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Abstract

A {1, 3, · · · , 2n−1}-factor of a graph G is defined to be a spanning
subgraph of G, each degree of whose vertices is one of {1, 3, · · · , 2n−
1}, where n is a positive integer. In this paper, we give a sufficient
condition for a graph to have a {1, 3, · · · , 2n− 1}-factor.

1 Main theorem

We consider finite graphs that have neither loops nor multiple edges. Let G
be a graph with vertex set V (G). For a vertex v of G, we write degG(v) for
the degree of v in G. For a subset S of V (G), the neighborhood ΓG(S) of
S is defined to be the set of vertices if G that are adjacent to at least one
vertex of S. Let I be a set of nonnegative integers. A graph G is called an
I-graph if degG(x) ∈ I for all x ∈ V (G). We call a spanning I-subgraph of
G an I-factor of G. In particular, a {1, 3, · · · , 2n − 1}-factor of a graph G
is an spanning subgraph F of G such that the degree of every vertex of F is
contained in {1, 3, · · · , 2n − 1}, where n is a positive integer. A {k}-factor
will be called a k-factor.

The following proposition gives a sufficient condition for the existence of
a 1-factor in a graph by using neighborhoods.

Proposition 1 (Anderson[2],[4p.115) ] Let G be a graph with an even
number of vertices. If

ΓG(X) = V (G) or |ΓG(X)| ≥ 4

3
|X| − 2

3

for all X ⊂ V (G), then G has a 1-factor.
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Our next main theorem is an extension of this proposition, and its proof
is analogous to that of Proposition 1.

Theorem 1 Let G be a graph with an even number of vertices, and let n be
a positive integer. If

ΓG(X) = V (G) or |ΓG(X)| > (1 +
1

3(2n− 1)
)|X| − 1

2n− 1

for all X ⊂ V (G), then G has a {1, 3, · · · , 2n− 1}-factor.

This theorem is best possible in the sense that the condition in Theorem 1
cannot be replaced by the condition that

ΓG(X) = V (G) or |ΓG(X)| ≥ (1 +
1

3(2n− 1)
)|X| − 1

2n− 1

for all X ⊂ V (G). This fact will be shown in Theorem 2
We give some definitions before proving Theorem 1. For a subset S of

V (G), we denote by G − S the subgraph of G obtained from G by deleting
the vertices in S together with their incident edges. We write o(G) for the
number of odd components(components with odd order) of G. Our proof of
Theorem 1 depends on the following theorem, which is a generalization of
Tutte’s 1-factor Theorem and will be extended in Theorem 3.

Proposition 2 (Amahashi[1]) Let n be a positive integer. Then a graph
G has a {1, 3, · · · , 2n− 1}-factor if and only if

odd(G−X) ≤ (2n− 1)|X| for all X ⊂ V (G).

Proof of Theorem 1. Suppose that G satisfies the condition in the
theorem but has no {1, 3, · · · , 2n − 1}-factor. Then there exist a subset
S ⊂ V (G) with o(G − S) > (2n − 1)|S| by Proposition 2. Let |V (G) = p.
Since p is even, by parity, we may assume o(G−S) ≥ (2n− 1)|S|+ 2. Let m
denote the number of isolated vertices of G−S, and put t = 1+(1/3(2n−1))
and r = 1/(2n− 1). We consider two case.

Case 1. m > o. Since |ΓG(V (G)− S)| 6= V (G), we have

|ΓG(V (G)− S)| > t|V (G)− S| − r = tp− t|S| − r.

It is clear that |ΓG(V (G)− S)| ≥ p−m. From these inequalities, we obtain

p <
t|S|+ r −m

t− 1
. (1)
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On the other hand, counting the vertices of the odd components of G − S,
we have m + 3((2n− 1)|S|+ 2−m) ≤ p− |s|, and thus

(3(2n− 1) + 1)|S|+ 6− 2m ≤ p. (2)

Combining inequalities (1) and (2), we obtain

(3(2n− 1) + 1)|S|+ 6− 2m <
t|S|+ r −m

t− 1
. (3)

Substituting the values of t and r into (3), we can get 3 + (6n− 5)m < 0, a
contradiction.

Case 2. m = o. In this case, every odd component has at least three
vertices. Let X be the set of vertices of any (2n− 1)|S|+ 1 odd components
of G− S. Since ΓG(X) 6= V (G), we have |ΓG(X) > t|S| − r and hence

|X| < |S|+ r

t− 1
. (4)

On the other hand, |X| ≥ 3((2n − 1)|S| + 1) as well. So combining it with
inequality (4), we obtain

3((2n− 1)|S|+ 1) <
|S|+ r

t− 1
.

Substituting the values of t and r into the above inequality, we get 0 < 0, a
contradiction.

Consequently, the proof is complete. �

If a graph G consists of n(n ≥ 2) disjoint copies of a graph H, then
we write G = nH. The join G = A + B has V (G) = V (A) ∪ V (B) and
E(G) = E(A) ∪ E(B) ∪ {xy|x ∈ V (A) and y ∈ V (B)}.

Theorem 2 For every position integer n, there exists infinitely many graphs
G that have no {1, 3, · · · , 2n− 1}-factor and satisfy

ΓG(X) = V (G) or |ΓG(X)| ≥ (1 +
1

3(2n− 1)
)|X| − 1

2n− 1

for all X ⊂ V (G).

Proof Let m be a positive integer. We define a graph G by G =
Km + ((2n − 1)m + 2)K3, where Km and K3 denote the complete graphs
of order m and 3, respectively. It is trivial that G is of even order. Put S =
V (Km). Then o(G−S) has (2n− 1)m+ 2 odd components, and so G has no
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{1, 3, · · · , 2n−1}-factor by Proposition 2. Let K3(i), 1 ≤ i ≤ (2n−1)m+2,
denote the disjoint copies of K3 in G−V (Km). Let X be any subset of V (G).
We now prove that X satisfies the condition in this theorem. If |X| = 1, then

|ΓG(X)| > 2 > (1 +
1

3(2n− 1)
|X| − 1

2n− 1
.

Hence we may assume that |X| ≥ 2. It is clear that if X ∩ V (Km) 6= ∅, then
ΓG(X) = V (G). Thus we may assume X ∩ V (Km) = ∅. Let a = |{i|X ∩
V (K3(i))| = 1}, b = |{i|X ∩ V (K3(i))| = 2} and c = |{i|X ∩ V (K3(i))| = 3}.
Then |X| = a+ 2b+ 3c and |ΓG(X) = m+ 2a+ 3(b+ c). If 3(2n− 1)× (m+
a + b) ≥ |X| − 3, then we have

|ΓG(X)| = m + |X|+ a + b ≥ (1 +
1

3(2n− 1)
)|X| − 1

2n− 1

Therefore, we may assume that |X| > 3(2n − 1)(m + a + b) + 3. Since
|X| ≤ |V (G)| − |V (Km)| = 3(2n − 1)m + 6, we obtain a + b = 0, which
implies |X| = 3c, and |X| = 3(2n− 1)m + 6. Namely, X = V (G)− V (Km).
In this case, we have |ΓG(X)| = |G|. Consequently, the theorem is proved.�

2 The extension of proposition 2

In this section, we give an extension of Amahashi’s Theorem(proposition 2),
which was mentioned before by Knao. let G be a graph and f be a function
defined on V (G) such that f(x) is a position odd integer for every x ∈ V (G).
We denote such a function by f : V (G) → {1, 3, 5, · · · }. Then a spanning
subgraph F of G is called an (1, f)-odd-factor if degF (x) ∈ {1, 3, 5, · · · } for
all x ∈ V (G). Ir is obvious that if f(x) = 2n − 1 for all x ∈ V (G), then a
(1, f)-odd-factor and a {1, 3, · · · , 2n− 1}-factor are the same. We prove the
following theorem.

Theorem 3 Let G be a graph and f : V (G)→ {1, 3, 5, · · · }. Then G has a
(1, f)-odd-factor if and only if

o(G− S) ≤
∑
x∈S

f(x) (5)

for all S ⊂ V (G).

In order to prove Theorem 3, we need the following two lemmas.
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Lemma 4 Let G be a tree of even order and f : V (G)→ {1, 3, 5, · · · }. Then
G has a (1, f)-odd-factor if and only if

o(G− x) ≤ f(x) for all x ∈ V (G).

Proof The proof is similar to that of Theorem 1 of [1].

Lemma 5 Let G be a bipartite graph with partite sets X and Y , and let g
be an integer valued function defined on X. Then G has a spanning subgraph
H such that

degH(x) = g(x) for all x ∈ X and degH(y) = 1 for all y ∈ Y

if and only if

|Y | =
∑
x∈X

g(x) and |ΓG(S)| ≥
∑
x∈S

g(x) for all S ⊂ X.

Proof The lemma is an immediate consequence of Hall’s Marriage Theo-
rem[3]. �

Proof of Theorem 3. This theorem can be proved similar as proposition
2. Assume that G has a (1, f)-factor F . Then we have

o(G− S) ≤
∑
x∈S

degF (x) ≤
∑
x∈S

f(x)

since there exists at least one edge of F between every odd component of
G− S and S.

We next prove the sufficiency by induction on |V (G)|+ |E(G)|. Without
loss of generality, we may assume that G is connected. Moreover, we have
that |V (G)| is even by setting S = ∅ in (5). It is immediate that

o(G− S) ≡ |S| ≡
∑
x∈S

f(x)(mod 2). (6)

By Lemma 1, if G is a tree, then G has a (1, f)-odd-factor. Hence we may
assume that G is not a tree. We consider two cases.

Case 1. o(G− S) <
∑

x∈S f(x) whenever ∅ 6= S ⊂ V (G).
There exists an edge e such that G− e is connected, where G− e denotes

the subgraph of G obtained from G by deleting only the edge e. For every
S ⊂ V (G), it follows from (6) that

o((G− e)− S) ≤ o(G− S) + 2 ≤
∑
x∈S

f(x).
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Thus G − e has a (1, f)-odd-factor by the induction hypothesis, and hence
G has a (1, f)-odd-factor.

case 2. o(G− S) =
∑

x∈S f(x) for some nonempty S ⊂ V (G).
Choose such a subset S0 so that |S0| is maximum. Then every even com-

ponent D of G− S0 has a (1, f)-odd-factor F (D) since D satisfies condition
(5). Let X be the set of all odd components of G−S0 and let B be a bipartite
graph with partite sets X and S0, in which C ∈ X and s ∈ S0 are joined by
an edge if and only if G contains an edge joining s to a vertex of C. Then
we can show that B has a spanning subgraph H such that

dH(C) = 1 for all C ∈ X and dH(s) = f(s) for all s ∈ S0

by Lemma 2 and by the choice of S0. For every edge e
′
= Cs of H, there exists

an edge e of G such that e joins a vertex of C to s. We can show that the
subgraph C + e of G, which is obtained from C by adding an edge e together
with its end vertex s, has a (1, f

′
)-odd-factor F

′
(C + e) by the induction

hypothesis, where f
′
(x) = f(x) if x 6= s and f

′
(s) = 1. Consequently, we

obtain a desired (1, f)-odd-factor F of G given by

F = {F (D)|D are even components of G− S0}
∪ {F ′

(C + e)|C are odd components of G− S0 and e
′ ∈ E(H)}. �

Note that it seems to be difficult to give a sufficient condition for a graph
to have a (1, f)-odd-factor by using neighborhoods. The following natural
question is open: Is it possible to characterize graphs G that satisfy

odd(G−X) ≤ 2n|X| for all X ⊂ V (G)

in terms of factors?

Acknowledgement
The authors wish to thank referees for their suggestions and corrections.

References

[1] A. Amahashi, On factors with all degrees odd, Graphs and Combinat. 1
(1985) 111–114.

[2] A. Anderson, Sofficient conditions for matching, Proc. Edinburgh Math.
Soc 18 (1973), 129–136.

[3] P. Hall, On the representatives of subsets, J. London Math. Soc 10(2)
(1935) 26–30.

6



[4] L. Lovász and M. D. Plummer, Matching Theory, Annals of Discrete
Mathmatics. Vol.29 North-Holland(1986).

[5] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22
(19XX) 107–111.

7


