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Abstract

The usefulness of frequency domain interpretations
in linear systems is well known� In this contribution
the connenctions between frequency domain and time
domain expressions will be discussed� In particular�
we consider some aspects of using frequency domain
data as primary observations�

� Introduction

For linear systems the connections and interplay be�
tween time�domain and frequency domain aspects
have proved to be most fruitful in all applications�
We shall in this contribution discuss some aspects in
applications to linear system identi�cation�

There are two sides of this interplay� One is to
consider the primary observation to be in the time�
domain� and then to interpret corresponding identi��
cation criteria� algorithms and properties in the fre�
quency domain� There are many early results of this
character� e�g� ���� �	�� �
�� ���� More recently such
results have been exploited and developed in ����

The other side of the interplay is to consider the pri�
mary observations to be in the frequency domain�
That is� the Fourier transforms of the measured sig�
nals 
or certain ratios of them� are treated as the ac�
tual measurements� This view has been less common
in the traditional system identi�cation literature� but
has been of great importance in the Mechanical En�
gineering community� vibrational analysis and so on�
An early reference is ���� An excellent recent account�
with many references� of this view is given in the book
����

This contribution will deal with a few questions of
the latter view from a more traditional System Iden�
ti�cation background�

� Parameterized models

We shall throughout this paper consider linear mod�
els in discrete or continuous time� parameterized as
follows�
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Here y� u and e are the output� the input and the noise
source� respectively� e is supposed to be white noise
with variance 
intensity� �� q is the shift operator
and p is the di�erentiation operator�

A typical parameterization� both in continuous and
discrete time could be as a rational function
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In discrete time we could� e�g� also use parameter�
izations that originate from an underlying continu�
ous time state space model� discretized under the as�
sumption that the input is piecewise constant over
the sampling interval�
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See� e�g� ��� for many more examples of the parame�
terization 

��

� Time domain data

Suppose input�output data in the time domain are
given�
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and the associated prediction errors�
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and then compute
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Most frequency domain interpretations of this time
domain method go back to the application of Parse�
val�s relationship to the right hand side of 
���
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where E is the Fourier transform of ��
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and similarly for U
��� If we introduce the �Empiri�
cal Transfer Function Estimate��
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� can be rewritten
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� Frequency domain data

Suppose now that the original data are supposed to
be

ZN � fY 
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�k�� k � 
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where Y 
�k� and U
��� either are the discrete Fourier
transforms of y
t� and u
t� as in 


� or are considered
as Fourier transforms of the underlying continuous
signals�
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or a normalized version�� Which interpretation is
more suitable depends of course of the signal charac�
ter� sampling interval and so on�


 � 
 � 
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�� it would be tempting to use
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replacing ei�kT by i�k for the continuous�time model

	���

If H in fact does not depend on � 
�xed or known
noise model� experience shows that 

�� works well�

Otherwise the estimate ��N may not be consistent�

To �nd a better estimator we turn to the maximum
likelihood 
ML� method for advice� 
We give the ex�
pressions for the continuous time case� in the case of


�� just replace i�k by e

i�kT �

If the data were generated by
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the Fourier transforms would be related by
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To be true� 

�� should in many cases contain an error
term that accounts for the fact that the measured
data Y 
�k� often are not exact realizations of 

���
For periodic signals� observed over an integer number
of periods� 

�� may however hold exactly�

Now� if e
t� is white noise� its Fourier transform 
suit�
ably normalized� will have a 
complex� Normal dis�
tribution�

E
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��

This means that the real and imaginary parts are each
normally distributed� with zero means and variances
�� The real and imaginary parts are independent and�
moreover� E
��� and E
��� are independent for �� ��
��� This implies that
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according to the model� so that the negative loga�
rithm of the likelihood function becomes
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The ML estimate is
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Compared to 

�� we thus have an additional term
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We may note that for any monic� stable and inversely
stable transfer function H
q� �� we have
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log jH
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This is the reason why 
	�� is missing from criteria
that use dense� equally spaced frequencies �k for dis�
crete time models 
like 

����

�In fact 
	�� is the determinant from the change
of variables from Y to E 
outputs to innovations��
In the discrete time domain this transformation is
a triangular operator with 
�s along the diagonal

e
t� � y
t��past data�� Hence this transformation
has a determinant equal to 
� so it does not a�ect the
ML criterion��

It is apparently often assumed 
as in ���� that the
noise model is given or known� Then of course the
term 
	�� is again not essential�

� Asymptotic properties

The asymptotic properties 
as N � �� of the esti�
mate 
	���
	
� can be developed in a rather straight�
forward fashion� using the standard techniques� We
con�ne ourselves below to the case of a �xed noise
model H
i�� �� � H�
i�� and a known �� Suppose�
as N � � the frequencies �k cover the frequency
interval ������ with a density function W 
��� �That
is� let wN 
������ be the number of observed frequen�
cies in the interval �� to �� when the total number
of frequencies is N � Then

lim
N��




N
wN 
������ �

Z ��

��

W 
��d���

p p 
 � g �
formly in � and with probability 
 to

�V 
�� �

Z �

��

jG�
i���G
i�� ��j��u
��W 
��jH�
i��j� d�


	��
where G� is the true transfer function� and �u
�� is
the input spectrum� Hence

��N � argmin
�

�V 
�� w�p�
 as N �� 
	��

If there exists a value �� such that G�
i�� � G
i�� ���
and �u
��W 
�� is di�erent from zero at su ciently
many frequencies it will follow that

��N � �� as N ��
In that case the covariance matrix of ��N will be�
asymptotically�
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	��
Here G�� is the gradient of G
i�� �� with respect to �
and superscript 	 denotes complex conjugation and
matrix transpose�

� Some practical aspects

There are several distinct features with the direct fre�
quency domain approach that could be quite useful�
We shall list a few 
see also� e�g�� ����


 Pre�ltering is known as quite useful in the
time�domain approach� For frequency domain
data it becomes very simple� It just corresponds
to assigning di�erent weights to di�erent fre�
quencies� which in turn is the same as using a fre�
quency dependent � � cheating on the assumed
noise levels� It is of course particularly easy to
implement perfect band�pass �ltering e�ects in
the frequency domain approach�


 Condensing large data sets� When dealing
with systems with a fairly wide spread of time
constants� large data sets have to be collected in
the time domain� When converted to the fre�
quency domain they can easily be condensed�
so that� for example� logarithmically spaced fre�
quencies are obtained� At higher frequencies one
would thus decimate the data� which involves av�
eraging over neighbouring frequencies� Then the
noise level 
�k� is reduced accordingly�


 Combining experiments� Nothing in the ap�
proach of Section � says that the frequency re�
sponse data at di�erent frequencies have to come



p �
quencies involved 
�k� k � 
���N� all have to be
di�erent� It is thus very easy to combine data
from di�erent experiments�


 Periodic inputs� The main drawback with the
frequency domain approach in that the underly�
ing frequency domain model 

�� is strictly cor�
rect only for a periodic input and assuming all
transients have died out� On the other hand�
typical use of the time domain method 
�� � 
��
assumes inputs and outputs prior to time � to
be zero� Whichever assumption about past be�
haviour is closer to the truth should thus a�ect
the choice of approach�


 Band�limited signals� If the actual input sig�
nals are band�limited� 
like no power above the
Nyquist frequency� the continuous time Fourier
transform 

�� can be well computed from sam�
pled data� It is then possible to directly build
continuous�time models without any extra work�


 Continuous�time models� The comment
above shows that direct continuous�time system
identi�cation from �continuous�time data� can
be dealt with in a much more relaxed way than
in the time�domain� with all its mathematical in�
tricacies�


 Trade�o� noise�frequency resolution� The
approach also allows for a more direct and fre�
quency dependent trade�o� between frequency
resolution and noise levels� That will be done
as the original Fourier transform data are dec�
imated to the selected range of frequencies
�k� k � 
� ���� N �

� Some algorithmic questions

The criterion 
		� to be minimized is non�quadratic
in � in most cases� This calls for iterative search pro�
cedures for the calculation of ��N � This in turn raises
two questions�


� What method should be applied for the itera�
tions�

	� At what parameter values should the search be
initialized�

We shall deal with these questions in order�

Iterative minimization

If the noise model H is �xed 
��independent�� the re�
maining criterion to be minimized inWN 
��� which is

q
deal with such a function minimization is the damped
Gauss�Newton method ���� This apparently is still the
best approach around� and is the basic method used
in System Identi�cation� Indeed� the MATLAB Sig�
nal Processing Toolbox commands for solving 
		� for
a �xed noise model 
invfreqz and invfreqs� inple�
ment this approach�

Unfortunately� it turns out that the additional term

	�� may seriously deteriorate the performance of
the damped Gauss�Newton proacedure� This is� not
unexpectedly� most pronounced for continuous time
models and for very unequally spaced frequency sam�
ples� One probably then has to go to full Newton�
methods� which however puts greater demands on the
line search� Also� it is important to scale the param�
eterization� so that the criterion remains reasonably
well conditioned�

Initial parameter estimates

Also in the time�domain approach it is very impor�
tant to provide the Gauss�Newton iterative scheme
with good initial conditions� In ��� 
Section 
����
several steps to achieve such initial estimations are
described� They are based on the Instrumental Vari�
able 
IV� method and the so called repeated Least
Squares 
rLS� method 
i�e� estimating a high order
ARX�model� then compute the innovations from this
and use them as measured inputs in the next step��

Fortunately these methods can be more or less di�
rectly carried over to direct frequency domain meth�
ods� The IV method 
see also ���� can be described as
follows� The problem is to �nd an initial estimate
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�
� is the vector of instruments�

The rLS method� is as follows in the frequency do�
main� The problem is to �nd A
q� and C
q� in an
ARMA model

A
q�y
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q�e
t��

Step ��� Solve
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�k�j�

for ��
ei�� for a �high order� polynomial ��

Step 	�� Treat

�E
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e
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as measured input and solve

min
A�C

X
k

jA
ei�k �Y 
�k�� 
C
ei�k �� 
� �E
�k�j� 
�	�

for �A� �C� It is my experience that these start�up
procedures work well�

	 Conclusions

We have in this contribution discussed various aspects
of frequency domain methods for linear system identi�
�cation� Generally speaking� it could be said that the
direct frequency domain approach has been underuti�
lized in conventional system identi�cation� The con�
tribution has been partly of tutorial character� sum�
marizing some main points� In addition the author�s
experiences with various implementations of the al�
gorithms have been described�
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