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Introduction

Often a computer program needs to accept as all or part of its input a se-
quence of character strings and decide, {or each string, whether that string is a
member of some finite set of known strings. The set of known strings may be
nonempty when the program starts and may change as the program receives in-
put. The strings, both known and otherwise, are generally referred to as keys.
Testing a key for membership in the set of known keys is called a search, adding
a key to the set of known keys is called an insertion, and removing a key [rom
the set is a deletion.

Many different schemes have been developed Lo handle this computational
task. These include linear search of an unordered table, binary search ol an or-
dered table, B-trees, tries, various forms ol string pattern matching, and hash-
ing. The choice of one scheme over ancther for a certain application generally
depends on the size of the set of known keys, and the relative numbers and ord-~
er of searches, insertions, and deletions, since each scheme is efficient in some
situations, and ineflicient or inapplicable in others.

Hashing refers to schemes which perform an insertion by compuling some
(simple) arithmetic function of the key to be inserted and using the result as the
location in the table of known keys at which the key should be stored. The view
of the hashing procedure as dropping keys into various locations in the table has
led to the locations in the table {whether containing a key or not) being referred
te as buckets. A search for a key is performed by computing the same [unction
on the key to be searched [or, and then comparing the key with whatever, if any-
thing, is currently stored in the indicated bucket. A ecollision occurs when two
lceys to be inserted are mapped by the function to the same bucket., Bach hash-
ing scheme must include some melthed for dealing with cellisions. There are
many inleresting possible metheds, but we will be concerned with a special case
in which this is not an issue.

T This work supported by NSI" grant MCS 78-01812
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Most of the research on hashing has dealt with the general case in which
search operations and insertion cperations may be intermingled in an arbitrary
manner. However, if the insertion operalions are guaranteed to precede all the
search operations then all the keys which will ever be in the table are known in
advance. In this case one might try to find a function mapping these keys,
withoul collisions, into a table not much larger than the set of keys.

Perfect hashing

The [ollowing definitions are due to Sprugnoeli [Spr 77].

Definition 1: A hashing functlion is a perfecl hashing [unction (or phf) [or a
set of keys iff the [funclion is 1-1 on that set of keys, i.e., there are ne collisions
on those keys.

Definition 2: A hashing [unction is a minimal phf for a set of keys iff the
function maps the keys in a 1-1 fashion onto the buckets 0,1,....,k—=1, where & is
the number of keys in the set.

Thus if one has a minimal phf for a set of keys, the hash table need have cnly as
many entries as there are keys in the set. A nearly minimal phf is a function
which uses a table not much larger than the set of keys, where "not much larger
than" might be interpreted, for example, as "not larger than a constant factor
times".

Livery set of keys has, of course, several minimal phfs; the problem is that
we may not know how te compute any of them in constant time, as we would like
for a hashing [unction. Several articles {[Spr 77], [Cic 80]) recount procedures
which take as input a set of keys and try Lo produce a minimal or nearly
minirmal phf for that set of keys in a form which is known e priori to be comput-
able in constant time. The success of these procedures varies with the clever-
ness of the authors, but none of them is guaranteed te work for every sel of
keys. Hence, the nature and complexity of general methods for producing
minimal er nearly minimal phfs are still open.

Alternate approaches to the general problem include that of Tarjan and Yao
[Tar 79] which produces minimal phfs computable in O(log, P) time, where P is
the size of the universal set from which % keys are drawn. Alse, Carter and Weg-
man [Car 77] study classes of funetions with the property that given a set of
keys, S, a [unction chosen at random frem the class will be, on the average, a
geod hashing [unction for S.

In this report we address the question of whatl reslrictions on the class of
[unclions considered would guarantee thal the class conlained at least one phf
[or each set of keys {disregarding, for the moment, how to compute the [unc-
lions in some way [aster than Lable look-up).
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IFormalizing some questions

We shall take the set of possible keys and the set of buckets each te be an
initial segment of the natural numbers. In addition, we specily Lhe size of the
sets of keys for which phfs are to found. We shall use the following symbols:

P the number of possible keys, those being {0,1,...,P—1}
b the number of buckets, those being §0,1,...,0 =1}
k the number of keys in a key set

bf = {f|F:f0.1,..,P=1}-1{0,1,. ... b—-1}]}

Also, R will denote the real numbers, R* the nonnegative real numbers, and N
the natural numbers. And we shall need the [ollowing definitions.

Definition 3: A (k,P)=sct is a k-element subset of §0,1,....P—1].

Definition 4: A function, f €b? covers a (k,P)-set. S, iff f is a phf for S.
Also, Gcb¥ covers a (k,P)-set, S, iffi for at least one g € (, g covers S.

We can now state precisely the questions te which we wish Lo obtain
AnNsSwers.

Question 1: Given £, &,k and an integer n, what choice of n functions,
Fufa-fneb? will maximize the number of (k,P)-sets covered by
{f 1.....fn ], and how many (k,F)-sets will it cover?

Question 2: Given P, b,and &, what is the smallest integer n such that
every (k ,P)-set is covered by some {f 1.....fn} C0F?

The function cov

Definition 5: cowery ({f 1.....fn}) is the number of (k,P)-sets covered by

t Sal

Our first aim is to obtain a convenient expression for covery ({f......fa!) in
terms of quantities easily determinable from the functions themselves.

If we have just one function, f €4, then we can count the number of
(k ,P)-sets covered by {f{ in the following way. First, let "buckel-set i” denote
F (i), the set of keys mapped by f to i. Now select any k distinct buckets
i1,...,%, and the corresponding bucket-sets. Then if we form a (k,P)-set by pick-
ing one key irom each of the selected bucket-sets, that (k,P)-set is covered by
f. Tor a particular collection of & buckets, 7={i,,...,4. ], the number of (k,P)-
sets Lhal we can form in this way is just the product of the cardinalities of the
corresponding buckel-sels:
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f[ | bucket—setd; | = [T [ F7H)|.
i=1

Il we then sum over all ways of picking £ buckels, we will have counted exactly
once each (k,P)-set that f covers. So

covere(f D)= ¥ TLIST@)I

fclol..b—-1jierl
17i=k

For sets F={f,...fn] Cb? containing more than one function the situation
is a little more cemplicated. It will net do to just sum the preceding formula
over all the [unctions in the set, since a (k,P)-set could be covered by more
than one function, but should cnly be counlted once. One way to overcome this
difficulty is to generalize our notion of bucket-sets (the bucket-sets of single
functions being herealter referred to as simple bucket-sets). Each generalized
bucket-set is the intersection of a collection of simple bucket-sets, one from
each function. We name a generalized bucket-set by a vector, u=<u(1).....u(n)>,
which indicates Irem which simple bucket-sets it was derived. More precisely,
the generalized bucket-set 7, is given by

Zu(F) = Zy).pm)(F) = ﬁ bucket—set z(7) from function j

w7 ))-

uja

Unfortunately, it is not the case that picking one key from each of & dis-
tinet generalized bucket-sets will guarantee that the (k,P)-set so formed is
covered by I, The essence ol the complicatlion is thal for 7 Lo cover a (k,P)-
set, some single function in 7 must cover that {(k,P)-set. 1f we select k general-
ized bucket-sets, Z, ,....4,,. then the (k .P)-sets formed by picking one key [rom

each will be covered by F just il there is some f €F such that 2, .....2,, are

portions of & distinet simple bucket-sets of f. One can visualize this condition
in terms of the names of the generalized bucket-sets, ,u.l. .My, as [ollows. Align
the vectors py,....44 one beneath the cther:

< (1) - mln) >
< pa(l) - pe(n) >
< Ml) ce ukin) >

Then F covers the (k,P)-sets formed by picking one key from each of Zpger-1 L,
if and only if some column of the array abeve comprises & distinct entries.

So to compute covery ({f1,....fn]) we take, as in the case of one funection,
producls of cardinalities in collections of £ (generalized) bucket-sets. But we
sum only over the colicetions of bucket-sets having the property described
above. To male writing this easier, we introduce

~—f



Giff (re i )= 1 17 1p01(d ). pae (7} are pairwise distinet] |

Then we have

k
covery({f 1 fal) =& X 11124 e fa)].
atf (..o )1 j=1
The factor k‘—lreﬂects the fact that each collection of & buckeb-sets, Zh""'ZEk'
can be ordered in k! different ways to appear as Z,,....Z,_ in the formula.

Now, since only the cardinalities of the various Z, are important let us
define

@l ) = 12 v )| = 10 75700 |
Then A({f1..... n {)=[@u({f 1,-...fn1}] will be an = -dimensional (AxbXx ' - - Xb) ar-

ray of nonnegalive integers with E a,=F (since each key is counted in exactly
i
one u.p,). We will refer to A as the key distribution of {7 ;.....f 1.

We can give one result immediately in regard to Question 2:

Proposition 1: If {f....fnlCcb? covers all {(k,P)-sets (for some 2<k<b),
then A(LSf 1.....f»}} is such that ¥, ap(§f 1, fal)€{0,1].

Proof: Suppose for some g, @,(8f 1..... 2 ])=2. Then there are two keys, s,
and sz, such that ¥f € {f...fx!l f(s1)=F{s2). Pick any (&,P)-set, S,
containing both 5, and sp. Sinceno f € §f ... folis I-1 on S, {F1.....fn}
does not cover S.

Corollary: 1t {f 1....fn} Cb¥ covers all (k.P)-sets {for some 2<k<b), then
nalrlongl.

Proof: By definition there are d™ elements in A({f;.....f»}) and their sum
is P. Since {f,....fn]} covers all (k,P)-sets, each element is either 0 or 1.
Hence

P=)a,=b"1=p4"
i

and son =log, £. Sincen is an integer, n = IILOng'

Definition Ba: For n=>1,b=1, and P>0, let {}, 5 p denote the space of all n-
dimensional, b Xbx - -+ xb arrays, A, with entries which are real numbers such
that }} a,=P.

I

Definition 6b: For n=1,b>1, and P>0, let Q7 , » denote the space of all n-
dimensional, bxbx - - - xb arrays, A, with entries which are nonnegative real

numbers such that )} ¢,=P.
o

ER.
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Definition 8c: For m=1,b=1, and P>0, let O, » denote the space of all n-
dimensional, bxbx - - - xb arrays, 4, with entries which are nonnegative integers
such that )} e,=F.

M

Observing that
1) every A€ QN, p is the key distribution of some set of n functions in %,
and
2) from a key distribution we can easily find a set of functions having that
key distribution,
we will cease to mention [unctions explicitly and define

COVUgn bk (A)=k1_l 2 H a‘#j '
iffy (kq, i )1 5=1

Then we can answer Question 1 if we can find the maxima of covnp (A) for
Ae D,l;'.b P

Unfortunately, we have been able to do this only for the case of one function
{n.=1), and for the case of two keys per set (k=8). In light of this difliculty we
have tried to obtain at least an approximate answer for n>1 by extending Lhe
domain of cov, , ,(4) to arrays of real numbers, (i.e., to (1, , p) (Which involves
no work) and seeking a global maximum for A€fl, , p. At this, we have been
successful for the case k=2, However, the example at the end of the next sec-
tion shows that cov, , (A) may be unbounded if 4 contains negative values and
&k is greater than 2. Hence, we will ultimately have to restrict our attention to
01 5 p, though this should not sadden us greally in view of our intended applica-
tion.

Results for the case of one function (n=1)

If we have just ocne [unction, then the key distribution is a vector,
A=[u"1| - .Eb]. and

Definition 7: For each real constant c let [c ], denote the m-dimensional :’
bxbx - - - xb array, all the enlries of which have the value c. :

Definition 8: A~ [c].p (read A approximates [c ], s Wwith integers) if and
only if the sum of the elerments of A is c-b™ and each element of A is eqgual to ei- :
ther le] or lc]. o,

Definition 9: A function f €b% is an even-sprinkling function iff its key dis- . ;

tribution, 4, is such A~N{:;] ,’ Thus the key distribution of an even-sprinkling '
1, i

function is in some sense the best integer approximation to [%] .
1,b
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Anderson and Sprugnoli [And 78] considered the special case for one function

when £ =b. They showed that cav,,;(A), A€Q{, p, has a global maximum at

A:{:; g and that cov,p s (4), A€QY, p. is maximized whenever ANH{‘:; oy Ber-
L

man, Bock, and Plank [Ber 81] proved that, in fact, for any k<b, A={ﬂ1 , max-

imizes cov, , (A) over A €Qf, p. Both used, at some points in their proofs, the
idea of comparing cowv (4) with cov(4"), where A' is obtained from A by perturb-
ing just two elements of A. Below, we formalize this idea and show that it can be
used as the sole tool Lo prove both that cov,, (4}, 4<Q), p, has a global max-
imurn at A={a£]1 Y and that cov, 4 (4), 4 EQE,,IP. is maximized whenever A is the

key distribution of an even-sprinkling [unction.

Intuitively, what we shall call a simple spreading is a transforrmation on an
array (in 1, p) which selects two elements of the array and increases their
diflerence without changing their sum (whence a spreading); and leaves all other
elements unchanged (whence simple).

Definition 10: Let 4,4' €}, p. Then A can be simply spread to A’ (denoted
A »A") iff for some £>0 and some [ and m, 0=l m<b—1,

a; = Oy
a'; =g —¢
C'y =yt

and i g{l,mi{ a’; = o

Proposition 2: If 4,4'€Q{s p and A=A’ then cov,p.(4) = covyp(4').
T'urthermore, if cov L.bd (A) > 0, then cov l.b.k(A) > Ccovy (A')

Proof: The only terms which difler between cov, p . (4) and cov,p . (A') are
Lhese involving o;.a'y, or o, .a'y,, or both. Hence

CoU bk (A) ~oou g (A7) = (@, —a") ) [
Iﬁ_?:{é._n}] ief

+ (G‘m - m) 2 o
Ick\jlom] ie]
I =k—1
+(a£a‘m_a£a‘m) E o
fcontmi ief
|I|=k-2

= ((ul_a'l)'l'(um'_a'm)) z
fcbh\t,m| 1er]
I =k-1
+ (g, —aa'y) 2 Ha-i
JebNitm] ief
Il =k-2

=(e+(=¢)) 2, Ilw
IICI?:IAI:._ni] ief

+ (alﬂ'm - ((I; Qpp, —EQ, TEQ — 82)) 2 o;

e



Since £>0 and ep=¢; and all the ¢; are nonnegative, the last expression
for the diflerence is nonnegaltive. Thus cov,p ; (4) = cov, p . (A4").

Now suppose that cov, 4 ,{(4) > 0. Then there must exist some subset of k&
elements of 4, all of which are nonzero. Hence, even excluding ¢; and o,
there is still some subset of £ —2 nonzero elemenls of A. This means that

>, [la>o.
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Thus the last expression [or the diflerence is strictly positive and
cov)y x(A) > covy (A"}, This completes the proof of the proposition.

Corollary: If A,.C€Qy p, A#C, cov, ;;(A)>0, and there exists a sequence
A=A0 HAl 3, HAn=C then CD'ULbIk(A) > cov l.b.k(c)'

Proposﬂ:mn 3 covyp:(A), A€0fyp has a global maximum at

]w ok

Proof: We will show that for every CeQfy p
C;é{f b $coul_blk({‘;;]lb))co’ul_blk(C’). Since cnul-b-k({oﬂlb)>0' it

suffices, by the previous corollary to exhibil a sequence of simple spread-
ings which transforms rﬁ mto C.

LetA°—rP
[®]ie’

In order to define A**! for t>0, first identify the positions at which 4° is
greater than C, and those at which Af is less than C:

let £, = §i |af> ;,
and My = {i | af < ;.

Then pick from each set the position at which the difference is the smal-
lest. (And in case of ties, pick the smallest index.) Let

L =minfjei | M€l af ~c; < al—0y}
Ty = mll'li] EM; | VEEM‘, cj—afg c:-—a_f!

Tinally, et
g = min[a;“ —c;‘,cm‘—-u.,";,,t;
and define A**! by

Vizgl, m, altl =aof

I+l — i
@y, = =0y —&



By induction on £ we can show

(1) el Vel af<al,
and (2) for some £5<b, 4 = C,

the key observation being that adding and subtracting £, preserves (1)}
and forces progress toward (2). From (1} we have in particular that

So the sequence we have defined is such that

[f_ = Au :-)Al ... ﬂA‘u = (,
[¢ )1

This concludes the proof of the proposition.

Proposition 4; Suppose H,CeQly p, Hg [{- b 5 [ﬂl - Then

COVy bk (H)>GO'U l.b.k(c)-
Proof: First, if H ~ [% ”
some permutation of the elements of #/ and so CU'Ul_u,A:(H) = Covyp g (H".

Second, if €4 [:;]15' then there exists '€, p such that (a) H""H[ﬂl %

and H'~g lbil " then the elements of H' are just
1.

and (b) there exists a sequence H' = A" =4l ».., 24 = C. The proof of (b)
is very similar to the proof of the analogous claim in Proposition 3. The
only substantial difference is in verifying the induction basis for (1), Z.e.,
that for allZ and 7, hy > ¢y and Ay < e; > hy <h;.

Although it seems to have litile relevance to our original problem, one
might want to know whether it is necessary to restricl the domain of cov 4 to
0y p in order for [£];, to be a global maximum. The answer is yes, and there is

an easy example. Consider the point [5, ~1, ~1] in Q) g 4.
covyg4([8, ~1, —1]) = () (-1):(-1) = 5> 1 = cov,35({1, 1, 1])
In fact cow | g5 is unbounded if we allow negative entries: for each real number ¢,

cov, gg{[1+8c,1—¢c,1——c]) = (1+2c ) (1—c )} {1—c)
= 1-3c?+2c?,

which is unbounded in the positive direclion as ¢ increases.

The case of two keys per set ( k=2)

Berman, Bock, and Plank [Ber 81] have exhibited a construction which pro-
duces a set of functions {f,...fn}<b® covering all (2,P)-sets such Lhat (a)
§f 1.....fn} is of minimal size among the subsets of ¥ which cover all (2,/)-sels;
and (b) every f € {f,.....fn] is an even-sprinkling function. They show further

that [logh PJ =n=< lrlogb Pl.




By showing that the converse of Proposition i holds in the case k=2, we es-
tablish a complete characterization of the subsets of ¥ which cover all (R,P)-

sets, and show that the minimal size for such a subset is exactly llong.

Proposition &: {f1.....f»} CbF covers all (2,P)-sets iff
V[J U-p,(ffu---.fn]) € lolll-
Proof: (= } By Proposition 1.
(<) Assume that ¥ e ({f1....fn}) € {0,1]. Pick any (2,P)-set, {5,582} and
let )

pm=(f (s 1)-f2(31)-----fn{5'1))
and £ = (f \(sg).fz(s2)..... fa(s2)).

Now if u=¢, then o,=0.=2 since both s, and s, would be counted there.
But this contradicts our hypothesis, so it must be that u#£. This implies,
of course, that there musl be seme position, 4, at which x and ¢ are not
the same ({i)#£(7)}. But then

Fi(s1) = u(i) # £(2) = fi(s2).

Thus f; covers {s,,5z{. Hence {f,.....f»} covers {5,.55]. Since 5,55} was
arbitrary, this completes the proof.

Proposition 6: The smallest = such that there exists {f.....fn] €& which
covers all (B,P)-setsisn = I[logb P].

Proof: By Proposition 1, no = smaller than {long will de. On the other
hand, set n = lllog,, Pl and pick any 4 €N, p such that Vu a, € {0,1]. Then

A is the key distribution of some F = {f,,....fa} € b¥. By Proposition 5,
F covers all (2,FP)-sets.

The preceding results toock aim directly at Question 2. The next result
answers Question 1 for k=2 in the {unlikely) case thal &®|P. It can be obtained
as a corollary to Theorem 1 in the next section, but we insert it here because
the proof generates the answer to our question "Where is the maximum?" from
scratch, instead of confirming a guess, as the preoofs of Proposition 8 and
Theorem 1 do.

Proposition 7: For all n=1,b=2, and P>0, cov,  2(A)} has a global maximum
for A€Q, 4 p at A={&Ln

n.b

Proofl: From the definition of cov, ; i, With £ =2, we have

covppa(d) =5 ) LITLYS
eiffplis.£)=1

Now note that diffa(u,£)=1 if and only if p#§£. Thus

-10 -



cotn b 2(4) = £2. Y 20, (1)

B EFp
First we would like to find all the critical points of this function when its
domain is restricted to ), , p for arbitrary . To do this, we employ the

method of Lagrange multipliers, viewing the condition ) o, = P as a side
m
constraint. The augmented function then is

GA) =13} Y aun, — A-fz:a.p,—P].
"

Fr L

The critical points will be all solutions to the system of equations obtained
by setting the first partials of & equal to zero. Taking the first partials
produces

3G _
DN T T
ac _

I”:{L a—u!:'— -é—sgpaé—h

Setting the first partials equal to zero gives

Z‘Ip_P=D (2)
m

and Yo £ ag—A=0 (3)
rep

From (2) we get

Vo D, a.=P-a,
£#L

Substituting this in (3) gives

e HP-g,)-A=0
> u 2, = P —2A
> Yu.u 2, =FP—2A =0,

Since E a, = F and there are &® clements 2 it follows that
I

¥ = £
BBy =0
Thus the only critical point of couy, y, 2(A4) for A€, , poccursat 4 = {bLn . i

A review of the nearest text on multivariate ealeculus reveals that in order
to determine the nature of a critical point, Z = <z,...,z,, >, ol a function ;
of several variables, f(z,,...Z,). we must know all the second partial
derivatives at the point and determine therefrom how the first derivalive
chanpes as we move away [rom the critical point in all the many possible |
directions. If it decreases in all direcltions, then we have a strict local o
maximurm; if it increases, a slrict [ocal minimum. If it decreases in some
directions and increases in others, the situation must be investigaled
further. These conditions can be conveniently phrased if we arrange the .
second partials of the function in an m Xm maltrix, €, such that

-11-



2
gy = ?‘iﬂ%l* =
Then Z is a strict local maximum if and only if § is negative definite, and
7z is a strict local minimum if and only if § is positive definite. Thus it will
suffice to show that the matrix of second partials of cov, s z(4)} [or
A€y, , p is negative definite at 4 = LPT]

In order to investigate the second partials of cov, , 2(4), A €0, , p We in-
troduce the constraint on the sum of the elements of A explicitly by pick-

ing some pg and substituting ¢, = P - >, @, in (1). First from (1) we
K Lg
separate out the terms containing e,

coun b 2(A) = T Bl + T ) Tu0g

g=uy .u#.ugevﬁ#
=:;—Za.pom£+ Za“a +Zaaf
§=ag P-?‘.Uu
= E Cule + T2 Culp, + 7 2 2, 2,0
g BEL ERR. iy
= E a.%a.e + 3 5 @l
E#pg B#fbg £ 4, ping

Then we substitute for T pg

cot, p2(4) = ), ae (P~ ) a,) + L o Tulg

E=py g Lepgérp g
— 1
=P Yo, — 3, 2 a0, + 5y 9 0,0
Er g trpg pRi RP g §7 1 i
Thus
Viawtig, £ Toovube o g4 l= L
W g, £F L Lo, Gajpa, e =~z
aZ
and ¥u#ug —nbE = g
deg

So the matrix of second partials, @, is a (b™—1X 8™ —1) matrix with —1 on
the diagonal, and ~4 everywhere else.

To see that this matrix is negative definite recall that a matrix is negative
definite if all its eigenvalues are negative. I'urthermore, Lhe eigenvalues
of a matrix, M, are just those values A which make M —AJ singular, and
the multiplicity of an eigenvalue, A, is the dimension of the kernel of
M —AI. Clearly, —1is an eigenvalue of @ of multiplicity 8™ —2. It is only a
little less obvious that —% is an'eigenvalue of @ of multiplicity 1. The
sum of their multiplicities being 6™ —1, which is the order of @, these are
all the eigenvalues of &, and clearly they are both negative. Therelore @
is negalive deflnite, and hence 4 = [:T] is a strict local maximum. Being

the only critical point, it is also a global maximum. This completes the
proof of the proposition.

suggests Lhat when looking for maxima of cow,,,.(4) (a) for

AcQty p, A=lE may be a good place to look; (b) for 4 €Q}N, », points close

fer

1M




to [2]  may be good candidates.
I_ﬁn' n.b

For k=2, at least, (b) bears out well.

Proposition 8;: For 4 ﬂyl-f,b P Cﬂ‘“n.b.afA) is maximized whenever 4 W {3%] '
nb

Prool: By a "finite-series-of-perturbations” argument like that used to
prove the results for cov,, ; in the previous section.

The general case

If we have more than one function and more than two keys per set, the only
result so far which applies is Proposition 1 (and it addresses only Question 2).
The theorem in this seclion represenls ihe extenl of our other progress in the
general case.

We are looking for maxima of cov, y 4(4).A€Q, » p. A preliminary observa-
tion will simplify the notation which follows. Since cowy, y,(4) is the sum of pro-
ducts of length k, it follows that for any positive constant ¢

covy gk (c-AY=cF-couyy, (4).

This implies that so as long as we are operating in the realm of positive real
numbers, if we find a maximum for any particular value of P, then we can easily
find corresponding maxima for all cther values of P. Being Iree to pick a con-
venient value of P to work with, we will choose P=b", so that [b’; ) =[1]n .
n.
Theorem 1: ¥n=1, ¥e=2, W=k, cov, 4 (4) has a strict local maximum [or
A€ natA=[1]ns.

Proof: First we will give a short sketch of the prool. We will try to learn
something of the behavior of cov, ; {4) near the point A = [1],, by examining
the behavior of covp . along linesin {} , ,» which pass through (1], 5. 1f £ is an
n-dirmensional bX,...,xb array, the elements of which sum to 0 (D€, o), but
which has nonzero elements (D#[C], ), then { (p-D+[1], ) [ 2 €ER{ is such a line.
Furthermore every line in {1 ,  » which passes through [1]n.+ can be character-

ized in this way for some D €0, p o\{[Cln 5]

Thinking of D as fixed, we see that cov, 4 . (pD+[1], ) is a Function of the
single variable p. Our first step will be to show that in [act eov, 4 . (pD+[1], ) is
a polynomial in p of degree k, i.e., there are coefficients ¢y,...,c, such that

] k
Cov, 4 1 (PP +[1]n6)=)) cpop®.

i=0

Of course, the coefficients depend on the choice of D, so we write

coUn k(oD +[1]ns)= i{, ci (D) p*.

_13_
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The next portion of the proof will demonstrate that ¥D € Q, 5 o\N{[0]n b}

co(D) = covp 5 & {[1]n ).
c, (D) =0,
and ca(D) < 0.

These [acts will then be used to show that A = [1], 4 is a strict local maximum.

And now we present the proof in detail.

From the definition of cov, , ; we have that forany 4,5 € U Qpp.p.
P=z0

E
cov, bk (B+A) = -k!!—d;,gf (EZ . H b€j+aej)
gty -l )=l §=1

The idea for the following expansion comes from a similar expansion in [Sas 69].

Bach product H béjﬂzej) can be multiplied out into 2% terms, each the product
i=1
of some elements from 5 and/or some elements from A. By expanding all the

products in this way and then rearranging the factors within each of the result-
ing terms we obtain an expression for cov, p (B +4) consisting of terms of the
form

T k
{164 1 o,
i=1 J=r+l

[or various values of » and various sequences g,.... . Now it is clear thal Lhe

term H b H @, appears if and only if u,.....ptx is some permulation of some
i=1 J =r+l1
£1,....& such that diff, (£).....&)=1; hence, if and only il diffe{z1.... 4 )=1. So all

we have left to do is a little counting.

k
For a particular value of 7 and sequence p),..., 4, a product ] (b£j+u.ej) in
i

the original expression will produce one term Hb H Ty, if and only if
j=1 J =r+1

(41, ottr) @and (fr4q,.... M) are both subsequences of £,,....&. Since there are
(V) = sy sequences £y,...,£ which meet this condition we have

' k
Cﬂvﬂ.,b.k (B+A) = kl_ld.g‘ mz )._1 20 l(_l; r)l L]._.[ bﬂ]
Wellp g 21T E

L]._.[ a'a“j

=r+1

The factors L-and k! cancel, and since the summations are independent we can

reverse their order, yielding

[
[.‘O'Un.bj;(B"'A) = 2 E '(.': T I)].—[ b#j
=0 dfjrk&ll-----ﬂk)h

LH Ty,

j=r+1

¥We pause here to make an observation which will be useful later. The term
of the preceding expression obtained when =0 is

- 14 -



|_

k
! H ﬂ-pj =COUn bk (A)
il (gt )=1 0 J=1

no matter what B is. Leaving this aside for the moment and substituting p2 for
8, and [1], , for 4 we have

Caun,b..l: (pD + [l]n.b) =

|
=
-
=
il
-
=
L ——

=0 C‘kal...-.j&k]zl 1 =r+l
3 gl

= 1

= L5 dp.
=0 diff (), pp )21 rle—r) i=1 1

kE T

T, 1 7
Note that although the second sum is over sequences py,....tg, ONLY iq,.... [y acC-
lually appear in the subsequent expression. In order to change the summation
to be over just wy,....4-, we must determine, given g,.....4,, how many sequences
Hri1.. g there are such that giffy (u1....,4x)=1. We can visualize the problem
as follows:

(1) o pn)
#2'(1) T #z(l'”-)
#rkl) S urén)
-u'r+.1(1) e #Hll(n)
F'k'(l) S ﬂkf'n)

Given values above the line we must count the number of ways of filling in values
(from {0....,b -1} ) below the line so that at least one entire column is "good"
(comprises k& distinct integers).

Suppose that exactly e columns above the line are good
(i.e. ,diffr (... ptr)=€ ). W.l.o.g. we may assume that these are columns 1,...,e.
Clearly, columns which are "bad” (not grod) above the line will be bad as entire
celumns no matter how we extend them by flling in below the line. Thus, wheth-
er a particular choice of values for entries below the line satisfies the condilion
of producing alL least oche good entire column depends only on how it extends
columns 1,...,e below the line. To extend a column good above the line to a good
entire column we must choose & —r entries from the b —r integers not used
above the line. Since each such choice may be ordered in (k —7)! ways, there
are i

()b —r) =

good extensions of a column good above the line. There being ¥~ ways to fill in
a columnh below the line we conclude that there are

202

pET — (bt
(o—k)!

bad extensions of a column good above the line.

-15 -



Now, in order mef to satisfy the condition requiring one good column, we
must choose a bad exlension for each of ¢columns 1,...,e. Since the choices are
independent, we see that there are

(bk—r — {:%;}i_ 1]

ways to do this. Since there are b%*7)° ways in all to extend columns 1,...,e, the
number of ways to produce at least one good column must be

b(.l:—r]u _ (bk-r _ ((::;}!: 9

Recalling that we can extend columns e +1,...,n in any of the &®~9)#-7) possible
ways, the final count is

b(ﬂ-cr)[k—r].[b (k-r)o _ (pk-T _ {ﬁ}_o]

= bn(k—r‘].[l — b—[k-r)a,(bk-r _ (!::’:)I!! c]

bn(k—r),{l _ (b-—{k—r),(bk—r — .('-‘;"l’..))a

&)

(e-r). [y — (1 — —L8=r2
pRET ll (1 -E)ok-r u]'

Continuing our massaging of cov,, , , we can now transform Lhe second sum-
mation as we wanted to, yielding

. T 1 n{k—7) r (6—r)! dv;[fr(p,l _____ pr] r i
COVn bk (pD'l'[l]n.b) = 2 P -_r!(l:-rll 2 ] 'Il - (1 — (b—k}'bk_r) H d#! |
r=0 ey ‘ i=1

k n (k- il (o) y T
= N8 Y (L-w(o k)t [T,
r=0 " e i=1

where

= . {b—rll
wbkr)=(1 (b—k)sb""")

(One might expect that the second sumnmation would be over "diff - {;,.... 1 )=1".
In fact, that would be an equivalent expression to the one above, because the

evaluates to 0 if diff.(u,,....1t,) =0.) For a fixed D the expression above is clearly
a polynomial in g, with coeflicients

- aiff, (oo A
or(D) = T P (1 —w(p o) Uy TT g, i
Pty =1 !

Next we investigate the behavior of these coeflicients.

Recall the observation made about Lhe expanded expression for
covy, px (B+4), that the lerm obtained when 7=0 is just covn s (4). In light of o
the fact that we have substituted [1], s [or 4, this implies that [or all D €0, 4 ¢ -

co(D) = covg b 1 ([1]5.4)-

For the other coeflicients, note that if the [actor (1—w (b .,k ,r)dwf{'u"""”")) could
be moved outside the summation without muddying Lthe waters too much, then

- 16 - L]



the expression would become rather simple. For most values of = this is not
possible, because diff-(t1,-...i4-) depends in a complicated manner on gy,.,.. 4.
However, for r=1 and = =2, diff.(x,.....t&r) behaves reasonably well. In particu-
lar, for =1, Vu, diff (u)=n. So VD e, 4

LY (1w (b k1)) d,,

n(k—I) (F‘ { ny
=& 1wk k 117 .
(l:—r;! Zdﬂ

¢,(D)

=0
since the sum of the elements of 2 is 0 by hypothesis.

In the case of the coeflicient of p® we have

co(D) = onED Z Zd d (1—w (b Je ,2) el

E-(k )

= enG8) IEZd e — sz#-de-w (b & ) Felnd)

(=

z (;; 2

I 3

Since ), d, = 0 this simplifies to
©®

nik-2) [ diffalis.d)
ca(p)—;(f‘g;’[ Zzeldp-de-w(b.k.z) G

Now we need to know a liltle more about w(b,k.2). Tor all
b k,7, 028, 1=k=b, O=r=k,

wb kr)=(1 - L=l

(e-knek—T
= (1 - (b—r}-(ﬁ—r—l)- -(b—.l:+1])
(1 _( —r__ b— k+l))

Since each of the fractions in the second term is in (0,1], their product is also in
(0,1]. Hence

O<w(b k7)<l
Given this, and D#[0], p, the lemma which foltows this proof shows that

3 Y d, dew (b g 2) T2 5 g,
I

Therefore ¥D €0y 5 o\{[0]n .6} o

-17 -



ntk—2) | T ok,
oAD) = it - % Neudew(o k240 <o
o

Thus we have

COVn b & (p-D"'[l]n,b) = C0Un bk ([1]n,b) + CE(D);OE
+ terms in higher powers of p,

For sufficiently small values of p, the p* term will dominate. Since cp(D) is nega-
Live, we have that {or sufliciently small p

coUp b1 (D +[1]np) < covpy 1 ([1]n5)-

Hence, covy y ([1], ) is a strict local maximum. This completes the proof of the
theorem.

Lemma: If =1, z i5s a constant, 0=z <1, and

H(A)=L Y ayaez Y,
P 3

then 20, YA€ Y One p . H(4)=0, with equality iff A=[0], .
P

Proof: By induction on 7.

=0

In this case A has but one clement, o, and

H{4) = 1, T aapz 40
F I 4
= g2.50

=a,2

So H(A)=0in all cases, and H{A) =0 if and only if A ={0].
>0

Assume that H(4)20 for AU, ,pp, with equality if and only if

P

A=[0]p-15, and now consider AcQ, 4 p.
I'irst we need a notation which will allow us to pass casily from indices for

elements of n—-1-dimensional arrays to indices [or elements of 4 (an n-
dimensional array). To this end, for p:m~1 - b andZi€b, let

@ (pt) = Lp(0).2(1).....pln—2)4
Now define S €Q,_,, p by

- 18-
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b—-1

Sp= ) ).
i=0
Also, for O=i<b—1, define A* by
tlip = Em_i).

S, then, is a condensed version of A, obtained by summing elements having the
same first n—1 coordinates, and A* is a slice of A. The idea of the main part of
the proof is that H (S} contains exactly the products e, ;e ;) that H(4) con-
tains. The difference is that in H({A) the product o(,;)a( ;) is multiplied by

o WA 2)(69)) Weltt)  Thege are the same if

, whereas in /7(S) it is multiplied by 2
=7, but differ by a [actor of z i[ i#j. Fortunately, this difference can be easily

expressed in terms of H(A4%) and H(47).

Formally, we can write H(4) as
diffo{{ed).(6.7
HM)=Z§¥thWmﬂz%(qmn
B j

Now we separate the cases in which i=j [rom those in which i#j and use our

diffa(e.f)

] )55 Z , ifi=j
earlier observation that zdﬂg{m't}'(e“’ ) = i (.d)
Z'Z

D ifij

di (65 2% AL
H(A) = 2 z E (i) T )2 a((ed)(€.5)) + Z EE T (ui)2 (e o ((e1).(8.5))
iRt i=jp f
aiffalee .
= NN D N apaaezz T 0 £ 5 N S aqaeenz
ijeip i=ip
<iff; Lu-E) diffa(pe.£)
=20 L L N ualen? ot 5 L euaten?
ijeip =
The next step is to add and subtract just what we need Lo make the first term
into H{S).
diffa (. diffnls.
HA) =25 T8 N agaeenz T + -2 21 X w2 el
ijeip ¢ imfp &
diff, (M-E) diffa(1.£)
— 2 Y D EBENE C N B L e HE
izfop & i=jp ¢
aiff; (u--?) aiffplu.£)
=z Zzzgﬂmﬁ)ﬂ(e.j)z ? (1-z ) Ezzﬂmx)ﬂtej)z ’
i B i=j p

-19-



1
3]

L2
=22y

FT 4
_ Z'E Ze:s#s$zdiﬂzm-f) + (1—2 )E H(A‘.')

=z H(S) + (1- z)EH (4%

By the induction hypothesis H(S)>0 and for all i, H{4*)>0. Furthermore, 2 is
nonnegalive and, hence, so is {1—z}. Thus the expression above is clearly nonne-
gative (i.e., H(A)=>0).

Now if A =(0], 4, obviously HA(4)=0. On the olher hand, suppose A # [0], ,,
then for some g, Aiu;ﬁ[O]n_l.b. By the induction hypothesis H(Ai“)‘;'O. Also,
z<1, so {1-z)>0. Thus the last expression for H(4) conlains at least one
strictly positive term. Since it contains no negalive terms, this shows that
H(A)>0 whenever A #[0], ,.

This completes the proof of the lemma.

Corollary (to Theorem 1): ¥n=1, Vk22, ¥bxk, VP>0, covp b p(4), ACQnyp
[r

lbn n.b

has a strict local maximum at 4 =

For purposes of speculation, we now calculate cov, 4 4 ({ﬁ_ ).
r.b

k
CoVy, b k(r— )= 4 £
n, lbn. _— k! d‘lﬂk (,ul F-k)"“l ];[ n
= s [r]k 1
k! ﬁ'ﬂ '
aiffy (k..o )21

A special case (r =0) of the counting exercise which we went through in the proof
of Thecorem 1 reveals that

1= bn"-rl - (1 -_
iy (o). opig )1 |'

n
( k}'&"‘ ]

Hence

-20-



(o—::)sa" i (4)

IfA= l_] is indeed the global maximum for cov, 4 4{4), A€Q;f , p, then (4) is
n,b

an upper bound on the number of (k,P)-sets that can be covered by n functions
from &%, Solving

cavn-b_k({;— ) = total # of (k. P)-sets = () = pymr

for m would then produce a lower bound on the number of functions needed to
cover all (&,P)-sets. The outcome of this calculation is

log I —

[ (P—ki'Pk

-
logll . ::)-ak

On the other hand, we would really not expect this to be a tight bound since the
key distribution of a set of functions which covered all (%,7)-sets would contain

(many) zeroes, and hence would be on Lhe boundary of Qf , p, whereas [aL is
"lnb

right in the middle of Qg 4 p.

Summary

In two special cases there are complete answers to Question 1. If we have
just one function (rn=1), or we have just twe keys per set (k=8), then a sel ol
functions maximizes the number of (k,P)-sets covered if and only if its key dis-
tribution is as even as possible, i.e., the eclements of its key distribution are
equal to I.*‘PTI or |[a—-‘;—l in the correct proportion so as to sum to . In the case of

one funclticn, the funcltions satislying Lhis condition are exactly the even-
sprinkling functions. In the case of two keys per set {and more than one func-
tion) there is always a set of even-sprinkling functions satisfying the condition,
though other sets not comprising solely even-sprinkling functiens may also satis-
[y the condition.

As regards Question 2, for the case k=2 we know that any set of = func-
tions, the key distribution of which comprises zeroes and ones covers all the

(R, P)-sets. Since IIlogb Pl functions are necessary and suflicient to produce such
a key distributicn, Irlog,, Pl is the minimurn number of functions which can cover

all the {2, P)-sets. I'urthermore we know that Illog;,P is a lower bound on the

number of functions needed to cover all the (k,P)-sets for & greater Lhan 2.

-21 -



In the hope of obtaining some approximate answers we have extended the
domain of cov, 4 (4) by allowing any nonnegative real numbers as entries in 4,
reasoning that a global maximum in this domain weould be an upper bound on
maxima over the domain of actual key distributions. We have not been able to
pin down a global maxirmum [or covnp £ (A4). A€Qy, p in general, but we have
shown that 4 = [bin]n . is a global maximum in case n=1 or £=g, and is a strict

local maximraum in all eases. I'urthermore, so [ar we have not [ound a counter-
example to A = [J%-] being a glebal maximum in general. Based on the conjec-
L P

ture that 4 = [Ef;—] is a global maximum in general we have calculated a con-
n.b

jectured upper bound on the number of (k,£)-sets that = functions from b¥ can
cover, and the corresponding lower bound on the number of functions from bf

needed to cover all (k,P)-sets.
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