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Introduction

Often a computer program needs to accept as all or part of its input a se­
quence of character strings and decide, for each string, whether that string is a
member of some finite set of known strings. The set of known strings may be
nonernpty when the program starts and may change as the program receives in­
put. The strings, both known and otherwise, are generally referred to as keys.
Testing a key for membership in the set of known keys is called a search. adding
a key to the set of known keys is called an insertion, and removing a key from
the set is a deletion.

Many dUIerent schemes have been developed to handle this computational
task. These include linear search of an unordered table, binary search of an or­
dered table, B-trees, tries, various forms of string pattern matching, and hash­
ing. The choice of one scheme over another for a certain application generally
depends on the size of the set of known keys, and the relative numbers and ord­
er of searches, insertions, and deletions, since each scheme is efficient in some
situations, and inefficient or inapplicable in others.

Hashing refers to schemes which perform an insertion by computing some
(simple) arithmetic function of the key to be inserted and using the result as the
location in the table of known keys at which the key should be stored. The view
of the hashing procedure as dropping keys into various locations in the table has
led to the locations in the table (whether containing a key or not) being referred
to as buckets. A search for a key is performed by computing the same function
on the key to be searched for, and then comparing the key with whatever, if any­
thing, is currently stored in the indicated bucket. A collision occurs when two
keys to be inserted are mapped by the function to the same bucket. Each hash­
ing scheme must include some method [or dealing with collisions. There are
many interesting possible methods, but we will be concerned with a special case
in which this is not an issue.

t This work supported by NSF' grant MCS 78-01812
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Most of the research on hashing has dealt with the general case in which
search operations and insertion operations may be intermingled in an arbitrary
manner. However, if the insertion operations are guaranteed to precede all the
search operations then all the keys which will ever be in the table are known in
advance. In this case one might try to find a function mapping these keys,
without collisions, into a table not much larger than the set of keys.

Perfect hashing

The following definitions are due to Sprugnoli [Spr 77].

Definition 1: A hashing function is a perfect. hashing function (or phf) [or a
set of keys iiI the function is i-ion that set of keys, i.e .. there are no collisions
on those keys.

Definition 2: A hashing function is a minimal phi for a set of keys iff the
function maps the keys in a 1-1 fashion onto the buckets O.l, ....k-l, where k is
the number of keys in the set.

Thus if one has a minimal ph! for a set of keys, the hash table need have only as
many entries as there are keys in the set. A nearly minimal phf is a function
which uses a table not much larger than the set of keys, where "not much larger
than" might be interpreted, for example, as "not larger than a constant factor
times".

Every set of keys has. of course, several minimal phfs; the problem is that
we may not know how to compute any of them in constant time, as we would like
for a hashing function. Several articles ([Spr 77], [Cic 80]) recount procedures
which take as input a set of keys and try to produce a minimal or nearly
minimal ph1 for that set of keys in a form which is known a. priori to be comput­
able in constant time. The success of these procedures varies with the clever­
ness of the authors, but none of them is guaranteed to work for every set of
keys. Hence. the nature and complexity of general methods for producing
minimal or nearly minimal ph1s are still open.

Alternate approaches to the general problem include that of Tarjan and Yao
[Tar 79] which produces minimal phfs computable in O(lOgk P) time, where P is
the size of the universal set from which k keys are drawn. Also, Carter and Weg­
man [Car 77] study classes of functions with the property that given a set of
keys, S. a function chosen at random from the class will be, on the average, a
good hashing function for S.

In this report we address the question of what restrictions on the class of
functions considered would guarantee that the class contained at least one phf
for each set of keys (disregarding, for the moment. how to compute the func­
tions in some way fasLer than Lable laale-up).
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Formalizing some questions

We shall take the set of possible keys and the set of buckets each to be an
initial segment of the natural numbers. In addition. we specify the size of the
sets of keys for which phfs are to found. We shaH use the following symbols:

P the number of possible keys. those being ~D,l .....P-11
b the number of buckets. those being ~O.l, .. .,b -lJ
k the number of keys in a key set

bP = !f If: !O,l, ... ,P-lj ~ !O,l, ... ,b -11 j

lUso, R will denote the real numbers. R+ the nonnegative real numbers. and N
the natural numbers. And we shall need the following definitions.

Definition 3: A (k,P}-sct is a k-element subset of ~O.l, ... ,P-1~.

DeBnition 4: A fu~ction, 1 E b P covers a (k .P)-set. S, iff f is a phf for S.
Also, G c bP covers a (k .P)-set, S, iff for at least one 9 E G, 9 covers S.

We can now state precisely the questions to which we wish to obtain
answers.

Question 1: Given P, b, k and an integer n, what choice of n functions,
11./2, ... ,1n E: bP will maximize the number of (k .P)-sets covered by
U 1.···./n I, and how many (k ,P)-sets will it cover?

Question 2: Given P, b,and k, what is the smallest integer n such that
every (k ,P)-set is covered by some U 1•... ./n~ C lJP?

The function cov

Definition 5: coveTdUb ... .!nD is the number of (k,P)-sets covered by

If " .... fnl·

Our first aim is to obtain a convenient expression for cover.dlf 1""./n D in
terms of quantities easily determinable from the functions themselves.

If We have just one function, f E b P , then we can count the number of
(k ,F)-sels covered by If I in the following way. First, let "bucket-set i" denote
t-1(i), the set of keys mapped by f to i. Now select any k distinct buckets
i l , .... i le , and the corresponding bucket-sets. Then if we form a (k ,P)-set by pick­
ing one key from each of the selected bucket-sets, that (k ,P)~set is covered by
f. For a particular collection of k buckets, J=~il, ... ,id, the number of (k ,p)­
sets that we can form in this way is just the product of the cardinalities of the
corresponding bucket-sets:
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•IT Ibucket-set i; I = IT Ir'(i) I·
j=1 i ro.!

If we then sum over aU ways of picking k buckets, we will have counted exactly
once each (k ,F)-set that f covers. So

coveTdl! l)= I: IT Ir'(i) I·
Iclo.l. ...•b-lj iEI

III=k

For sets F=U l, ... ,fnl CbP containing more than one function the situation
is a little more complicated. 1t will not do to just sum the preceding formula
over aU the [unctions in the set, since a (k ,P)-set could be covered by more
than one function. but should only be counted once. One way to overcome this
diITiculty is to generalize our notion of bucket-sets (the bucket-sets of single
functions being hereafter referred to as simple bucket-sets). Each generalized
bucket-set is the intersection or a collection of simple bucket-sets, one from
each function. We name a generalized bucket-set by a vector, p.=<p.(1), ....p.(n»,
which indicates from which simple bucket-sets it was derived. More precisely,
the generalized bucket-set Zp. is given by

n

Z~(F) =Z~(') .....~(n)(F) = n bucket-setl'(j) [rom functionj
;=1

n

= n !;-'(I'(j)).
;=1

Unfortunately, it is not the case that picking one key from each of k dis­
tinct generalized bucket-sets will guarantee that the (k .P)-set so formed is
covered by F. The essence of the complication is that for F to cover a (k ,P)­
set, some single. function in F must cover that (k ,F)-set. ]f we select k general­
ized bucket-sets, ZjJ.1"" ,ZP,k' then the (k ,P)~sets formed by picking one key from

each will be covered by F just if there is some f €F such that Z}J-I,,,,,Z}J-/: are

portions of k distinct simple bucket-sets of f. One can visualize this condition
in terms of the names of the generalized bucket-sets, !-Lt,,,.,p.It;, as follows. Align
the vectors !-L1'''' ,!1-1t; one beneath the other:

Then F covers the (k .P)-sets formed by picking one key from each of ZIJ-I"",ZIJ-k

if and only if some column of the array above comprises k distinct entries.

So to compute coverdU 1.... ,fn j) we take, as in the case of one function,
products of cardinalities in collections of k (generalized) bucket-sets. But we
sum only over the collections of bucket-sets having the property described
above. To make writing this easier, we introduce
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dijfd!J-,,,·,,f-l.)= Iii :!J-,(j),···,!J-diJ are pairwise distinctll

Then we have

•
cover.(!f,,,.·,fnD = ;,. 2: TI IZ.,(!f" .. "fnDI.

diffl:(.u.l.··· ..uk)~l J=l

The factor },] reflects the fact that each collection of k bucket-sets, Zh, ... ,Z~k'

can be ordered in k! different ways to appear as Z~l""'Zp.J;. in the formula.

Now. since only the cardinalities of the various ZFJ. are important let us
define

n

a.{lft,,,.,fnD = I Z.Oft,···,fnDI = I nfj-'(!J-(j)) I,
i =1

Then A (!f ,,, ."fn D=[a.(!f " ... ,fn j)J will be an n-dimensional (b xb x ... xb) ar­
ray of nonnegative integers with L: rLp.=P (since each key is counted in exactly

•
one rLp.). We will refer to A as the key distribution of U 1"",fn j.

1Ye can give one result immediately in regard to Question 2:

Proposition 1: 1f U 1""./n l!: bP covers all (k ,P)~sets (for some 2sk~b),

then A{lf , ..."fn D is such that V!J-, a.(!f" ... ,fn DEI 0, 11·

Proof: Suppose for some J-L, rL,uOf 1.···.fn 0;;::2. Then there are two keys, S 1

and S2, such that Vf E: Ift .... ,fn!,f(s,)=f(s,). Pick any (k,P)-set, S,
containing both s 1 and 52_ Since no f E: U 1< ••• J n I is I-Ion S, U 1,"''/n ~

does not cover S.

Corollary: If If 1, ... ./n l!: bP covers all (k ,F)-sets (for some 2,..,;;k,..,;;b), then

n ~ r1ogbPj.
Proof: By definition there are b n elements in A(U l""./nD and their sum
is P. Since If I' •.. .fn~ covers all (k ,P)-sets, each element is either 0 or 1.
Hence

p = L;ap.~ b n '1 = b n

•
and son~logbP' Since n is an integer, n~ f1ogbPj.

Definition 6a: For n~l,b;:;';l, and P>O, let On,b,P denote the space of aU n­
dimensional, b xu x ... xlJ arrays, A, with entries which are real numbers such
that ~ ap.=P.

•
Definition 6b: For n:?;l,b~l, and P>O, let Ori",b,P denote the space of all n­

dimensional. bxbx' .. xb arrays, A, with entries which are nonnegative real
numbers such that ~ a1J.=P'

•
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Definition 6c: For n~l,b21, and P>O, let Oif.bP denote the space of all n­
dimensional, b xb x ... xb arrays, A, with entries which are nonnegative integers
such that ~ ap.=P.

~

Observing that
1) every A E. O!:,b.P is the key distribution of some set of n fWlCtions in b P ;

and
2) from a key distribution we can easily find a set of functions having that

key distribution,
we will cease to mention functions explicitly and define

•
covn,b.,dA)= f! ~ IT aJJ-j'

diff.\:(jL, .....f£.\:):.1 ;=1

Then we can answer Question 1 if we can find the maxima of COVn,b,k(A) for
A EO!!b p.

Unfortunately, we have been able to do this only for the case of one function
(n=l), and for the case of two keys per set (k=2). ]n light of this difficulty we
have tried to obtain at least an approximate answer for n>l by extending the
domain of covn b k(A) to arrays of real numbers. (i.e., to On b p) (which involves. . , .
no work) and seeking a global maximum for A EOn,b,P' At this, we have been
successful for the case k :::;2, However, the example at the end of the next sec­
tion shows that COVn.b,k(A) may be unbounded if A contains negative values and
k is greater than 2. Hence, we will ultimately have to restrict our attention to
Ori.b,P, though this should not sadden us greatly in view of our intended applica­
tion.

Results for the case of one function (n=l)

]f we have just one function, then the key distribution is a vector,
A=[al' ... ,ab], and

Definition 7: For each real constant C let [c In.b denote the n-dimensional
b xb x ... xb array. all the entries of which have the value c.

Definition 8: A """N[c In,b (read A apprOXimates [c In,b with integers) if and
only if the sum of the elements of A is C ·bn and each element of A is equal to ei­
ther leJ or reI.

Definition 9: A function f Eb P is an even-sprinkling function iff its key dis­
tribution, A, is such A"""nftfl . Thus the key distribution of an even-sprinkling

6 Ji,b

function is in some sense the best integer approximation to [IEl .
6jt,b
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Anderson and Sprugnoli [And 79] considered the special case for one function
when k=b. They showed that cavu.b(A), AE:Otb.P, has a global maximum at

A:::f1f] ; and that CD'Ul.b,b(A), AE:Orb.p, is maximized whenever A"-')lf! . Her-
l,b l,b

man, Bock. and Plank [Ber 81] proved that, in fact. for any k~b, A:::f1fJ max-
b Jl,b

imizes cDvu,dA) over A EOtb,P' Both used. at some points in their proofs, the
idea of comparing Gov(A) with Gov(A'), where A' is obtained from A by perturb­
ing just two elements of A. Below, we formalize this idea and show that it can be
used as the sale tool to prove both that cov 1.b); (A). A E ott> ,p, has a global max­
imum at A=trEJ. ,and that cov 1b k (A). A E: Orb P, is maximiz~d whenever A is the

b h,b ' , . ,
key distribution of an even-sprinkling function.

lntuitiveiy, what we shall cal! a simple spreading is a transformation on an
array (in 0u,p) which selects two elements of the array and increases their
difference without changing their sum (Whence a spreading); and leaves an other
elements unchanged (Whence simple).

Definition 10: Let A, A' E 0U.P' Then A can be simply spread to A' (denoted
A -»A') iff for some e>O and some land m, 05;;l,m5;;b-1,

al ~ am.
a'l=a~-e

a'm=am+e
and Yieg,mj a'i;::: f2.L

Proposition 2: If A,A'EOtb,P and A-»A', then COVI,b,/:(A)~cOV1,b.k(A').

Furthermore, if cov u.dA) > 0, then co'U l,b./: (A) > cO'U l.b.dA ').

Proof: The only terms which differ between co'u U./: (A) and co'u l.b ,k (A ,) are
those involVing at,a'I, or am,a'm, or both. Hence

cov\,b,.(A) - covj",,(A') = (a, -a',) L: IT'"
li:b'!l.ml iEl
III =..1::-1

+ (am-a'm) L: IT",
Ii:b'fl,ml iEl

111=..1::-1
+ (alam-a'ta'm) 2,; II~

I!:b'ILmj iEI
III =k-2

= «a, -a',)+ (tIm -a'm)) L: IT'"
Ji:b'[t,mj i£/
IIi =/:-1

+(atllm-a'~a'm) 2,; IIIlj;
li:b'!l,m.l iEI
III =/:-2

= (e+(-e)) L: IT'"
ll:b'fl.ml i£f
III =k-l

+ (atam - (al am - earn. + eat - e2)) 2,; II lIt
Icb'!l.m.! iEl
111=/:-2

- 7-
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= &("m -~, +<) L; IT '"
ICb\!t,m/ i.EI
1/1=k-2

Since &>0 and am~at and all the fI1, are nonnegative, the last expression
for the difference is nonnegative. Thus cov l.b.k (A) ~ cov U,k (A ').

Now suppose that CDVl,b,k(A) > O. Then there must exist some subset of k

elements of A, all of which are nonzero. Hence. even excludlng at and Um.,

there is still some subset of k-2 nonzero elemenLs of A. This means that

IT", > O.
i E1

Thus the last expression Cor the difference is strictly positive and
COVl.b,k(A) > covul.,dA'). This completes the proof of the proposition.

Corollary: If A,CEOtb,P, A~C, COV1,b,k(A»O, and there exists a sequence
A=A°,7-)A1~... HAn =C then cov U ,lo; (A) > COV 1.1.1,,1; (C).

Proposition 3: cov1.b,dA), A EOtb,P has a global maximum at
A - Ip) - [P P]- [b 1.b - b""'6'

Proof: We will show that for every C E: 0tb,P,
c;/"rt..e..l ::;>CDV 1 bd

t
f..e..l »CDVIbdC). Since CDV 1 bd f

t
,,-) »0, it

bJI,b ., bJI.b·' ., bl,b

suffices. by the previous corollary to exhibit a sequence of simple spread­
ings which transforms rlf] into C.

I.'
Let AO = Le.) .lb 1,b

In order to define Al + 1 for t>O, first identify the positions at which A C is
greater than C. and those at which At is less than C:

letL, =!i laf> cd.
and kIt = ! i Iaf < cd·

Then pick from each set the position at which the difference is the smal­
lest. (And in case of ties, pick the smallest index.) Let

l, = rninlj E Lc I ¥L E: Lt. aJ - Cj ~ at - c" j
mt = minlj EM, I ¥iEMc, Cj-aJ:o:; c,,-atl

Finally, Ie t

and define At+l by
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rJ_'-+l ;;;; n}_ + e
-m/ -nit t

By induction on t we can show

(1) VI. E: L" Vj E: Mf at::;; aJ,
and (2) for some to<b, Ato

;:: C.

the key observation being that adding and subtracting e, preserves (1)
and forces progress toward (2). From (1) we have in particular that

So the sequence we have defined is such that

[F] = AD »A'» »A'o;;;; C[T 1.b I" ,

This concludes the proof of the proposition.

Proposition 4: Suppose Then

COV l.b ,k (H»cov l,b ,k (C).

Proof: First. if HO'V}fr[l'-] and H''''''R[[B . then the elements of H' are just
bl,b bju

some permutation of the elements of H and so COVLb,k(H) = COV1.b,dH').

Second. if C~Nr[tJ . then there exists H'EOrb,p such that (a) H' .....n[fl ;
b h.b b Ju.

and (b) there exists a sequence H' = AD ~)Al :H••• HAt = C. The proof of (b)
is very similar to the proof of the analogous claim in Proposition 3. The
only substantial difference is in verifying the induction basis for (1), i.e.,

that for all i and j , Itt > Ct. and h j < Gj :;. Itt ;s;hj .

Although it seems to have little relevance to our original problem, one
might want to know whether it is necessary to restrict the domain of GDvl,b.k to
atb.p in order for [:J1,b to be a global maximum. The answer is yes, and there is

an easy example. Consider the point [5. -1, -1] in 0}.3,3'

COVI",,([5, -1, -1]) = (5)'(-1)'(-1) = 5 > 1 = cov"",([l, 1, 1])

In fact GOVl,3.3 is unbounded if we aUow negatlve entries: for each real number c,

cov 1",,([1+2c, 1-c, 1-c]) = (1+2c }(l-c )'(l-c)
=1-Sc 2 +2c 3.

which is unbounded in the positive direction as c increases.

The case of two keys per set ( k=2 )

Berman, Bock, and Plank [Ber [31] have exhibited a construction which pro­
duces a set of functions U l''''./n~ r;::.b P covering all (2.P)-sets such Lhat (a)
U 1... ·./n l is of minimal size among the subsets of bP which cover aU (2,P)-seLs;
and (b) every f E: U }, ... ./nl is an even-sprinkling function. They show further

that [10gb pJ ~ n ~ flOgb pl·
- 9 -
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By showing that the converse of Proposition 1 holds in the case k =2, we es­
tablish a complete characterization of the subsets of bP which cover all (2.P)­

sets, and show that the minimal size for such a subset is exactly flOg",pl.

Proposition 5: U t, ... ./nl c bP covers all (2,P)-sets iff

VI' a"(1! " ... ,fn!) E [O.IJ.

Proof: (~) By Proposition 1.

("') Assume that VI' a"U/" ... ,fn!) E [0,11. Pick any (2.P)-set. ls"s,1 and
let

I' = (f ,(s,),f,(s,) ln(s'))
and ~ = (f ,(s,),f,(s') ,fn(s'))'

Now if J.1-=~, then ap.=a.~~2 since both S I and s~ would be counted there.
But this contradicts our hypothesis, so it must be that f.L'#~. This implies,
of course, that there musL be some position. i, at which f.L and ~ are not
the same (I'(i)~~(i)). But then

I,(s,) = iL(i) ~ ~(i) =1,(s2)'

Thus Ii covers ~st,s~l. Hence UI''''./nl covers ~SI'S~~. Since ~St,S~~ was
arbitrary, this completes the proof.

Proposition 6: The smallest n such that there exists U t, ... ./nl c b P which

covers all (2,P)-sets is n = flogbPl.

Proof: By Proposition 1, no n smaller than [log",P] will do. On the other

hand, set n = flogbP] and pick any A E:Ol!,b,P such that Vf.L ap' E: !O,l!. Then

A is the key distribution of some F = U t""./nl C bP . By Proposition 5.
F covers all (2,P)-sets.

The preceding results took aim directly at Question 2. The next result
answers Question 1 for k =2 in the (unlikely) case tnat lJn IP, It can be obtained
as a corollary to Theorem 1 in the next section, but we insert it here because
the proof generates the answer to our question "Where is the maximum?" [rom
scratch. instead of confirming a guess, as the proofs of Proposition Band
Theorem 1 do.

ProPosition 7: For all n2:1,b2:2, and P>O, covn.b,~(A) has a global maximum
for A E: On b P at A :fL] .. , [." n.'

Proof: From the defmition or COVn.b,k' with k =2, we have

cOVn .b ,2(A) = k- ~ ap.a(.
diff2(p.·();>::1

Now note that diff2(1J,,02:1 if and only if /-LoFt. Thus

- 10-
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COVn .b,2(A) = t~ ~ ap.Ut·
p. t~p.

(1)

First we would like to find all the critical points of this function when its
domain is restricted to 0n.b.P Ior arbitrary P. To do this, we employ the
method of Lagrange multipliers, viewing the condition l: up. = P as a side

~

constraint. The augmented function then is

G(A) = t2: 2: a~al - r.'!I; a~ - PI,
p. t~p. l p.

The critical points will be all solutions to the system of equations obtained
by setting the first partials of G equal to zero. Taking the .C1rst partials
produces

Setting the first partials equal to zero gives

2: a~ - P = 0
~

and V,u t ~ at - A = 0
,,~

From (2) we get

Substituting this in (3) gives

(2)

(3)

!;{P-a,J-r.= 0

Up.=P-2A
up. = P-2A = rLp.'

Since L: rLp. =P and there are bn elements up.' it follows that
~

V,u a = L
~ ,"

Thus the only critical point of CO'lJn ,b,2(A) for A E 0n,b.P occurs at A = [,,~ J.

A review of the nearest text on multivariate calculus reveals that in order
to determine the nature of a critical point. z = <Z j' ....zrn>. of a function
of several variables, f (xr, ... ,xm ). we must know all the second partial
derivatives at the point and determine therefrom how the first derivative
changes as we move away from the critical point in all the many possible
directions. If it decreases in all directions, then we have a strict local
maximum; if it increases. a sLrict local minimum. If it decreases in some
directions and increases in others, the situation must be investigated
further. These conditions can be conveniently phrased if we arrange the
second partials of the function in an mxm matrix. Q, such that

- 11 -
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Then z is a strict local maximum if and only if Q is negative definite, and
z is a strict local minimum if and only if Q is positive definite. Thus it will
sumce to show that the matrix of second partials of COVn .b.2(A) for
A E: 0n.t1,P is negative definite at A = [6~ J-

1n order to investigate the second partials of CO'Un ,b,2(A),A EOn.b,p we in­
troduce the constraint on the sum of the elements of A explicitly by pick­
ing some /Lo and substituting afLo = P - L: u,p. in (1). First from (1) we

Jl.FPc

separate out the terms containing afLo;

t L: L: aJJ-at
IJoFPO~FP.

+ t L: 1[U,P.U,pc + L: ap'a~
IJoF,I.Io {FJI.·fLo

+ t L: ap'apc + t L: L: ap.at
P.FPC Jl.FJLo t¢p../lo

t L: L: ap'a~
P.FPO t¢p.,/lo

COVn ,b,2(A) = t L: afLoa~ +
~FPC

= t L: afLoat
~FPO

= t L: u,Pcat
('1'0

= L: U,PfP~ +
UJl.o

Then we substitute for u,p.c

COVn ",2(A) = L: a( (P - L: a~) + t L: L: a~a(
tFIJoo P.'Pllo JI.¢lJoot¢p,,1Joo

= P L: a( L: L: a(a~ + t L: L: a~a(
{¢"'o {¢Ilo p,¢JJ.o p,¢JJ.o {¢p.,JJTj

Thus

and V.u~.uo

O'ZCl.lVn..b.'Z

Oa.1Jo8a.t
o'ZCl.lV",.6.'Z, '"~

= -l+t=-t
= -1

So the matrix of second partials, Q. is a (b n -l x bn -1) matrix with -1 on
the diagonaL and -t everywhere else.

To see that this matrix is negative definite recaU that a matrix is negative
definite if all its eigenvalues are negative. l~urthermore, the eigenvalues
of a matrix, M, are just those values "A which make M -AI singular, and
the multiplicity of an eigenvalue. "A, is the dimension of the kernel of
M -AI. Clearly, -t is an eigenvalue of Q of multiplicity b n -2. It is only a

little less obvious that _6; is an eigenvalue of Q of multiplicity 1. The

sum of their multiplicities being bn-l, which is the order of Q, these are
all the eigenvalues of Q, and clearly they are both negative. Therefore Q
is negative definite, and hence A = [~ is a strict local maximum. Being

the only critical point, it is also a global maximum. This completes the
proof of the proposition.

This suggests that when looking for maxima of covn.b.dA) (a) for
A E: Ort.b ,p, A= rl~ may be a good place to look; (b) for A E: O;:,b ,po points close

6'" jn,b



to IlL] may be good candidates.
on. n,lI

For k =2, at least, (b) bears out well.

Proposition 8: FoC' A E: n~,b .P, cevn ,b.2(A) is- maximized whenever A ....N rl~ .
0" jn.b

Proof: By a "finite-series-of-perturbations" argument like that used to
prove the results for r:ov l,b ,k in the previous section.

The general case

If we have more than one function and more than two keys per set, the only
result so far which applies is Proposition 1 (and it addresses only Question 2),
The theorem in this section represenLs Lhe extenl of our other progress in the
general case.

We are looldng for maxima of covn.b,dA).A EOn,b,P' A preliminary observa­
tion will simpWy the notation which follows. Since covn,b,k (A) is the sum of pro­
ducts of length k, it follows that for any positive constant C

This implies that so as long as we are operating in the realm of positive real
numbers, if we find a maximum for any particular value of P, then we can easily
fllld corresponding maxima for all other values of P. Being free to pick a con­
venient value of P to work with, we will choose P=b'n, so that rf.j = [l]n b.

I·n .n.'
Theorem 1: Vn~l, Wl:~2, lIb~k, covn b k (A) has a strict local maximum for

AEOn.b.bll. alA-[l]n.b'

Proof: First we will give a short sketch of the proof. We will try to learn
something of the behavior of COV1',b,k(A) near the point A = [1]1'./1 by examining
the behavior of covn,b.lc along lines in On b 1111. which pass through [1]1'.11' 1f D is an

n-dimensional b x, ... ,xb array, the elements of which sum to 0 (D E: On.II.O), but
which has nonzero elements (D~[O]1'.II)' then ~ (p' D+[l]1'.b) IpER I is such a line.
Furthermore every line in 01',b./ln which passes through [l]n.b can be character­

ized in this way for some D E On,b.o\Ho]n.llj.

Thinking of D as fixed, we see that cov1' ,b.;:(pD+[l]n.b) is a function of the
single variable p. Our first step wilt be to show that in fact covn .b,k(pD+[l]n.b) is
a polynomial in p of degree k, i.e., there are coefficients co,.,., Ck such that

k

covn .lI,dpD+[l]1',b)=~ Ck .pk,
£=0

Of course, the coefIicienls depend on the choice of D, so we write

k

covn .•..(pD+[lln..)= 2.: cdD)·p·.
i ..0

- 13-
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The next portion of the proof will demonstrate that VD E: On,b.o\HO]n.b j

co(D) = covn,b.d[l]n,b)'
cl(D)~O.

and c,(D) < O.

These facts will then be used to show that A = [l]n,b is a strict local maximum.

And now we present the proof in detail.
From the definition of COVn.b,k we have that for any A, BE: U On.b,P'

P~O

The idea for the following expansion comes from a similar expansion in [Sas 69].
•

Each product n (b~j+afj) can be multiplied out into 2k terms, each the product
1=1

of some elements from B andlor some elements from A. By expanding all the
products in this way and then rearranging the factors within each of the result­
ing terms we obtain an expression for covn,b,k(B+A) consisting of terms of the
form

" .IT b~;' IT ~~;
;=1 i=r+l

for various values of r and various sequences Jl-l .... ,J.Lk. Now it is clear that Lhe
" .

term IT b ~j' IT a)J.j appears if and only if /.Lt, ...• /.Lk is some permuLation of some
j=1 j=r+l

~l'''''~k such that difh(~I'''''~k)~l;hence. if and only if dijJd!Ll, ... ,J.Ld~1. So all
we have left to do is a little counting.

•For a particular value of r and sequence f.1-1'''·,!Lk' a product IT (b f +afj) in
;=1 j

" .
the original expression vrill produce one term II bpo' II a~ if and only if

;=1 'j j=r+1 j

(f.Lt,· .. ,!-Lr) and (1Lr+1, ... ,f.Lk) are both subsequences of ~l""'~k' Since there are
(~) = r!(:~r)! sequences ~l'·".~k which meet this condition we have

The factors ;! and k! cancel, and since the summations are independent we can

reverse their order, yielding

We pause here to make an observation which will be useful later. The term
of the preceding expression obtained when r=O is

- 14-
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2:
diD'/: (~1"" .Po/:)~ I

no matter what B is. Leaving this aside for the moment and substituting pD for
E, and [l]n /I for A we have

Note that although the second sum is over sequences IJ-l ... · ,!-Lk' only J-Lt, .... f.Lr ac­
tually appear in the subsequent expression. In order to change the summation
to be over just Ml, ..../-Lr, we must determine, given f.Ll, ... ,flrr, how many sequences
f.krn, .. · ,11k there are such that diffdJit .... ,/-Lk)~1. We can visualize the problem
as follows:

1',(1) I',(n)
1'2(1) 1'2(n)

1',(1) I',(n)

1',., (1) I',.,(n)

1''< 1) I'.<n)

Given values above the line we must count the number of ways of filling in values
(from ~O, ... ,b-l~ ) below the line so that at least one entire column is "good"
(comprises k distinct integers).

Suppose that exactly e colwnns above the line are good
(i.C'"diffr(f.,Ll, ... ,Ji,r)=e). W.l.o.g. we may assume that these are columns 1, ...• e.
Clearly, columns which are "bad" (not good) above the line will be bad as entire
columns no matter how we extend them by filling in below the line. Thus. wheth­
er a partie ular choice of values for entries below the line satisfies the condiLion
of producing at least one good entire column depends only on how it extends
columns 1, ... ,e below the line. To extend a column good above the line to a good
entire column we must choose k -r entries from the b -r integers not used
above the line. Since each such choice may be ordered in (k -r)! ways, there
are

('-') (k ), - -"=1L!;-r' -r. - (b-k)J

good extensions of a column good above the line. There being bk - r ways to fill in
a column below the line we conclude that there arc

bk -r _ fr.=..dL
(b-k)J

bad extensions of a coltUnn good above the line.

- 15-



Now, in order not to satisfy the condition requiring one good column. we
must choose a bad extension for each of coLumns 1, .... e. Since the choices are
independent, we see that there are

( bk-r _ (~-r)! )"
(b-k)!

ways to do this. Since there are b (k-r)cr ways in all to extend columns 1, ...• e. the
number of ways to produce at least one good column must be

b(k-r)o _ (bk-r _ (~-r)!)"
(b-kJ! .

Recalling that we can extend columns e +l, ... ,n in any of the b(n-o)(i:-r) possible

ways, the final count is

b(n-o)(k-r).rb(k-r)o _ (b k - r - .1!.=..t.J.L.:)"1l (~-k)!

=bn(k-rl. [1 - b -(k-r)6' ·(b k - r - J!.=..dJ...:)"Il (6-k)I

_ J.n(k-r).f1 _ (b-(lc-r).(bk-r _ (b-r)!))")
- LI l (b-kJ!

= bn(k-r). [1 _ (1 _ (b-r)~ )"].l (6 1.:)! b" r

Continuing our massaging of CDVn.IJ,k we can now transform the second sum­
mation as we wanted to, yielding

cov (pD+[l]) = f, pT._'_ " on('-TJ·l
r
1 _ (1 _ "," )"iIT,"',·····",J]·TI

T
dTI,b.k TI,b '= r!(k-r)! LJ (b k)!bk r ._ p-J

r_O P-1.···'P-r J-1

= f, T.•n(H) " (1 _ (0 k r)"'ll,"',....."'J) TIT d
LJ P rl{k-r)~ LJ W, • , JJ.J

r=O JJ.l""'/J-r J =1

where

w(okr)=(l- (")')
• , (b_k)!b k - r

(One might expect that the second summation would be over "diffr(j.tl, .. .,f.Lr)~l",

In fact, that would be an equivalent expression to the one above, because the
result of our counting exercise has taken care of this: (1_w(b.k.r)a\lTrUt1"'''~»)

evaluates to 0 if diffr(f..Ll ..... J.lr) =0.) For a fixed D the expression above is clearly
a polynomial in p, with coeITicients

G (D) = .n('-') " (1 - w(o k r)"%""·· ..",J) TIT d
r rJ{k r)! LJ ' , P-j'

P-I.···./J-r j=l

Next we investigate the behavior of these coefficients,

Recall the observation made about the expanded expression for
cOVTI,b,,I:;(B+A), that the Lerm obtained when r=O is just covn,b.dA), ln light of
the fact that we have substiLuted [l]JL,b for A, this implies that for all D E 0n,b,O

Go(D) = GOvn.'.'([!]n.').

For the other coefficients, note that if the fac tor (l-w (b ,k ,T )dW'"r(p.1.···'JJ.r )) could
be moved outside the summation without muddying the waters too much, then

(-'-") ;

- 16 - •



the expression would become rather simple. For most values of r this is not
possible. because diffr (/-Ll"" ,/-Lr) depends in a complicated manner on !-Lt, .... !Lr.
However, for r=l and r=2, dilfr(/-Ll .....J.Lr) behaves reasonably well. In particuw

lar, for r=l, V,u, diffl(J1.)=n. So VD E:0n.,b,O

C 1(D) = b~(k~~) L: (l-w (0 ,k ,1)11 )·d,.
~= bn(k-l).(l w(b,k,t)n) • "d

(k l)~ LJ jJ.
~

= 0

since the sum of the elements of D is a by hypothesis.

In the case of the coefficient of p2 we have

Since L: dp. = 0 this simplifies to
~

c (D) = .n(H) [l- ""d'd 'w(b k 2)OiU,r,;..!J]
2 2.(1.:-2)t LJ LJ p. t "

~ !

Now we need to know a liLtle more about w (b ,k ,2).
b,k,r, b~2, l::;;k::::;lJ, Q:::;r:::;k,

w (b k r) = (1 - "')' )
• I (b_!:)l~k ~

= (1 _ (Il rHb T !l·...·fb k+ll)
Ilk r

= (1 - (b-r ./)-1:+1))
b'" b

For all

Since each of the fractions in the second term is in (0,1], their product is also in

(0,1]. Hence

O,",w(b ,k,r) < 1.

Given this, and D;t:[D]n.b. the lemma which follows this proof shows that

~ ~d~'d{w(b ,k ,2)OiU,r,;..!) > O.
~ !

Therefore VD E: On,b.o\HD]n,b ~

- 17-

""-, :,



c (D) = ,n" " Il-"''''d ·d ·w(b k 2)",1r,<J'.(1] < O.
2 2·(k2}! ~1Pt "

Thus we have

COVn.b.,dpD+[l]n,b) = COVn.b,,d[l]n,b) -I- c2(D)p2
+ terms in higher powers of p.

For su:lTiciently small values of P, the p'l. term wHl dominate. Since c2(D) is nega­

tive, we have that for suIIiciently small p

Hence, covn.b .k([l]n,b) is a strict local maximum. Tbis completes the proof of the
theorem.

Lemma: If b?::l, 2 is a constant, O~2 <1, and

H(A)= L L a,..a/,z·;g,iJ'·",. ,
then m?::O, VA E: U On,b,P , H(A)?::Q, with equality iff A=[O]n.b'

p

Proof: By induction on n.

n=O

In this case A has but one clement, (7., and

H(A) = L L a,..a/,z",Jr,iJ'·",. ,
= 0. 2'2 0

So H (A);;, 0 in all cases, and H(A) =0 if and only if A =[0].

Assume that H(A)?:: 0 for A E: UOn-I.b.P, with equality if and only if
p

A = [0]710-1,11, and now consider A E: 0n.b,P'

First we need a notation which will allow us to pass easily from indices for

elements of n-l-dimensional arrays to indices for clements of A (an n­

dimensional array). To this end, for J.1.: n -1 -. band i E: b • let

acp-.i) = a,u(O).,u(I) ..... ,u{n-2).i·

Now define S EOn_l,b.? by

- 18 -
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, -I

Sp.= ~ a.(j.I.,i).
1=0

Also, for O~i~b -1, defme Ai by

S, then. is a condensed version of A, obtained by summing elements having the

same first n-l coordinates, and Ai is a slice of A. The idea of the main part of

the proof is that R(S) contains exactly the products a(j£.i)a(~.il that R(A) con­

tains. The difference is that in RCA) the product lJ.(jt.i)a({.j) is multiplied by

zdt1f2{(JL:i.).({,j)), whereas in lieS) it is multiplied by ZGW"2(JJ..{). These are the same if

i=j, but ditrer by a factor of z if i"Fj. Fortunately, this diaerence can be easily

expressed in terms of HCA i ) and RCAi).

Formally, we can write H(A) as

Now we separate the cases in which i=j from those in which iplcj and use our

!"'Jl,v.,() 'f' ,
"'" ('" .) (, .)) Z ,I 'L=Jcarlier observation that z \u 2 v-o,t • ~,J = .

z ·z"\U2(.u..n, if i#-j

The next step is to add and subtract just what we need to make the first term

into H(S),

- 19-
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" " " " diff,v..() ( ) " " " diff,V..I)= z· LJ LJ LJ LJ a(p..t)[J.(t.i)z + 1-z . LJ LJ LJ a(p..i)a(t.i)Z
~ t i j i ~ f

= z .2.: 2.: !~::av..i)] II: ~«(.j)]Z diff,",.I) + ( l-z ). 2.: 2.: 2.: ~'~~' IZ dilJ,V..()
1J.tli li ip.t

= z· 2.: 2.: s ~S Iz",ff,V..() + ( l-z ). 2.: H(A')
)J. t i

= z H(S) + (l-z) 2.: H(A'),
By the induction hypothesis R(S) > a and for all i, H(Al.) > o. Furthermore, z is

nonnegative and, hence, so is (l-z). Thus the expression above is clearly nonne­
gative (i.e .. H(A);"O).

Now if A = [O]n,b' obviously fI(A) = O. On the oLher hand, suppose A -p. [O]n,b'

then for some io, ii°-F-[O]n_l,b' By the induction hypothesis H(AiO»O. Also.

z<l, so (l-z»O. Thus the last expression for H(A) contains at least one

strictly positive term. Since it contains no negative terms. this shows that

R(A) > awhenever A ¢ [O]n,b'

Tbis completes the proof of the lemma.

Corollary (to Theorem 1): Vn~l, Vk~2. Vb2:k, VP>O, covn,b.lc:(A), A EOn.b,p

has a strict local maximum at A = flL] .
bn

n,b

For purposes of speculation, we now calculate covn bk([L] )... [." n.'

A special case (r =0) of the counting exercise which we went through in the proof

of Theorem 1 reveals that

Hence

2.: 1=0",,·r1
dijh(;.l,l'" "J1.k);Z;l l

(l ")n ]- - (b-k)!b 1o

cov .([L] )= .dL]' bn'. l l- (1- " )nJ
n.b,A: bn 1o! I'" I (b-k)!b kn.'
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- Ell - (1 - .. )n I
- k! l (0-1:)101.: (4)

n=

If A = r..E.J is indeed the global maximum [or covn.b,dA). A E:Ori.b,P, then (4) islon In,b
an upper bound on the number of (k ,P)~sets that can be covered by n functions

from b P . Solving

COVn.b.k (Ifo~] ) = total II of (k ,F)-sets = (n = "(P;::P~k!)",""'
n.'

for n would then produce a lower bound on the number of functions needed to

cover all (k ,P)-sets. The outcome of this calculation is

logrl- PI ]l (P_k)lpk

On the other hand, we would really not expect this to be a tight bound since the

key distribution of a set of functions which covered all (k ,P)-sets would contain

(many) zeroes, and hence would be on the boundary of Orr,bp, whereas [I':] is
n.'

right in the middle of Oi".b ,p.

Summary

In two special cases there are complete answers to Question 1. If we have

just one function (71.=1), or we have just two keys per set (k=2). then a set of

functions maximizes the number of (k .P)-sets covered if and only if its key dis­

tribution is as even as possible, i.e., the clements of its key distribution are

equal to l6~ J or r6~ 1in the correct proportion so as to sum to P. In the case of

one function, the functions satisfying this condition are exactly the even­

sprinkling functions. In the case of two keys per set (and more than one func­

tion) there is always a set of even-sprinkling functions satisfying the condition,

though other sets not comprising solely even-sprinkling functions may also satis­

fy the condition.

As regards Question 2, for the case k =2 we know that any set of n func­

tions, the key distribution of which comprises zeroes and ones covers all the

(2,P)-sets. Since flogbP] functions are necessary and sufficient to produce such

a key dLstribution, flogbP] is the minimum number of [WlcUons which can cover

all the (2,P)-sets. Furthermore we know that rtOglJP] is a lower bound on the

number of functions needed to cover all the (k ,P)-sets for k greater Lhan 2.

- 21 -
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In the hope of obtaining some approximate answers we have extended the

domain of covn,b,dA) by allowing any nonnegative real numbers as entries in A,

reasoning that a global maximum in this domain would be an upper bound on

maxima over the domain of actual key distributions. We have not been able to

pin down a global maximum [or COVn.b,k(A). AEOi.b,P in general, but we have

shown that A = [IL] is a global maximum in case n=l or k=2, and is a strict
bl\ n.b

local maximum in aU cases. Furthermore, so far we have not [ol.Uld a counter­

example to A = flL] being a global maximum in general. Based on the conjec­
b

n n.b

lure that A = flL] is a global maximum in general we have calculated a con-
b

n n,b

jeclured upper bound on the number of (k ,P)-sets that n functions from bP can

cover, and the corresponding lower bOlllld on the number of functions from b P

needed to cover all (k ,F)-sets.
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