must
strictly contain bc. Similarly the point bd must be strictly contained in the triangle
(xy, xz, o). This implies that the segment (bc, bd) must be strictly contained in the
triangle (xy, xz, o). An identical argument holds for the triangle (bc, bd,p), and this
triangle must strictly contain the segment (xy, xz).

However, this yields a contradiction because there are two triangles T1 and T2

such that T1 must strictly contain the base of T2 and T2 must strictly contain the
base of T1. An almost identical argument holds when ∠f (c)f (b)f (d) = π or
∠f (y)f (x)f (z) = π . �

Claim 5 If a graph G is greedily embedded and contains an irreducible triple
{b, c, d}—where Γ (b) = {a, c, d}—that is embedded so that f (a) is contained in
a side of the angle ∠f (c)f (b)f (d) that is >π , then let i be the point of intersection
of the perpendicular bisector to the segment (f (b), f (c)) and the perpendicular bi-
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Fig. 7 Embedding a quadruple
{a, b, c, d} such that f (a) is
contained in a side of the angle
∠f (c)f (b)f (d) that is > π

sector to the segment (f (b), f (d)). All nodes not in Cc ∪ Cd are mapped outside the
interior of the quadrilateral (f (c), f (b), f (d), i).

Proof Consider Fig. 7. Clearly, we must only prove that all nodes not in Cc ∪ Cd are
mapped outside the quadrilateral (bc, f (b), bd, i) because the line H1 must contain
all nodes not in Cc on the b side, and the line H2 must contain all nodes not in Cd on
the b side.

Consider the halfspace J1 defined as the a side of the perpendicular bisector to
f (a), f (b). Node a is not mapped into the quadrilateral (bc, f (b), bd, i) by assump-
tion, and any node in G not in {b} ∪ Cc ∪ Cd must be contained in the halfspace J1.
If the intersection of J1 with the quadrilateral (bc, f (b), bd, i) is empty, then clearly
the claim is proven. The halfspace J1 has an empty intersection with the triangle
(f (b), bc, bd) because the points f (b), f (c), f (d) must be on the b side of the per-
pendicular bisector to (f (a), f (b)).

Consider the triangle (bc, bd, i). Assume that J1 intersects the triangle (bc, bd, i).
Then J1 must contain at least one of the points bc, bd, i. J1 cannot contain bc or bd

because f (b), f (c), and f (d) must all be closer to f (b) than to f (a). As a result, if
J1 intersects the triangle (bc, bd, i), then J1 must contain the point i.

A line can intersect another line more than once only if the two lines are identical.
Consider the line L bounding the halfspace J1. Suppose that this line is identical
to H1. This can only happen if f (a) = f (c), and this would imply that the embedding
is not greedy because node a will not have a neighbor that is strictly closer to f (c).
This implies that the line L can intersect H1 and H2 at most once each.

J1 contains the point i but either of the points bc or bd . This implies that the line L

intersects both segments (bc, i) and (bd, i). This line can be cut into two rays, leaving
from the point ab in opposite directions. Both rays begin at the point ab inside the
shaded region K and cannot leave this region through the segment (bc, bd) because
both end points of this segment are not contained in J1.

Then one of the rays must exit the region K through a side bounded by either the
line H1 or the line H2. This yields a contradiction because the line L will intersect
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Fig. 8 Embedding quadruples

either the line H1 or the line H2 twice. Thus J1 cannot contain i, and the claim is
proven. �

Note that ∠bcibd < 2π
3 because ∠bcf (b)bd > π

3 and ∠f (b)bci = ∠f (b)bdi =
π
2 . When a point x is contained in the sector ∠bcibd , we will say the intersection
point i contains x.

Lemma 6 Any graph G containing six or more mutually independent irreducible
triples cannot be greedily embedded in the Euclidean plane.

Proof Suppose that a graph G contains six mutually independent irreducible triples.
Then there are two cases to consider:

Suppose that the irreducible triples are embedded so that for each quadruple
{a, b, c, d}—where {b, c, d} is an irreducible triple and Γ (b) = {a, c, d}—f (a) is
contained in a side of the angle ∠f (c)f (b)f (d) that is >π . Then for each quadruple
{a, b, c, d}, define the points bc, bd, i as in Fig. 7.

No node in G is mapped to a point in the triangle (bc, bd, i) from the previous
claim. Then consider another quadruple {w,x, y, z}, where {x, y, z} is an irreducible
triple and Γ (x) = {w,y, z}. Reusing the argument used in the previous claim, if the
perpendicular bisector L to the segment (f (x), f (y)) does not contain i on the x

side, then L must intersect either H1 or H2 twice. But L is a perpendicular bisector
to two points that are contained on the same side of H1 and on the same side of H2,
and L cannot be identical to H1 or H2.

Then defining the intersection point i for each quadruple {a, b, c, d} as in Fig. 7,
each intersection point must contain all other intersection points in an angle that is
< 2π

3 . Define the polygon on these intersection points as in Fig. 8—all angles in
the polygon are < 2π

3 . By elementary geometry, any polygon on n ≥ 6 nodes must
contain an angle that is at least 2π

3 . Then there can be at most five intersection points.
This yields a contradiction, because there are six intersection points.
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Fig. 9 A graph that admits a
greedy embedding into the
Euclidean plane, and yet no
spanning tree of this graph
admits such an embedding

Suppose that one quadruple {a, b, c, d} is embedded so that f (a) is contained on
the side of the angle ∠f (c)f (b)f (d) that is ≤ π . Consider the points bc, bd , and
define intersection points for all remaining irreducible triples. Then each intersection
point for the remaining five irreducible triples must contain bc and bd because these
intersection points must contain f (b), f (c), and f (d). We can apply the argument
used above to the perpendicular bisectors H1,H2, and H3, and this implies that the
angles bounded by H1,H3 and H2,H3 must contain each intersection point defined
for the remaining five irreducible triples.

The angles bounded by H1,H3 and H2,H3 sum to at most π , and using the five
intersection points and the points bc, bd , we have a polygon on seven nodes such that
the angles sum to at most 13

3 π , which yields a contradiction because the sum of the
angles in a seven-gon is 5π by elementary geometry. �

Corollary 2 The complete binary tree B31 with 31 nodes cannot be greedily embed-
ded into the Euclidean plane.

Proof The complete binary tree B31 contains six mutually independent irreducible
triples. �

Theorem 4 There exist graphs that can be greedily embedded into the Euclidean
plane, but for which no spanning tree can be greedily embedded into the Euclidean
plane.

Proof Let G be the cycle graph on n nodes, and for each node i, add a 4-cycle
(wi, xi), (xi, yi), (yi, zi), (zi ,wi) and an extra node pi such that wi is joined by an
edge to i, and pi is joined to the node yi . See Fig. 9. Any spanning tree of this
graph contains n mutually independent irreducible triples; however, this graph is a
Christmas cactus graph and can be greedily embedded into the Euclidean plane. �

Acknowledgements We would like to thank Robert Kleinberg for introducing us to this problem and for
many helpful discussions. We would also like to thank an anonymous reviewer for many helpful comments.
We would also like to thank anonymous referees for their help in improving this paper.



Discrete Comput Geom (2010) 44: 686–705 705

References

1. Barnette, D.: Trees in polyhedral graphs. Can. J. Math. 18, 731–736 (1966)
2. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless

networks. Wirel. Netw. 7, 609–616 (2001)
3. Dhandapani, R.: Greedy drawings of triangulations. In: Symposium on Discrete Algorithms, pp. 102–

111 (2008)
4. Eppstein, D., Goodrich, M.T.: Succinct greedy graph drawing in the hyperbolic plane. In: Graph

Drawing, pp. 14–25 (2008)
5. Gao, Z., Richter, R.: 2-walks in circuit graphs. J. Comb. Theory Ser. B 62, 259–267 (1994)
6. Goodrich, M.T., Strash, D.: Succinct greedy geometric routings in �2. In: CoRR (2008)
7. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In: Proceedings

of the 6th Annual International Conference on Mobile Computing and Networking, pp. 243–254
(2000)

8. Kleinberg, R.: Geographic routing in hyperbolic space. In: INFOCOM 2007, 26th IEEE Conference
on Computer Communications, pp. 1902–1909 (2007)

9. Papadimitriou, C., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci.
244, 3–14 (2005)

10. Rao, A., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic routing without location information.
In: Proceedings of the 9th Annual International Conference on Mobile Computing and Networking,
pp. 96–108 (2003)


	Some Results on Greedy Embeddings in Metric Spaces
	Abstract
	Introduction
	Background
	Our Results

	A Greedy Embedding for Circuit Graphs
	Christmas Cactus Graphs
	Circuit Graphs
	Constructing a Greedy Embedding

	Greedy Embeddings for Trees
	Irreducible Triples

	Acknowledgements
	References


