Some results on odd factor of graphs

Cui Yuting ${ }^{1}$ and Mikio Kano ${ }^{2}$
${ }^{1}$ Shandong college of ocendology, Qingdao,China
${ }^{2}$ Akashi technological college, Akashi, Japan

Abstract

A $\{1,3, \cdots, 2 n-1\}$-factor of a graph G is defined to be a spanning subgraph of G, each degree of whose vertices is one of $\{1,3, \cdots, 2 n-$ $1\}$, where n is a positive integer. In this paper, we give a sufficient condition for a graph to have a $\{1,3, \cdots, 2 n-1\}$-factor.

1 Main theorem

We consider finite graphs that have neither loops nor multiple edges. Let G be a graph with vertex set $V(G)$. For a vertex v of G, we write $\operatorname{deg}_{G}(v)$ for the degree of v in G. For a subset S of $V(G)$, the neighborhood $\Gamma_{G}(S)$ of S is defined to be the set of vertices if G that are adjacent to at least one vertex of S. Let I be a set of nonnegative integers. A graph G is called an I-graph if $\operatorname{deg}_{G}(x) \in I$ for all $x \in V(G)$. We call a spanning I-subgraph of G an I-factor of G. In particular, a $\{1,3, \cdots, 2 n-1\}$-factor of a graph G is an spanning subgraph F of G such that the degree of every vertex of F is contained in $\{1,3, \cdots, 2 n-1\}$, where n is a positive integer. A $\{k\}$-factor will be called a k-factor.

The following proposition gives a sufficient condition for the existence of a 1-factor in a graph by using neighborhoods.

Proposition 1 (Anderson[2],[4p.115)] Let G be a graph with an even number of vertices. If

$$
\Gamma_{G}(X)=V(G) \text { or } \quad\left|\Gamma_{G}(X)\right| \geq \frac{4}{3}|X|-\frac{2}{3}
$$

for all $X \subset V(G)$, then G has a 1-factor.

Our next main theorem is an extension of this proposition, and its proof is analogous to that of Proposition 1.

Theorem 1 Let G be a graph with an even number of vertices, and let n be a positive integer. If

$$
\Gamma_{G}(X)=V(G) \text { or }\left|\Gamma_{G}(X)\right|>\left(1+\frac{1}{3(2 n-1)}\right)|X|-\frac{1}{2 n-1}
$$

for all $X \subset V(G)$, then G has a $\{1,3, \cdots, 2 n-1\}$-factor.
This theorem is best possible in the sense that the condition in Theorem 1 cannot be replaced by the condition that

$$
\Gamma_{G}(X)=V(G) \text { or }\left|\Gamma_{G}(X)\right| \geq\left(1+\frac{1}{3(2 n-1)}\right)|X|-\frac{1}{2 n-1}
$$

for all $X \subset V(G)$. This fact will be shown in Theorem 2
We give some definitions before proving Theorem 1. For a subset S of $V(G)$, we denote by $G-S$ the subgraph of G obtained from G by deleting the vertices in S together with their incident edges. We write $o(G)$ for the number of odd components(components with odd order) of G. Our proof of Theorem 1 depends on the following theorem, which is a generalization of Tutte's 1 -factor Theorem and will be extended in Theorem 3.

Proposition 2 (Amahashi[1]) Let n be a positive integer. Then a graph G has a $\{1,3, \cdots, 2 n-1\}$-factor if and only if

$$
\operatorname{odd}(G-X) \leq(2 n-1)|X| \text { for all } X \subset V(G)
$$

Proof of Theorem 1. Suppose that G satisfies the condition in the theorem but has no $\{1,3, \cdots, 2 n-1\}$-factor. Then there exist a subset $S \subset V(G)$ with $o(G-S)>(2 n-1)|S|$ by Proposition 2. Let $\mid V(G)=p$. Since p is even, by parity, we may assume $o(G-S) \geq(2 n-1)|S|+2$. Let m denote the number of isolated vertices of $G-S$, and put $t=1+(1 / 3(2 n-1))$ and $r=1 /(2 n-1)$. We consider two case.

Case 1. $m>o$. Since $\left|\Gamma_{G}(V(G)-S)\right| \neq V(G)$, we have

$$
\left|\Gamma_{G}(V(G)-S)\right|>t|V(G)-S|-r=t p-t|S|-r
$$

It is clear that $\left|\Gamma_{G}(V(G)-S)\right| \geq p-m$. From these inequalities, we obtain

$$
\begin{equation*}
p<\frac{t|S|+r-m}{t-1} . \tag{1}
\end{equation*}
$$

On the other hand, counting the vertices of the odd components of $G-S$, we have $m+3((2 n-1)|S|+2-m) \leq p-|s|$, and thus

$$
\begin{equation*}
(3(2 n-1)+1)|S|+6-2 m \leq p \tag{2}
\end{equation*}
$$

Combining inequalities (1) and (2), we obtain

$$
\begin{equation*}
(3(2 n-1)+1)|S|+6-2 m<\frac{t|S|+r-m}{t-1} . \tag{3}
\end{equation*}
$$

Substituting the values of t and r into (3), we can get $3+(6 n-5) m<0$, a contradiction.

Case 2. $m=o$. In this case, every odd component has at least three vertices. Let X be the set of vertices of any $(2 n-1)|S|+1$ odd components of $G-S$. Since $\Gamma_{G}(X) \neq V(G)$, we have $\left|\Gamma_{G}(X)>t\right| S \mid-r$ and hence

$$
\begin{equation*}
|X|<\frac{|S|+r}{t-1} \tag{4}
\end{equation*}
$$

On the other hand, $|X| \geq 3((2 n-1)|S|+1)$ as well. So combining it with inequality (4), we obtain

$$
3((2 n-1)|S|+1)<\frac{|S|+r}{t-1}
$$

Substituting the values of t and r into the above inequality, we get $0<0$, a contradiction.

Consequently, the proof is complete.
If a graph G consists of $n(n \geq 2)$ disjoint copies of a graph H, then we write $G=n H$. The join $G=A+B$ has $V(G)=V(A) \cup V(B)$ and $E(G)=E(A) \cup E(B) \cup\{x y \mid x \in V(A)$ and $y \in V(B)\}$.

Theorem 2 For every position integer n, there exists infinitely many graphs G that have no $\{1,3, \cdots, 2 n-1\}$-factor and satisfy

$$
\Gamma_{G}(X)=V(G) \text { or }\left|\Gamma_{G}(X)\right| \geq\left(1+\frac{1}{3(2 n-1)}\right)|X|-\frac{1}{2 n-1}
$$

for all $X \subset V(G)$.
Proof Let m be a positive integer. We define a graph G by $G=$ $K_{m}+((2 n-1) m+2) K_{3}$, where K_{m} and K_{3} denote the complete graphs of order m and 3 , respectively. It is trivial that G is of even order. Put $S=$ $V\left(K_{m}\right)$. Then $o(G-S)$ has $(2 n-1) m+2$ odd components, and so G has no
$\{1,3, \cdots, 2 n-1\}$-factor by Proposition 2 . Let $K_{3}(i), 1 \leq i \leq(2 n-1) m+2$, denote the disjoint copies of K_{3} in $G-V\left(K_{m}\right)$. Let X be any subset of $V(G)$. We now prove that X satisfies the condition in this theorem. If $|X|=1$, then

$$
\left|\Gamma_{G}(X)\right|>2>\left(1+\frac{1}{3(2 n-1)}|X|-\frac{1}{2 n-1} .\right.
$$

Hence we may assume that $|X| \geq 2$. It is clear that if $X \cap V\left(K_{m}\right) \neq \emptyset$, then $\Gamma_{G}(X)=V(G)$. Thus we may assume $X \cap V\left(K_{m}\right)=\emptyset$. Let $a=\mid\{i \mid X \cap$ $\left.V\left(K_{3}(i)\right) \mid=1\right\}, b=\mid\left\{i\left|X \cap V\left(K_{3}(i)\right)\right|=2\right\}$ and $c=\mid\left\{i\left|X \cap V\left(K_{3}(i)\right)\right|=3\right\}$. Then $|X|=a+2 b+3 c$ and $\mid \Gamma_{G}(X)=m+2 a+3(b+c)$. If $3(2 n-1) \times(m+$ $a+b) \geq|X|-3$, then we have

$$
\left|\Gamma_{G}(X)\right|=m+|X|+a+b \geq\left(1+\frac{1}{3(2 n-1)}\right)|X|-\frac{1}{2 n-1}
$$

Therefore, we may assume that $|X|>3(2 n-1)(m+a+b)+3$. Since $|X| \leq|V(G)|-\left|V\left(K_{m}\right)\right|=3(2 n-1) m+6$, we obtain $a+b=0$, which implies $|X|=3 c$, and $|X|=3(2 n-1) m+6$. Namely, $X=V(G)-V\left(K_{m}\right)$. In this case, we have $\left|\Gamma_{G}(X)\right|=|G|$. Consequently, the theorem is proved.

2 The extension of proposition 2

In this section, we give an extension of Amahashi's Theorem(proposition 2), which was mentioned before by Knao. let G be a graph and f be a function defined on $V(G)$ such that $f(x)$ is a position odd integer for every $x \in V(G)$. We denote such a function by $f: V(G) \rightarrow\{1,3,5, \cdots\}$. Then a spanning subgraph F of G is called an $(1, f)$-odd-factor if $\operatorname{deg}_{F}(x) \in\{1,3,5, \cdots\}$ for all $x \in V(G)$. Ir is obvious that if $f(x)=2 n-1$ for all $x \in V(G)$, then a $(1, f)$-odd-factor and a $\{1,3, \cdots, 2 n-1\}$-factor are the same. We prove the following theorem.

Theorem 3 Let G be a graph and $f: V(G) \rightarrow\{1,3,5, \cdots\}$. Then G has a $(1, f)$-odd-factor if and only if

$$
\begin{equation*}
o(G-S) \leq \sum_{x \in S} f(x) \tag{5}
\end{equation*}
$$

for all $S \subset V(G)$.
In order to prove Theorem 3, we need the following two lemmas.

Lemma 4 Let G be a tree of even order and $f: V(G) \rightarrow\{1,3,5, \cdots\}$. Then G has a $(1, f)$-odd-factor if and only if

$$
o(G-x) \leq f(x) \quad \text { for all } x \in V(G)
$$

Proof The proof is similar to that of Theorem 1 of [1].
Lemma 5 Let G be a bipartite graph with partite sets X and Y, and let g be an integer valued function defined on X. Then G has a spanning subgraph H such that

$$
\operatorname{deg}_{H}(x)=g(x) \text { for all } x \in X \text { and } \operatorname{deg}_{H}(y)=1 \text { for all } y \in Y
$$

if and only if

$$
|Y|=\sum_{x \in X} g(x) \text { and }\left|\Gamma_{G}(S)\right| \geq \sum_{x \in S} g(x) \text { for all } S \subset X .
$$

Proof The lemma is an immediate consequence of Hall's Marriage Theorem[3].

Proof of Theorem 3. This theorem can be proved similar as proposition 2. Assume that G has a $(1, f)$-factor F. Then we have

$$
o(G-S) \leq \sum_{x \in S} d e g_{F}(x) \leq \sum_{x \in S} f(x)
$$

since there exists at least one edge of F between every odd component of $G-S$ and S.

We next prove the sufficiency by induction on $|V(G)|+|E(G)|$. Without loss of generality, we may assume that G is connected. Moreover, we have that $|V(G)|$ is even by setting $S=\emptyset$ in (5). It is immediate that

$$
\begin{equation*}
o(G-S) \equiv|S| \equiv \sum_{x \in S} f(x)(\bmod 2) \tag{6}
\end{equation*}
$$

By Lemma 1, if G is a tree, then G has a $(1, f)$-odd-factor. Hence we may assume that G is not a tree. We consider two cases.

Case 1. $o(G-S)<\sum_{x \in S} f(x)$ whenever $\emptyset \neq S \subset V(G)$.
There exists an edge e such that $G-e$ is connected, where $G-e$ denotes the subgraph of G obtained from G by deleting only the edge e. For every $S \subset V(G)$, it follows from (6) that

$$
o((G-e)-S) \leq o(G-S)+2 \leq \sum_{x \in S} f(x)
$$

Thus $G-e$ has a $(1, f)$-odd-factor by the induction hypothesis, and hence G has a $(1, f)$-odd-factor.
case 2. $o(G-S)=\sum_{x \in S} f(x)$ for some nonempty $S \subset V(G)$.
Choose such a subset S_{0} so that $\left|S_{0}\right|$ is maximum. Then every even component D of $G-S_{0}$ has a $(1, f)$-odd-factor $F(D)$ since D satisfies condition (5). Let X be the set of all odd components of $G-S_{0}$ and let B be a bipartite graph with partite sets X and S_{0}, in which $C \in X$ and $s \in S_{0}$ are joined by an edge if and only if G contains an edge joining s to a vertex of C. Then we can show that B has a spanning subgraph H such that

$$
d_{H}(C)=1 \text { for all } C \in X \text { and } d_{H}(s)=f(s) \text { for all } s \in S_{0}
$$

by Lemma 2 and by the choice of S_{0}. For every edge $e^{\prime}=C s$ of H, there exists an edge e of G such that e joins a vertex of C to s. We can show that the subgraph $C+e$ of G, which is obtained from C by adding an edge e together with its end vertex s, has a $\left(1, f^{\prime}\right)$-odd-factor $F^{\prime}(C+e)$ by the induction hypothesis, where $f^{\prime}(x)=f(x)$ if $x \neq s$ and $f^{\prime}(s)=1$. Consequently, we obtain a desired $(1, f)$-odd-factor F of G given by

$$
\begin{aligned}
F & =\left\{F(D) \mid D \text { are even components of } G-S_{0}\right\} \\
& \cup\left\{F^{\prime}(C+e) \mid C \text { are odd components of } G-S_{0} \text { and } e^{\prime} \in E(H)\right\} .
\end{aligned}
$$

Note that it seems to be difficult to give a sufficient condition for a graph to have a $(1, f)$-odd-factor by using neighborhoods. The following natural question is open: Is it possible to characterize graphs G that satisfy

$$
\operatorname{odd}(G-X) \leq 2 n|X| \text { for all } X \subset V(G)
$$

in terms of factors?

Acknowledgement

The authors wish to thank referees for their suggestions and corrections.

References

[1] A. Amahashi, On factors with all degrees odd, Graphs and Combinat. 1 (1985) 111-114.
[2] A. Anderson, Sofficient conditions for matching, Proc. Edinburgh Math. Soc 18 (1973), 129-136.
[3] P. Hall, On the representatives of subsets, J. London Math. Soc 10(2) (1935) 26-30.
[4] L. Lovász and M. D. Plummer, Matching Theory, Annals of Discrete Mathmatics. Vol. 29 North-Holland(1986).
[5] W.T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (19XX) 107-111.

