Some Results on Identifying Linear Systems Using Frequency Domain

Data

Lennart Ljung
Department of Electrical Engineering
Linkoping University
S-581 83 Linkoping, Sweden

Abstract

The usefulness of frequency domain interpretations
in linear systems is well known. In this contribution
the connenctions between frequency domain and time
domain expressions will be discussed. In particular,
we consider some aspects of using frequency domain
data as primary observations.

1 Introduction

For linear systems the connections and interplay be-
tween time-domain and frequency domain aspects
have proved to be most fruitful in all applications.
We shall in this contribution discuss some aspects in
applications to linear system identification.

There are two sides of this interplay. One is to
consider the primary observation to be in the time-
domain, and then to interpret corresponding identifi-
cation criteria, algorithms and properties in the fre-
quency domain. There are many early results of this
character, e.g. [9], [2], [1], [4]- More recently such
results have been exploited and developed in [6].

The other side of the interplay is to consider the pri-
mary observations to be in the frequency domain.
That is, the Fourier transforms of the measured sig-
nals (or certain ratios of them) are treated as the ac-
tual measurements. This view has been less common
in the traditional system identification literature, but
has been of great importance in the Mechanical En-
gineering community, vibrational analysis and so on.
An early reference is [5]. An excellent recent account,
with many references, of this view is given in the book

[7]-

This contribution will deal with a few questions of
the latter view from a more traditional System Iden-
tification background.

2 Parameterized models

We shall throughout this paper consider linear mod-
els in discrete or continuous time, parameterized as
follows:

y(t) = G(q,0)u(t) + H(qg, 0)e(t)

(Discrete time)

y(t) = G(p,0)u(t) + H(p,0)e(t)

(Continuous time)

(1)

(2)

Here y, u and e are the output, the input and the noise
source, respectively. e is supposed to be white noise
with variance (intensity) A. ¢ is the shift operator
and p is the differentiation operator.

A typical parameterization, both in continuous and
discrete time could be as a rational function
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In discrete time we could, e.g. also use parameter-
izations that originate from an underlying continu-
ous time state space model, discretized under the as-
sumption that the input is piecewise constant over
the sampling interval:

T
Gl,0) = Clgl — AOT)=1 / AOT RO (4)
0

See, e.g. [6] for many more examples of the parame-
terization (1).

3 Time domain data

Suppose input-output data in the time domain are
given:

N ={y(t),u(t);t =T,2T,...,NT} (5)



form the corresponding predictions

y(t8) = G(q,9)u(t)+(I—Hl(q,9))(y(t)—G(q,0)u((8)

and the associated prediction errors:

e(t,0) = y(t)—y(t|o)(tl0) = H~(q,0)(y(t)-G(g,0)u(t))

(7)

and then compute

N
A ] )
On = arg min E e’(t,0) (8)

t=1

Most frequency domain interpretations of this time
domain method go back to the application of Parse-
val’s relationship to the right hand side of (8):

On ~ argmoin/ |E(w,0)*dw (9)

—T

where E is the Fourier transform of ¢:

E(w,0) = H™ (¥, 0)[Y (w) - G(e™,0)U(w)] (10)

1 Y .
V(W)= o=yl (1)

and similarly for U(w). If we introduce the ”Empiri-
cal Transfer Function Estimate”,

Y a2

(8) - (11) can be rewritten

T
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dx ~ argmin / IG(e) — G(e™ , 0) 2

—T

4 Frequency domain data

Suppose now that the original data are supposed to
be
ZN = {Y(wp),U(wp), k=1,...N}  (14)

where Y (wy) and U(w; ) either are the discrete Fourier
transforms of y(t) and u(t) as in (11) or are considered
as Fourier transforms of the underlying continuous

signals:
o0

Y(w) = / y(t)e=tdt (15)

— 00

(or a normalized version). Which interpretation is
more suitable depends of course of the signal charac-
ter, sampling interval and so on.

(13) it would be tempting to use

~

Oy = arg mein V()

1

|H (e T, )2
(16)
(replacing e®*” by iwy, for the continuous-time model

(2).)

If H in fact does not depend on 6 (fized or known
noise model) experience shows that (16) works well.
Otherwise the estimate 6y may not be consistent.

N
V() = S [V (wi)——G(e T, 0)U (wp) >
k=1

To find a better estimator we turn to the maximum
likelihood (ML) method for advice: (We give the ex-
pressions for the continuous time case; in the case of
(1), just replace iwy by e™+T)

If the data were generated by
y(t) = G(p,O)u(t) + H(p,0)e(t)
the Fourier transforms would be related by
Y (w) = Gliw, 8)U(w) + H(iw,0)E(w) (17)

To be true, (17) should in many cases contain an error
term that accounts for the fact that the measured
data Y (wy) often are not exact realizations of (15).
For periodic signals, observed over an integer number
of periods, (17) may however hold exactly.

Now, if e(¢) is white noise, its Fourier transform (suit-
ably normalized) will have a (complex) Normal dis-
tribution:

E(w) € N(0,A\I) complex (18)

This means that the real and imaginary parts are each
normally distributed, with zero means and variances
A. The real and imaginary parts are independent and,
moreover, E(w;) and E(ws) are independent for w; #
wy. This implies that

Y (i) € N(Giw, 0)U (wi), N H(iwg, 0)]2)  (19)

according to the model, so that the negative loga-
rithm of the likelihood function becomes

N
Viv(8) = Y {2log |H (i, 0)|+

k=1

1
1Y (@r) = G (iwr, 0)U (wi)]* - 5 }+N10g>\

|H (iwg, 0)]
(20)
The ML estimate is

Oy = argmein VN (0) (21)



obtain

N
Oy = argmein N -logWx(6) + 2210g|H(iw/€,0)|

k=1 (22)

W () = — 3 Y G (iwn)U (wi)|” 1
¥(0) = 7 1Y o) = Gl o)
(23)
Anv =Wy (6y) (24)

Compared to (16) we thus have an additional term

N
> log |H (iwy., 0)|? (25)
k=1

We may note that for any monic, stable and inversely
stable transfer function H(g, ) we have

/ log |H (™, 0)[2dw = 0 (26)

—T

This is the reason why (25) is missing from criteria
that use dense, equally spaced frequencies wy, for dis-
crete time models (like (13)).

[In fact (25) is the determinant from the change
of variables from Y to E (outputs to innovations).
In the discrete time domain this transformation is
a triangular operator with 1’s along the diagonal
(e(t) = y(t)-past data). Hence this transformation
has a determinant equal to 1, so it does not affect the
ML criterion.)

It is apparently often assumed (as in [7]) that the
noise model is given or known. Then of course the
term (25) is again not essential.

5 Asymptotic properties

The asymptotic properties (as N — 00) of the esti-
mate (20)-(21) can be developed in a rather straight-
forward fashion, using the standard techniques. We
confine ourselves below to the case of a fixed noise
model H(iw,0) = H.(iw) and a known A. Suppose,
as N — oo the frequencies wy cover the frequency
interval [—(, 2] with a density function W (w). [That
is, let wy (€1, Q) be the number of observed frequen-
cies in the interval €; to 25 when the total number
of frequencies is N. Then

Q2

1
lim NU)N(QMQQ) = W((U)d(U]

N —o0 o}

formly in # and with probability‘l to

S & v Ru(W)W (W)
V(9)—/_Q|G0(zw) G(iw,0) 7|H*(zw)|2 dc(u27)

where Gy is the true transfer function, and ®,(w) is
the input spectrum. Hence

Oy — argmoin V(0) wplas N —oo (28)

If there exists a value 6y such that Go(iw) = G(iw, 0y)
and @, (w)W(w) is different from zero at sufficiently
many frequencies it will follow that

9AN—>00 as N — oo

In that case the covariance matrix of Oy will be,
asymptotically,

NG (iusp, 00) G (i, 00) B (w0r) ]
C é ~ ) [} k> Y0 [} k> Y0 u\WEk
ov Oy Z |H.(iwp)|?

k=1

(29)
Here GJ, is the gradient of G(iw, ) with respect to 0
and superscript * denotes complex conjugation and
matrix transpose.

6 Some practical aspects

There are several distinct features with the direct fre-
quency domain approach that could be quite useful.
We shall list a few (see also, e.g., [7])

o Prefiltering is known as quite useful in the
time-domain approach. For frequency domain
data it becomes very simple: It just corresponds
to assigning different weights to different fre-
quencies, which in turn is the same as using a fre-
quency dependent A\ = cheating on the assumed
noise levels. It is of course particularly easy to
implement perfect band-pass filtering effects in
the frequency domain approach.

e Condensing large data sets. When dealing
with systems with a fairly wide spread of time
constants, large data sets have to be collected in
the time domain. When converted to the fre-
quency domain they can easily be condensed,
so that, for example, logarithmically spaced fre-
quencies are obtained. At higher frequencies one
would thus decimate the data, which involves av-
eraging over neighbouring frequencies. Then the
noise level (Ay) is reduced accordingly.

e Combining experiments. Nothing in the ap-
proach of Section 4 says that the frequency re-
sponse data at different frequencies have to come



quencies involved (wg,k = 1...N) all have to be
different. It is thus very easy to combine data
from different experiments.

e Periodic inputs. The main drawback with the
frequency domain approach in that the underly-
ing frequency domain model (17) is strictly cor-
rect only for a periodic input and assuming all
transients have died out. On the other hand,
typical use of the time domain method (6) - (8)
assumes inputs and outputs prior to time 0 to
be zero. Whichever assumption about past be-
haviour is closer to the truth should thus affect
the choice of approach.

¢ Band-limited signals. If the actual input sig-
nals are band-limited, (like no power above the
Nyquist frequency) the continuous time Fourier
transform (15) can be well computed from sam-
pled data. It is then possible to directly build
continuous-time models without any extra work.

e Continuous-time models. The comment
above shows that direct continuous-time system
identification from ”continuous-time data” can
be dealt with in a much more relaxed way than
in the time-domain, with all its mathematical in-
tricacies.

e Trade-off noise/frequency resolution. The
approach also allows for a more direct and fre-
quency dependent trade-off between frequency
resolution and noise levels. That will be done
as the original Fourier transform data are dec-
imated to the selected range of frequencies
wk,k = ].,...,N.

7 Some algorithmic questions

The criterion (22) to be minimized is non-quadratic
in 6 in most cases. This calls for iterative search pro-
cedures for the calculation of éN. This in turn raises
two questions:

1. What method should be applied for the itera-
tions?
2. At what parameter values should the search be
initialized?
We shall deal with these questions in order.
Iterative minimization

If the noise model H is fixed (f-independent), the re-
maining criterion to be minimized in Wy (@), which is

deal with such a function minimization is the damped
Gauss-Newton method [3]. This apparently is still the
best approach around, and is the basic method used
in System Identification. Indeed, the MATLAB Sig-
nal Processing Toolbox commands for solving (22) for
a fixed noise model (invfreqz and invfreqs) inple-
ment this approach.

Unfortunately, it turns out that the additional term
(25) may seriously deteriorate the performance of
the damped Gauss-Newton proacedure. This is, not
unexpectedly, most pronounced for continuous time
models and for very unequally spaced frequency sam-
ples. One probably then has to go to full Newton-
methods, which however puts greater demands on the
line search. Also, it is important to scale the param-
eterization, so that the criterion remains reasonably
well conditioned.

Initial parameter estimates

Also in the time-domain approach it is very impor-
tant to provide the Gauss-Newton iterative scheme
with good initial conditions. In [6] (Section 10.5)
several steps to achieve such initial estimations are
described. They are based on the Instrumental Vari-
able (IV) method and the so called repeated Least
Squares (rLS) method (i.e. estimating a high order
ARX-model, then compute the innovations from this
and use them as measured inputs in the next step).

Fortunately these methods can be more or less di-
rectly carried over to direct frequency domain meth-
ods. The IV method (see also [8]) can be described as
follows: The problem is to find an initial estimate

GO = 2]

Step i): Solve

ai,bi

min Y |A(e™*)Y (wi) — B(e™*)U (wy)|?
k
for A%, B. Let G* = &2

Step ii): Solve

0= 3 (A(e“")Y (wi) — B(e™*)U(wr)) - ((wi) (30)
-
for A and B where

és (eiwk) . eilwk U(W}g)

eilwr U(wg)




tively. The vector (31) is the vector of instruments.

The rLS method. is as follows in the frequency do-
main. The problem is to find A(g) and C(g) in an
ARMA model

Step 1). Solve

mognz la(e™*)Y (w)]?
R

for a(e™) for a "high order” polynomial a.
Step 2). Treat

E(wi) = a(e™*)Y (wy)
as measured input and solve

i 32 A () =€) - DB (62

for fi, C. It is my experience that these start-up
procedures work well.

8 Conclusions

We have in this contribution discussed various aspects
of frequency domain methods for linear system identi-
fication. Generally speaking, it could be said that the
direct frequency domain approach has been underuti-
lized in conventional system identification. The con-
tribution has been partly of tutorial character, sum-
marizing some main points. In addition the author’s
experiences with various implementations of the al-
gorithms have been described.
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