
mathematics of computation, volume 24, NUMBER 112, OCTOBER 1970

Some Results on Sparse Matrices*
By Robert K. Brayton, Fred G. Gustavson and Ralph A. Willoughby

Abstract. A comparison in the context of sparse matrices is made between the Product
Form of the Inverse PFI (a form of Gauss-Jordan elimination) and the Elimination Form
of the Inverse EFI (a form of Gaussian elimination). The precise relation of the elements of
these two forms of the inverse is given in terms of the nontrivial elements of the three matrices
L, U, U~l associated with the triangular factorization of the coefficient matrix A; i.e., A =
L- U, where L is lower triangular and U is unit upper triangular. It is shown that the zero-
nonzero structure of the PFI always has more nonzeros than the EFI. It is proved that
Gaussian elimination is a minimal algorithm with respect to preserving sparseness if the
diagonal elements of the matrix A are nonzero. However, Gaussian elimination is not nec-
essarily minimal if A has some zero diagonal elements. The same statements hold for the PFI
as well. A probabilistic study of fill-in and computing times for the PFI and EFI sparse ma-
trix algorithms is presented. This study suggests quantitatively how rapidly sparse matrices
fill up for increasing densities, and emphasizes the necessity for reordering to minimize fill-in.

I. Introduction. A sparse matrix is a matrix with very few nonzero elements.
In many applications, a rough rule seems to be that there are 0(N) nonzero entries;
typically, say 2 to 10 nonzero entries per row. If the dimension N of the matrix is
not large, then there is no compelling reason to treat sparse matrices differently
from full matrices. It is when N becomes large and one attempts computations with
the sparse matrix that it becomes necessary to take advantage of the zeros. The
reason for this is obvious: there is a storage requirement of the order of N2 and
arithmetic operations count of the order of N3 for many matrix algorithms using
the full matrix. On the other hand, by storing only nonzero quantities and using
logical operations to decide when an arithmetic operation is necessary, the storage
requirement and arithmetic operations count can be reduced by a factor of .¡V in
many instances. Of course, this not only becomes a sizable savings of computer
time, but also dictates whether or not some problems can be attempted.

Computations with sparse matrices are not new. Iterative techniques for these
matrices, especially those related to the solution of partial differential equations
have been extensively developed [1]. Sparse matrix methods for solving linear equa-
tions by direct methods have been used for a long time in linear programming and
there is a large body of literature, computational experience, programs, and artfulness,
which has been built up in this area [2]—[15]. In most linear programming codes,
the product form of the inverse (PFI) is the method used to solve linear equations
[16]—[19], although there are exceptions [20]-[21]. Methods for scaling, pivoting for
accuracy and sparseness, structuring data, and handling input-output have been
extensively developed [22]-[72]. However, there do not seem to exist rigorous results

Received February 3, 1969, revised March 16, 1970.
AMS 1969 subject classifications. Primary 6535, 9050; Secondary 1515.
Key words and phrases. Sparse matrices, elimination form of inverse, product form of inverse,

fill-in, symbolic and numerical zeros, minimal algorithms.
* The results reported in this paper were obtained in the course of research jointly sponsored

by the Air Force Office of Scientific Research (Contract AF 49(638)-1474) and IBM.
Copyright © 1971, American Mathematical Society

937
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

938 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

which compare one method against another, results which state that one method
is best, or results which give lower bounds for the best method. Some of the results
in this paper provide answers in these directions.

Recently, in a number of other areas of applications, increased interest has been
shown in sparse matrix methods, namely, electrical networks, structural engineering,
and power distribution systems [73]—[107], The reason for this interest seems to be
inspired by the attempt to do larger problems which, in turn, seems to be inspired by
the availability of faster and larger computers. This interest has generated a number
of general sparse matrix programs for solving linear equations, which are under
development, and indeed has given rise to new ideas. The availability of sparse
matrix codes [108]-[109] has stimulated interest in other application areas and,
therefore, further increase the desirability of advancing research in this area.

In this paper we analyze certain direct methods of solving Ax = b, where A is
a sparse matrix. However, we do not want to imply that the investigation of other
matrix algorithms in the context of sparsity (e.g., eigenvalue, eigenvector computa-
tions) is not important.

In the second section, we compare, in the context of sparsity, two well-known
direct methods for solving Ax = b, namely, the elimination form of the inverse
(EFI), a form of Gaussian elimination, and the product form of the inverse (PFI),
a form of Gauss-Jordan elimination. It is proved that the upper triangular part of
the PFI is exactly the negative of the inverse of the matrix U involved in Gaussian
elimination. The lower triangular part is exactly the L of Gaussian elimination.
The comparison of the two methods, therefore, requires a method of comparing the
sparseness of U with the sparseness of IT1. This leads to the next section in the paper.

In the third section we define the concept of the Boolean form of an algorithm.
For example, for Gaussian elimination, the matrix A is factored into L ■ U. By replacing
arithmetic operations by logical operations in the natural way, the same algorithm,
given A, (the Boolean matrix representing the zero-nonzero structure of A) will
produce the Boolean matrices L, and Z7„. The concept of minimal algorithms in
the sense of sparsity is discussed, i.e., an algorithm which produces the minimal
Boolean matrix and, therefore, requires the minimal amount of storage. It is shown
by example that Gaussian elimination and the Householder method [59] for factoring
A = QU, Q'Q = I are not minimal algorithms. It is clearly seen in these examples
how nonminimality produces unnecessary arithmetic operations as well as un-
necessary storage requirements. It is then proved that Gaussian elimination is a
minimal algorithm if the diagonal elements of the matrix A are nonzero. It is shown
that the PFI must produce a Boolean matrix (IT1), which is fuller than U, produced
by Gaussian elimination. In fact, if the diagonal elements of A are nonzero, no
method of solving linear equations requiring the computation of U'1 can require
less storage than Gaussian elimination. Also, the minimal algorithms for computing
U and IT1 when the diagonal elements of A may be zero are given precisely. These
algorithms combine the Gaussian elimination or the Gauss-Jordan algorithms with
a test for a property on submatrices of A (called property R).

In Section IV, a probabilistic study of fill-in is discussed. The results of this
study verify some of the conclusions of the previous section. They also indicate
how rapidly the matrices can fill up and, therefore, emphasize quantitatively the
importance of pivoting for reducing the fill-in.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 939

II. A Comparison Between EFI and PFI for Sparse Matrices. The EFI is a
form of Gaussian elimination where one transforms the matrix A into a unit upper
triangular matrix U. The PFI is a form of Gauss-Jordan total elimination where
one transforms A into the identity matrix /. In this discussion, we will not include
pivoting (which introduces row and column permutations), but we will briefly discuss
(at the end of this section) how the same pivoting strategy can be carried out for
either scheme. The notation (A)u will be used for the element of the matrix A in
the z'th row and jth column.

Certain elementary matrices, which differ from the identity matrix in only one
column, are the primary tool for both algorithms. Let tk = col (tlk, • • ■ , tnk), ek = kth
column of the n X n identity matrix /, and ' denote the transpose operation. An
elementary matrix is any matrix of the form

Tk =

1 fi»

tu

tnk 1

/ + (/*- e„yk.

If tkk t¿ 0, then TU1 exists and Tkx = I — t~kk(tk — ek)e'k. Note that the zero-nonzero
structure of an elementary matrix is the same as its inverse.

PFI Algorithm. Elementary matrices Tk for k = 1, ■ • • , n are formed with the
property that

T'k\Tkli Ti * A)ek <= ek

so that T~l •■• Tï1 A = I. Thus,

Tk= I +(tk- ek)e'k,

where tk = Tkl¡ • ■ ■ T~¡lAek. It is assumed that tkk ̂ 0 for k = 1, • • • , n.
EFI Algorithm. Elementary lower triangular matrices Lk are formed for

k = 1, ••• , n with the property that

where
Lk1(Lkl1 • • • L, 1A)ek = b,

b, = (Lilt ■•• LîlA)ik for j < k,

= 1 for j = k,

= 0 for ; > k.

Thus, Lk = I + (c — ek)e'k, where

c, = 0 for j < k,

= (L;!, ••• L^A),k for j-^k.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

940 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

The result is that

l:' ••• L,"1 A = U,

where U is unit upper triangular with

({/),, = (1-7-1 ••■ lVa)h for i < j,

= 1 for i = j,

= 0 for i > ;.

Our aim is to relate the quantities Tk, Lk, and U of the PFI and EFI algorithms.
With tk as defined in the PFI algorithm, let

Vk = COl (0, • • • ,0, tkk, ■ ■ ■ , tnk),

wk = col (tlk, • ■ ■ , ¡Vi.t, 0, • ■ • , 0),

Vk = I+(vk - ek)e'k,

Wk = /+ wA-

It is easily shown that
(a) VkWk = Th for k - 1, • • • , n,
(b) vkW, = WjVk for 1 £ j < k g n.
Theorem 1. Vk = Lkfor 1 ^ k ^ n.
/Voo/. It is clear that L, = Tt — Vx. Assume that, for j < k, V, = L,. Then

using (b) we have

7£, ••• T?A = (»Ci, ••• IfT1)^-1! •■• LV)A.

Since 1F71 's an elementary unit upper triangular matrix it has the property that
bi = (W-jlb)i for i ^ j. Thus, (TÜ, • • • T?A)ik = (¿ri, • • • L^),» for j ^ k.
From the way that Tk, Vk and Lk are formed, it is clear that these are the nontrivial
elements of Lk and Vk. Thus, by induction Lk = Ft for A: = 1, • • • , n. Q.E.D.

Let L = L, • • • /.,„.
Lemma. L = / + ¿"-i 0. ~ «/M- /é?- (¿)« - (£/)«■
Proof. Since /_,,• = K, = / + (v¡ — e,)e'¡ and e<(u, — e¡) = 0 for i < j, then

n

L = L, •••£„=/+ X>. - <?iM- Q.E.D.
i-l

This lemma states that multiplication of the Lk is trivial and that L is obtained
by superposition.

Lemma. U = Wi--- W„.
Proof. Since T? ■■• T[lA = / = W? ■ ■ ■ W^L;1 ■ ■ ■ L^A and U =

L? •■■ L-%A, then
W^1 ■■■ WVU = /. Q.E.D.

Note that here the multiplication of Wk is not trivial.
Lemma. IT1 = / - £î-i W,. Le. (£T% = - (W,),, /or i < /
Proof. By the previous lemma IT1 = ff"1 ■ • • rV^1. Since H^1 = 7 — w¡e'j and

ejw, = 0 for i ^ 7, then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 941

(j-1 = Wñl ■■■ W71 = / - E »¡et- Q.E.D.
i-i

As in the first lemma the multiplication of the Wkx is trivial.
Theorem 2. tf = (L + I — £T')e,- for j = 1, • • • , «.
Proo/. This is just a summation of the results of the three lemmas. Q.E.D.
In using these algorithms for computing solutions to linear equations where

the matrix of coefficients is sparse, one stores only the nontrivial data, i.e., not the
zeros and not the ones occurring along the diagonal. Furthermore, if one adopts
column-wise storage, then it is more efficient to operate on the matrix column-wise.
This is because it is more complicated to find, for example, the elements in the same
row if the data is stored column-wise.

It is clear that the PFI algorithm can be implemented column-wise (or row-wise).
For the EFI this is not so obvious. To do this we require a factored form of IT1,
which uses the data of U. Markowitz [20] obtained a factored form for IT1 for the
EFI in terms of the rows of U. Since the L¡ are obtained column-wise we require
a form in terms of the columns of U. Let

ul = (U-r)ei, Uj =1 -r-Uje'j.

Then
Lemma. U = U„ ■■• U2.
Proof. Since [/,- = /+ «,ej and e\Uj - 0 for / ^ j, then

n

Un--- U2 = I + 2 "¡e'i = U. Q.E.D.

Note that multiplication of the Uk in reverse order is trivial.
Thus, for the EFI we have

LÇ1 ••• U:1l:1 ••• L~ilA = I,

the elements requiring storage are the nontrivial elements of L and U, and the data
can be stored and operated on column-wise.

Note for comparison that the PFI yields

fK-i ■•■ »T1/-.;1 ••• L'i'A = /

but Wk * Uk.
Since only the nontrivial elements are stored, the zero-nonzero structure of

the data is important.
Definition. Let M, denote the matrix of 0's and l's obtained from a matrix M

by replacing nonzero quantities by 1.
The comparison between the EFI and PFI in terms of storage is given in

Theorem 2 and is restated.
PFI Storage Requirements. (L + I — U'1)..
EFI Storage Requirements. (L — I + U),.

The storage requirements are, of course, the number of l's in each of the above
matrices.

The comparison is, therefore, between the number of nonzero elements in U
and £T\ In general, it is impossible to say that one is sparser than the other because

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

942 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

the statement U sparser than tT1 can be applied to a matrix V = IT1. For purposes
of computation it is important to distinguish between two types of zeros obtained
by an algorithm:

(a) Zeros which are the result of multiplication and addition by zero. These can
be detected by logical operations on the zero-nonzero structure of the matrix and,
therefore, require no floating-point arithmetic operations. They are independent
of the numerical values of the nonzero elements.

(b) Zeros which result by exact numerical cancellation given no round-off error.
These cannot be detected by logical operations and in the presence of round-off
error are difficult to detect by examining the numerical result. In any case, they
require floating-point arithmetic operations and are dependent on the numerical
values of the nonzero elements.

In the next section, the comparison between the number of zeros of type (a)
of U and IT1 is obtained.

Pivoting strategies are easy to implement, but for the EFI this is not obvious.
Following the usual methods, we can process the columns of A in any order, and if
the order is other than the natural one, we simply form a permutation p(k) to indicate
that at the kth stage we are processing thep(k)th column of A. Second, we can choose
any pivot position in the p(k)th column corresponding to any row not previously
chosen. This introduces a second permutation, q(k), which indicates the pivot position
for the A:th stage. Thus, for the PFI with tMk) = r¡2, • • • T\xAevW we want Tlla =
<?„(*) so a = Tke,(k) and hence, Tk = / + (a - eQik))e'QW.

The situation for the EFI is only different in that in transforming the corresponding
vector a we leave invariant the positions corresponding to previous pivot positions.
This means that Lk is no longer lower triangular, but the q(k)th column of Lk has
zeros in chosen pivot rows and otherwise contains the corresponding element of a.
The elements of a not used in Lk form the nontrivial part of the q(k)th column of U.
As before, we have Tk = LkWk, where Wk is related to IT1, and for j < k,
LkWj = WjLk.

III. Minimality of Algorithms for Sparse Matrices. The following notation and
definitions are used in this section.

(A)u—the element of A in the ith row and y'th column.
Au (i è j)—the j X j matrix obtained from A by deleting rows pforj^p< i,

i < p Ú n, and columns p for j < p ^ n.
■A i i (l < f)—the i X i matrix obtained by deleting rows p for / < p g n and

columns p for i ^ p < j, j < p ^ n.
&u (' < J)—the (j — 1) X (jr — 1) matrix obtained from At-i,i-\ by replacing

its ith column with the first j — I components of Ae¡.
Definition 1. A Booleanization of a computational algorithm is obtained by

replacing each nonzero operand by a 1 ; multiplication by logical and, addition
and subtraction by logical or; and division by logical and if the divisor is one, other-
wise stop. (See below for further discussion.)

Definition 2. B, Q A, denotes the fact that A, has a one wherever B. has a one.
Definition 3. The output of a Booleanized algorithm a is denoted by B"„ sym-

bolically A, -2+ B". This is used to distinguish the fact that the output depends on
the algorithm used.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 943

Definition 4. By numerical data A representing A., we mean that given a Boolean
matrix A„ then (/4,),, = 0 implies that (A)(i = 0 but not necessarily the converse.

Definition 5. An algorithm a is s-minimal if given any Boolean matrix A, and
integers i, j such that (5°),, = 1 (where A, -^ B"), there exists A representing A.
such that (B)a ^ 0 (where A -^ B).

Definition 6. An algorithm a is o-minimal if it requires the least number of arith-
metic operations (counting addition and multiplication equally) of all algorithms
which compute the same thing (neglecting round-off).

Definition 7. A matrix M has property R if there exists a rearrangement of the
rows and columns of M which puts nonzero entries on the diagonal (i.e., the per-
manent of M, is nonzero).

The notion of "Booleanizing" a computational algorithm a needs to be discussed
further. Consider an example. The Crout algorithm performs the factorization
A = LU, where L and U are computed by the formulae

(3.1)
lik ~ aik 2—1 l<ßUnk< i ^ k,

aik — 2~2, li»u»kj / la, i < k.
B-l

This notion, as applied to the Crout algorithm, is motivated by the logical process
of deciding when an arithmetic operation is necessary in the processing of a sparse
matrix. It is clear that the Crout algorithm, when converted, will take a Boolean
matrix A, and produce Boolean matrices (see Definition 3) L\ and U°„ provided
division by zero is not encountered.

It should be clear that algorithms which compute the same numerical results
will not, in general, produce the same Boolean output. Obviously an algorithm
which (a) computes A~l by PFI, (b) triangularizes A'1 to obtain LT1 and IT1, (c) com-
putes L and U from L'1 and IT1 by PFI will (neglecting round-off) produce the
same matrices L and U as the Crout algorithm, but will generally give different L.
and U,. Specifically, the Boolean process is not reversible: i.e., although A = LUf
in general, A,j¿L,OU„ where O represents the Booleanization of matrix multiply.
The matrix A, below is an example.

A. =

101

110

001

101

111

.001

= L. O U..

Not all algorithms can be Booleanized. In particular, an algorithm which tests
numerical data and makes a decision based on this test (e.g., Gaussian elimination
with pivoting) will not qualify. However, we take the attitude that the pivoting can
be replaced by an initial rearrangement of rows and columns. In general, the
Booleanized algorithm is restricted to computations on the matrix A„ but it is not
legitimate to rearrange A,. We emphasize in the rest of this paper, that we are given A.
with the arrangement of rows and columns fixed thereafter.

The very difficult question of what reordering of the rows and columns for the
s-minimal algorithm will produce the sparsest output will not be attacked in this-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

944 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

paper, although it is felt that some of our results may have some bearing on this
question.

A simple consequence of non s-minimality is that if an algorithm a is not s-minimal,
then there is an i, ̂ 'location for which computation is performed to compute something
which is always zero ; i.e., we always end up with exact (neglecting round-off) numerical
cancellation in location i, j.

Certain well-known algorithms which are thought to be good or best, in some
sense, are not s-minimal, and therefore, do unnecessary fill-in. The Crout algorithm
as specified in (3.1) is not s-minimal, but as we will see, a certain modification of
this algorithm is s-minimal. A counterexample for the Crout algorithm is

A =

a b c 0

0

/
0

0 0

s o

We compute by the Crout algorithm

(L)i3 = -h-
c , bh c- H-= 0j
a ab

whereas (L,)iZ = 1. In particular, besides having to allocate additional storage,
there are two unnecessary multiplies and one add required.

It is obvious that the Gauss-Jordan method is also not s-minimal. Another non
s-minimal algorithm is the Householder algorithm for factoring a matrix A into
A = QR, where R is upper triangular and Q'Q = /. A counterexample is

A =

It turns out that (R)23 s 0, but following the Householder algorithm as given in [59]
we find that (R".)2* = 1.

The Gram-Schmidt and the modified Gram-Schmidt algorithms [110] do not
fail on this example and it is not known whether these are s-minimal. The Givens
method [59] does fail, and, therefore, is not s-minimal.

Let I™ and Um. denote the minimal sparseness structure for the factorization of A,.
Thus, (Lm,)n = 1 if and only if there exists a numerical realization of A, such that
(L)a * 0.

We will assume in what follows, that A.u has property R for 1 g / ^ n; otherwise,
the factorization cannot exist.

Theorem 3. For i ^ j (i < j), (L1)n = 1 ((Í7™),, = 1) // and only if A.u has
property R.

Proof. The proof depends on the following lemmas. Lemmas 1 and 2 can be
found in Householder [44].

Lemma 1. For i ^ j, (L)(j = (det A a)/det Aj_lti_i.
Lemma 2. For i < j, (t/),, = (det An)/det An.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 945

Lemma 3. Let A, be given. Then there exists a matrix A representing A. such
that for all square submatrices B, of A, with property R, det B 9e 0, where B is the
corresponding submatrix of A.

Proof. For each square submatrix B of A, det B is a polynomial of the nonzero
entries of A. Let these entries be denoted by x = (xu x2, • • • , xn), where n is the
number of nonzero entries in A,. For each B, with property R we have that

det B = pB,(x)

is a nonconstant polynomial in x since by property R, det B has at least one non-
vanishing term. Since nonconstant polynomials vanish on a set of measure zero,
and since there are only a finite number of square submatrices of A, then the set

S- U{x;Pb.(x) = 0},

where the union is taken over each submatrix B, of A. with property R, is a set of
measure zero. Hence, there must exist a point x* such that pB ,(x*) ¿¿ 0 for all B„
B, C A, and B, has property R. The point x* gives us the matrix A* with the re-
quired property. Q.E.D.

We suppose that i ^ j in the remainder of the proof of Theorem 3. The case
i < j is very similar and will not be given.

Now suppose A.u has property R. Then by Lemma 3 there exists a numerical
representation A* of A, such that det A* ?± 0 and det ^f_1>f_i t± 0. Hence, by
Lemma 1, (L*){¡ ¡¿ 0. Thus (L^),,- = 1.

Now assume that (I™),,- = 1. By definition, there must exist a numerical repre-
sentation of A. such that (L),, ^ 0. This implies that det ^,_i,,_i 9e 0 also. However,
if A(j does not have property R, then det An = 0. Therefore, by Lemma 1, we have
a contradiction and An must have property R. Q.E.D.

Theorem 3 immediately leads us to s-minimal algorithms for the triangularization
of A into LU. Namely, we take any algorithm a which computes L, U and before
we attempt to compute (L)if or (£/),-,-, we test if A,it has property R. Note that this
is not a test on the numerical data, but only a test on A, and as such is an algorithm,
which has a Boolean counterpart. The testing for property R is the assignment
problem for which there are known algorithms [111]-[114].

Theorem 4. Any algorithm a + R which computes L, U, and tests for property
R is s-minimal.

Proof. In the Booleanized algorithm a -f- R, we compute the matrices L"„ U",
and for each "one" entry, say (L.)u = 1, as it is generated by the Booleanized a
algorithm, we test if the matrix A,a has property R. If it does not, we change (L"),-,
to zero and proceed. Therefore, (L°+Ä),; = 1 only if A.u has property R. Conversely,
if A,a has property R, then (L°+S)n = (L")¿, = 1. Using Theorem 3, we conclude
that l:+b = ir„ u:+a = IT,. Q.E.D.

It turns out that if the diagonal entries of A, are 1, a case often met in practice,
then it is not necessary to include the test for property R with the Crout algorithm;
i.e., the Crout algorithm is s-minimal in this case.

Theorem 5. Suppose i è j (i < j) and (A,)ßß = I for 1 gjiáf- 1 (1 á íi á
i - 1). Then A,a has property R if and only if(Lc.)u = 1 ((Uc,)n = 1).

Proof. Suppose A,it has property R. Using Theorem 3 and the fact that £™ Ç L°„
it follows that (L,)u must be one. The proof for U is similar and omitted.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

946 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

Conversely, suppose that (i/°),-,- = 1. The proof for L is similar and will be omitted.
We will show that there exists a numerical representation of A. such that (£/% y¿ 0
and, therefore, by Theorem 3, Atii must have property R.

Consider the Crout formulae
/-i

Ut = au — 2~1 li*uni> i â j,
ii-i

«.. = («.i — X '.>",.>)/ ¡a, i < J-

Case 1. (A,)ij = 1. Then we can perturb the value of a,-, so that uti must be
nonzero, since the other entries in the formula for m¿,- do not depend on an.

Case 2. (A,)n = 0. Choose the largest value of p, say p*, in the formula for u¡,
such that (Xi)4„. = (£/|J)„*j = 1. There must be such an index; otherwise, (U,)n = 0.
We proceed by induction. Assume that «,-, a 0, but that for 1 g p < i if (Uc,)Uj = 1,
then A.„j has property R, and if (Lc,)ilt = 1, then A.{lt has property R. By Lemma 3,
this means we must have a numerical representation for which /,„. and w„.,- are
both nonzero. We note that /,„. and «„.,- (where u„.¡ = fl„.,//„.„.) are independent
of a,,.,,.. Therefore, let a„.„. become large. (We use the fact that (^4.)».,. = I.)
We have by assumption

«./ = Ut'U^i + 2 = 0.
But since /,„.«„.,• can be made arbitrarily small, by making a,,.,,, arbitrarily large
and since S is independent of a„.,., it must be that S = 0 and, therefore, lilt ,uu .,• = 0.
This is a contradiction and, hence, i/,-, fé 0. By Theorem 3 this implies that A(i has
property R. Q.E.D.

Corollary. If(A.)u = I for lá/á«- 1, íAe« the Crout algorithm is s-minimal.
It is not true in general that if Aik has property R, then (U'1)^ ^ 0, as the following

counterexample shows. Consider

A = e 0 / 0

0 g 0 0

o o yj
Then clearly A2i has property i?, and we compute (U)2i = d/b, but

(b \ —be/a /\ — g(j — ec/a)/

Since L7™ is full, this example shows that in special cases (U'1)", C Um,. In fact, if
(A,)23 = 0, then (t7_I)14 a 0 also, but Í7 is still full.

However, we can characterize the fill-in of IT1 directly in terms of determinants
of the original matrix A just as we did for the fill-in of L and U. We do not know
if the following lemma is known.

Lemma 4. (IT1)« = —det Â,t/det Ak_Uk_u where i < k.
Proof. From Section II we know the kth column of Tk^ - ■ ■ T^1 A is the non-

trivial column of Tk. Letting wk = col (tlk, • • ■ , *»_,,», 0, • • • ,0), we saw that Wk a

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 947

1 + wkek had the property that the nontrivial column of W^1 was exactly the kth
column of IT1. Thus, (U~1)ik = — tik for / < k.

On the other hand,

Tl-i • • - 771 -
C

where 5 and C are some matrices of the appropriate size. Thus, the first k — 1 compo-
nents of the kth column of 77i. • • • T\^A is Aklx ,k-xâk, where a* = col (a. 4, • • •, a*-!,*)-
Using Cramer's rule, we have that tik = det Aik/det A^i.t-i. Q.E.D.

Therefore, we have the following theorem.
Theorem 6. (tT1),* ^ 0 if and only if Ä,ik has property R.
Since the proof follows directly from the lemma and is similar to the proof of

Theorem 3, it will be omitted.
If the diagonal elements of A are nonzero, we have a complete characterization

of the fill-in of IT1.
Denote by a* the algorithm A Cm\ L\U -» U'\ where U'1 is computed from U

by the formula (3.4) below.
Theorem 7. // (A.)u = 1 for 1 g i ^ n, then a* is s-minimal.
Proof. For convenience, let vti denote (Í/-1),, and F denote U'1. Then we compute

V from U by
»-i

(3.4) Pu = — uik — 2~1 >Vj*<
p-i+l

Suppose that (V°*)ik = 1. We need to show that there exists a numerical representa-
tion of A, such that vik ^ 0. Let p* denote the smallest row index of u occurring
in (3.4) for which (U',)„.k = (V"')(„. = 1. There must be at least one such p value
since (V"')ik = 1. It may be that p* — i. In that case, »<„. = 1 in the following.

We proceed by induction. Assume that for arbitrary / and l <¡ j < k, (V°*)u = 1
implies Vu ^ 0. By Theorem 5 there must exist a numerical representation of A,
such that u„,k j¿ 0. If for this numerical representation, vilt, = 0, then using Lemmas 3
and 4, we can perturb the data so that both otß* and u„,k are nonzero. We note that
both viß. and u„.k are independent of a»,, for p > p*.

If vik = 0, then from (3.4)

Uß'iPt,* + 2 = 0

and we have 2 = — «„.»d,,. ^ 0. However, by making aßli large for p > p*, each v
and u term in 2 must approach zero and since ¡v^-n* remains constant, we have a
contradiction. Therefore, vik ^ 0. Q.E.D.

Theorem 8. i/fFI £ (jy-1).PFI.
Proo/". From Section II we know that the PFI or Gauss-Jordan algorithm is the

Boolean equivalent of A 2% L\U (34\ U'1, where GE denotes any form of Gaussian
elimination. The only difference in these algorithms is the sequence in which opera-
tions are carried out. This, however, does not affect the Boolean output of the al-
gorithm. Since from (3.4) we have (U°E)ik = 1 implies ((U'¡)"')ik = 1, we conclude
that I/f" £ (ir')f".

Corollary. If (A,)u = 1 for 1 ^ / ^ n, then the EFI and PFI algorithms are
s-minimal for computing L\U and L\U~\ respectively.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

948 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

This result can be rephrased, in that if the diagonal elements of A are nonzero,
then there is no method, known or unknown, of solving linear equations which
computes L, U~l and which requires less storage than Gaussian elimination.

Theorems 3 and 6 give a partial explanation of the occurrence in the EFI and
PFI of very small nonzero quantities obtained in computing the forms of the inverse.
In some instances these are zeros identically, but because of round-off error, appear
as nonzeros. We see that this can happen if the diagonal elements of A are not all
nonzero; i.e., this phenomena can occur if we choose some pivot positions cor-
responding to zero locations of the original matrix A. In some codes, a threshold
test is applied to every nonzero quantity, and if it is too small in absolute value, it
is set to zero. Such a threshold test is not so necessary if it is known that the pivot
choices correspond to nonzero elements of A, since "logical" cancellations cannot
occur.

We have thus far been concerned with sparseness only and not the arithmetic
operations count which might be another quantity to be minimized by an algorithm.
According to Definition 6 an algorithm is o-minimal if it requires the least number
of arithmetic operations (counting both addition and multiplication equally) of
all algorithms which compute the same thing. Clearly, the Crout algorithm is not
the o-minimal algorithm for computing L\U. The question of o-minimality is not
answered even in the full matrix case although some results on the algorithm requiring
the least number of multiplications have been obtained [115]—[116]. For sparse
matrices, no results are available and we pose the following question: Under what
conditions is a Crout algorithm locally o-minimal in the sense that the Crout method
for computing the next element in the factorization requires the minimal number
of arithmetic operations? Our conjecture is that the Crout algorithm is locally o-min-
imal if (A,)u — 1 for 1 -S i Sa H. This condition can be shown to be necessary by
counterexample. We will not pursue this question further in this paper.

IV. A Comparison of EFI and PFI for Randomly Generated Matrices. In Sec-
tion III we demonstrated that the factored form U determined by the EFI method
never had more nonzero elements of type (a) than the factored form of U~l. This
result says nothing about how much fuller U'1 is than U. In fact, if a matrix is tri-
diagonal, then Í/"1 is a full upper triangular matrix while U is co-diagonal; whereas,
for the matrix

X 0 X 0 X 0~

X X 0 0 0 0

0 0 A- 0 0 0A =
X 0 0 X 0 0

0 A" 0 0 X 0

0 0 0 X 0 X

U~l and U have the same number of nonzero elements. To obtain some idea of the
fill-in characteristics of these two algorithms, we have performed an experiment on
a set S of matrices whose elements are generated randomly.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 949

A matrix A E S is characterized by two parameters n and p as follows. A has
order n, and nonzero dominant diagonal elements. The other n2 — n elements of A
are chosen nonzero with probability p. The numerical value of each nonzero off-
diagonal element of A is chosen as a random floating point number between — 1
and +1. The set S consists of five groups of eighty matrices each. In each group,
the order is fixed: n = 100, 200, 300, 400, and 500 for the five groups. Within each
group, ten matrices of equal density are generated for each of eight increasing values
of p. The experiment consists of solving Ax = b for each A E S, both by the EFI
and PFI method, and noting the amount of fill-in and the execution times for the
factorization and back-substitution. All calculations were carried out on an IBM
model 360/67 computer.

The computer programs that we designed for the EFI and PFI method are typical
of sparse matrix codes and are similar to that described by Tinney and Walker [63].

The results of the experiment are displayed in Figure 1. In both graphs we have
plotted percent of fill-in vs. original percent. There are five sets of data points plotted
in each graph. For a given set (value of n), we have plotted for each of eight abscissa
values, the maximum, average and minimum values of fill-in (in percent). It appears
from the similarity of each of the five graphs, that each graph is described by a single
function. To see this, let y = f(x) represent one of the five curves. Then, to rough
approximation, any other curve is obtained as y = f(ax), a a constant. Closer scrutiny
reveals that o is proportional to l/n, so that, since the abscissa is proportional to 1/n2,
percent of fill-in is independent of n for constant values of n'/n3, where n' is the
number of nonzeros in the original matrix.

20

18-

16-

14-

12

10

8

6

4

2

PRODUCT FORM

-Ü1
i*

• 500x500
0 400x400
a 300x300
■ 200x200
x 100x100

fl
--•" T_L

L ELIMINATION FORM

I 1.5
ORIGINAL % ORIGINAL %

Fill in Comparison of PFI and EFI

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

950 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

An important result of this experiment is that randomly generated matrices fill
in very fast. The graphs in Figure 1 reveal a "take off" in fill-in at about 2 nonzero
elements per column. This sharp rise in fill-in continues in both the EFI and PFI at
least until the 50 percent fill-in mark is reached. The EFI rate is about one-half the
PFI rate. This means that the rate of fill-in for U is one-third that for ET1.

The execution time for factorization of the PFI ranges from 1.5 to 5 times that
of EFI. For back-substitution, the range is from .7 to 2.5. Since, for full matrices
the ratio of factorization time is \n3 to \n3 or 1.5, we see that the gain is even greater
for sparse matrices. The higher time ratios occur for the matrices with the larger
fill-in. Back-substitution time, except for indexing, is proportional to the number of
nonzero elements in the factorization of A. The explanation for a time ratio less
than 1 is due to the fact that in the EFI we index from 1 to « twice (Ly = b and
Ux = y) whereas we index only once in the PFI. This additional indexing shows up for
very sparse matrices and becomes a nontrivial part of the total time for back-substi-
tution.

The experiment points out the importance of a practical reordering scheme. One
should, before factorization, reorder the rows and columns of A to reduce fill-in.
At present, there exist no algorithms which give an ordering of rows and columns
which produces minimum fill-in (or minimum operation count) for either the elimi-
nation form or the product form. Even if such an algorithm existed, it might not be
practical because of its complexity. However, some simple procedures do exist, and
these give remarkable reductions in fill-in [63], [72].

One should not conclude that the EFI is twice as good as the PFI. Our experiment
is unfair in that a reordering algorithm did not precede both the EFI and PFI cases.
Nevertheless, the results of Sections II and III show that the application of the
elimination form to the best PFI ordering will result in less fill-in than given by the
product form. Thus, any ordering that is good for the PFI is also good for the EFI.
However, no such claim can be made for the PFI. Also, it appears that the best
strategies for EFI and PFI will differ since the EFI produces a symmetric factorization
(L and U) and the PFI an unsymmetric one (L and IT1).

Acknowledgment. The authors would like to thank the referee for carefully
reading the manuscript and for suggesting ways to shorten and clarify certain parts.

IBM Watson Research Center
Yorktown Heights, New York 10598

1. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962.
MR 28 #1725.

2. T. Koopmans (Editor), Activity Analysis of Production and Allocation, Cowles Commission
Monograph, no. 13, Wiley, New York and Chapman & Hall, London, 1951. MR 13, 670.

3. V. Riley & R. L. Allen, Interindustry Economic Studies, Johns Hopkins Press, Baltimore,
Md., 1955.

4. Linear Inequalities and Related Systems, Ann. of Math. Studies, no. 38, Princeton Univ.
Press, Princeton, N. J., 1956.

5. S. I. Gass, Linear Programming: Methods and Applications, McGraw-Hill, New York,
1958. MR 20 #3037.

6. V. Riley & S. I. Gass, Linear Programming and Associated Techniques, Bibliographic
Reference Series, no. 5, Johns Hopkins Press, Baltimore, Md., 1958. MR 19, 1197.

7. G. B. Dantzig <& P. Wolfe, "Decomposition principle for linear programs," Operations
Res., v. 8, 1960, pp. 101-111.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 951

8. G. B. DantzigJ&7 P. Wolfe, "The decomposition algorithm for linear programs,"
Econometrica, v. 29, 1961, pp.'767-778. MR 25 #1953.

9. G. B. Dantzig, Linear Programming and Extensions, Princeton Univ. Press, Princeton,
N. J., 1963.

10. R. L. Graves & P. Wolfe (Editors), Recent Advances in Mathematical Programming,
McGraw-Hill, New York, 1963.

11. P. Wolfe & L. Cutler, Experiments in Linear Programming, Recent Advances in Mathe-
matical Programming, McGraw-Hill, New York, 1963, pp. 177-200.

12. D. M. Smith <& W. Orchard-Hays, Computational Efficiency in Product Form LP Codes,
Recent Advances in Mathematical Programming, McGraw-Hill, New York, 1963, pp. 211-218.

13. M. Simonnard, Linear Programming, Prentice-Hall, Englewood Cliffs, N. J., 1966.
14. W. Orchard-Hays, Advanced Linear Programming Computing Techniques, McGraw-Hill,

New York, 1968.
15. R. L. Weil, Jr., "The decomposition of economic production systems," Econometrica,

v. 36, 1968, pp. 260-278.
16. G. B. Dantzig <& W. Orchard-Hays, "The product form of the inverse in the simplex

method," MTAC, v. 8, 1954, pp. 64-67. MR IS, 831.
17. L. J. Larson, "A modified inversion procedure for product form of inverse in linear

programming codes," Comm. ACM, v. 5, 1962, pp. 382-383.
18. R. P. Tewarson, "On the product form of inverses of sparse matrices," SIAM Reo., v. 8,

1966, pp. 336-342. MR 34 #8631.
19. R. P. Tewarson, "On the product form of inverses of sparse matrices and graph theory,"

SIAM Rev., v. 9, 1967, pp. 91-99. MR 36 #1092.
20. H. M. Markowitz, "The elimination form of the inverse and its application to linear

programming," Management Sei., v. 3, 1957, pp. 255-269. MR 22 #3098.
21. G. B. Dantzig, Compact Basis Triangularlzation for the Simplex Method, Recent Advances

in Mathematical Programming, McGraw-Hill, New York, 1963, pp. 125-132. MR 32 #1010.
22. A. M. Turing, "Rounding-off errors in matrix processes," Quart. J. Mech. Appl. Math.,

v. 1, 1948, pp. 287-308. MR 10, 405.
23. L. J. Paige & O. Taussky (Editors), "Simultaneous linear equations and the determination

of eigenvalues," Nat. Bur. Standards Appl. Math. Ser., v. 29, 1953.
24. G. E. Forsythe & E. G. Straus, "On best conditioned matrices," Proc Amer. Math. Soc,

v. 6, 1955, pp. 340-345. MR 16, 1054.
25. E. Bodewig, Matrix Calculus, North-Holland, Amsterdam, 1956. MR 18, 235.
26. E. Kosko, "Matrix inversion by partitioning," Aero. Quart., v. 8, 1957, pp. 157-184.

MR 19, 769.
27. A. S. Householder, "A survey of some closed methods for inverting matrices," /. Soc.

Indust. Appl. Math., v. 5, 1957, pp. 155-169. MR 19, 982.
28. L. B. Wilson, "Solution of certain large sets of equations on Pegasus using matrix methods,"

Comput. J., v. 2, 1959, pp. 130-133. MR 21 #6084.
29. E. E. Osborne, "On pre-conditioning of matrices," /. Assoc Comput. Mach., v. 7, 1960,

pp. 338-345. MR 26 #892.
30. G. E. Forsythe, "Crout with pivoting," Comm. ACM, v. 3, 1960, p. 507.
31. A. Orden, Matrix Inversion and Related Topics by Direct Methods, Mathematical Methods

for Digital Computers, vol. 1, Wiley, New York, 1960, pp. 39-55. MR 22 #8682.
32. D. L. Elliott, "A note on systems of linear equations," SIAM Rev., v. 3, 1961, pp. 66-69.

MR 22 #12702.
33. S. Parter, "The use of linear graphs in Gauss elimination," SIAM Rev., v. 3, 1961,

pp. 119-130. MR 26 #908.
34. J. H. Wilkinson, "Error analysis of direct methods of matrix inversion," /. Assoc. Comput.

Mach., v. 8, 1961, pp. 281-330. MR 31 #874.
35. F. Harary, "A graph theoretic approach to matrix inversion by partitioning," Numer.

Math., v. 4, 1962, pp. 128-135. MR 25 #2977.
36. D. R. Fulkerson & P. Wolfe, "An algorithm for scaling matrices," SIAM Rev., v. 4,

1962, pp. 142-146. MR 25 #1039.
37. A. L. Dulmage <& N. S. Mendelsohn, "On the inversion of sparse matrices," Math. Comp.,

v. 16, 1962, pp. 494-496. MR 27 #6375.
38. W. M. McKeeman, "Crout with equilibration and iteration," Comm. ACM, v. 5, 1962,

pp. 553-555.
39. F. L. Bauer, "Optimally scaled matrices," Numer. Math., v. 5, 1963, pp. 73087. MR 28

#2629.
40. D. K. Faddeev & V. N. Faddeeva, Computational Methods In Linear Algebra, Fizmatgiz,

Moscow, 1960; English transi, of 1st ed., Freeman, San Francisco, Calif., 1963. MR 28 #1742;
MR 28 #4659.

41. A. L. Dulmage & N. S. Mendelsohn, "Two algorithms for bipartite graphs," /. Soc
Indust. Appl. Math., v. 11, 1963, pp. 183-194. MR 27 #4224.

42. J. Carpentier, "Éliminations ordonnées," un processus diminuant le volume des calculs
dans la résolutions des systèmes linéaires à matrice creuse. Troisième Congr. de Calcul et de Traitement
de l'Information AFCALTI, Dunod, Paris, 1965, pp. 63-71. MR 32 #1896.

43. L. Fox, An Introduction to Numerical Linear Algebra, Clarendon Press, Oxford, 1964.
MR 29 #1733.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

952 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

44. A. S. Householder, The Theory of Matrices in Numerical Analysis, Blaisdell, Waltham,
Mass., 1964. MR 30 #5475.

45. W.-K. Chen, "The inversion of matrices by flow graphs," /. Soc. Indust. Appl. Math.,
v. 12, 1964, pp. 676-685. MR 30 #2023.

46. F. H. Branin, Jr., et al., "An interpretive program for matrix arithmetic," IBM Systems
J.,v.4. 1965, pp. 2-24.

47. J. C. Dickson, Finding Permutation Operations to Produce a Large Triangular Sub-Matrix,
Twenty-eighth National Meeting Operations Research Society of America, Houston, Texas, 1965.

48. B. H. Mayoh, "A graph technique for inverting certain matrices," Math. Comp., v. 19,
1965, pp. 644-646. MR 33 #5108.

49. W. Oettlie, W. Prager & J. H. Wilkinson, "Admissible solutions of linear systems with
not sharply defined coefficients," J. Soc Indust. Appl. Math. Ser. B. Numer. Anal., v. 2, 1965, pp.
291-299. MR 32 #1888.

50. D. Bree, Jr., Some Remarks on the Application of Graph Theory to the Solution of Sparse
Systems of Linear Equations, Thesis, Dept. of Mathematics, Princeton University, Princeton, N. J-,
1965.

51. H. Edelmann, Ordered Triangular Factorization of Matrices, Proc. Power System Compu-
tation Conference, Stockholm, 1966.

52. G. G. Alway e& D. W. Martin, "An algorithm for reducing the bandwidth of a matrix
of symmetrical configuration," Comput. J., v. 8, 1965/66, pp. 264-272.

53. W. Kahan, "Numerical linear algebra," Canad. Math. Bull., v. 9, 1966, pp. 757-801.
54. A. Jennings, "A compact storage scheme for the solution of symmetric linear simultaneous

equations," Comput. J., v. 9, 1966/67, pp. 281-285.
55. H. J. Bowdler, R. S. Martin, G. Peters & J. H. Wilkinson, "Solution of real and

complex systems of linear equations," Numer. Math., v. 8, 1966, pp. 217-234.
56. A. M. Hershdorfer, et al., On the Efficient Inversion of Large Structured Matrices, Proc.

ASCE Engineering Mechanics Division Specialty Conference, Washington, D. C, 1966.
57. B. A. Chartres & J. C. Geuder, "Computable error bounds for direct solution of linear

equations," J. Assoc Comput. Mach., v. 14, 1967, pp. 63-71. MR 35 #6390.
58. G. Forsythe & C. B. Moler, Computer Solution of Linear Algebraic Equations, Prentice-

Hall, Englewood Cliffs, N. J., 1967. MR 36 #2306.
59 J. H. Wilkinson, The Solution oj Ill-Conditioned Linear Equations, Mathematical Methods

for Digital Computers, vol. 2, Wiley, New York, 1967, pp. 65-93.
60. R. P. Tewarson, "Solution of a system of simultaneous linear equations with a sparse

coefficient matrix by elimination methods," Nordisk Tidskr. Informations-Behandllng, v. 7, 1967,
pp. 226-239. MR 36 #2308.

61. F. Harary, "Graphs and matrices," SIAM Rev., v. 9, 1967, pp. 83-90. MR 35 #1501.
62. G. E. Forsythe, "Today's computational methods of linear algebra," SIAM Rev., v. 9,

1967, pp. 489-515. MR 36 #1089.
63. W. F. Tinney e& J. W. Walker, "Direct solutions of sparse network equations by optimally

ordered triangular factorization," Proc. IEEE, v. 55, 1967, pp. 1801-1809.
64. A. Nathan & R. K. Even, "The inversion of sparse matrices by a strategy derived from

their graphs," Comput. J., v. 10, 1967, pp. 190-194. MR 35 #5128.
65. R. P. Tewarson, "Row-column permutation of sparse matrices," Comput. J., v. 10, 1967,

pp. 300-305. MR 36 #1091.
66. J. R. Westlake, A Handbook of Numerical Matrix Inversion and Solution of Linear Systems,

Wiley, New York, 1968. MR 36 #4794.
67. R. P. Tewarson, "Solution of linear equations with coefficient matrix in band from"

Nordisk Tidskr. Informations-Behandling, v. 8, 1968, pp. 53-58. MR 37 #2425.
68. W. R. Spillers & N. Hickerson, "Optimal elimination for sparse symmetric systems as

a graph problem," Quart. Appl. Math., v. 26, 1968, pp. 425-432. MR 38 #1818.
69. G. Loizou, "An empirical estimate of the relative error of the computed solution x of

Ax = b" Comput. J., v. 11, 1968/69, pp. 91-94. MR 37 #1067.
70. Richard Rosen, Matrix Band Width Minimization, ACM National Conference, Las

Vegas, Nevada, 1968.
71. Svstem/160 Matrix Language (MATLAN), Application Description, IBM H20-0479;

Program Description Manual, IBM H20-0564; Operations Manual, IBM H20-0559; System Manual,
IBM Y20-0261.

72. G. B. Dantzig, R. P. Harvey, R. D. McKnight & S. S. Smith, Sparse Matrix Techniques
in Two Mathematical Programming Codes, Proc. Sparse Matrix Sympos., IBM Watson Research
Center, Yorktown Heights, New York, 1968.

73. G. Kron, Tensor Analysis of Networks, Wiley, New York, 1939.
74. P. M. Hunt, "The electronic digital computer in aircraft structural analysis. The pro-

gramming of the Argyris matrix formulation of structural theory for an electronic digital computer.
I: A description of a matrix interpretive scheme and its application to a particular example," Aircraft
Engrg., v. 28, 1956, pp. 70-76. MR 17, 902.

75. J. B. Ward & H. W. Hale, "Digital computer solution of power flow problems," Trans.
AIEE, v. PAS-75, 1956, part III, pp. 398-404.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

SOME RESULTS ON SPARSE MATRICES 953

76. R. J. Brown & W. F. Tinney, "Digital solutions for large power networks," Trans. AIEE,
v. PAS-76, 1957, part III, p. 347.

77. j. E. Van Ness, "Iteration methods for digital load flow studies," Trans. AIEE, v.
PAS-78A, 1959, part III, pp. 583-588.

78. R. Livesley, "The analysis of large structural systems," Comput. J., v. 3,1960/61, pp. 34-39.
MR 22 #3195.

79. C. H. Norris & J. B. Wilbur, Elementary Structural Analysis, 2nd ed., McGraw-Hill,
New York, 1960.

80. J. E. Van Ness, "Convergence of iterative load-flow studies," Trans. AIEE, v. PAS-79,
1960, part III, pp. 1590-1597.

81. A. S. Hall & R. W. Woodhead, Frame Analysis, Wiley, New York, 1961.
82. J. E. Van Ness & J. H. Griffin, "Elimination methods for loadflow studies," Trans. AIEE,

v. PAS-80, 1961, part III, pp. 299-304.
83. F. H. Branin, Jr., D-C and Transient Analysis of Networks Using a Digital Computer,

IRE Internat. Conference Rec, part 2, 1962, pp. 236-256.
84. H. E. Brown, G. K. Carter, H. H. Happ & C. E. Person, "Power flow solution by

matrix iterative method," Trans. AIEE, v. PAS-82, 1963, part III, p. 1.
85. H. E. Brown, H. H. Happ, G. K. Carter & C. E. Person, "Power flow solution by

impedance matrix iterative method," Trans. AIEE, v. PAS-82, 1963, pp. 561-564.
86. R. W. Clough, E. L. Wilson & I. P. King, "Large capacity multistory frame analysis

programs," ASCEJ. Structural Division, v. 89, 1963, p. 179.
87. S. J. Fenves <& F. Branin, "A network-topological formulation of structural analysis,"

ASCEJ. Structural Division, v. 89, 1963, pp. 483-514.
88. S. J. Fenves, STRESS (Structural Engineering System Solver) A Computer Programming

System for Structural Engineering Problems, M.I.T. Technical Report T63-2, 1963.
89. G. Krön, Diakoptics, Macdonald, London, 1963.
90. W. R. Spillers, "Network analogy for linear structures," Proc ASCE J. Engrg. Mech.

Division, v. 89, 1963, no. EM-4, pp. 21-29.
91. W. R. Spillers, "Applications of topology in structural analysis," Proc ASCEJ. Structural

Division, v. 89, 1963, no. ST-4, pp. 301-313.
92. M. A. Laughton & M. W. H. Da vies, "Numerical techniques in solution of power-system

load-flow problems," Proc IEEE, v. Ill, 1964, p. 1575.
93. W. R. Spillers, "Network techniques applied to structures," Matrix Tensor Quart., v. 15,

1964, pp. 31-41.
94. R. Baumann, "Some new aspects on load-flow calculation: I-impedance matrix generation

controlled by network topologv," AIEE Trans., v. PAS-85, 1966, pp. 1164-1176.
95. F. H. Branin, Jr., The Algebraic-Topological Basis for Network Analogies and the Vector

Calculus, Proc. Sympos. on Generalized Networks, vol. 16, Microwave Res. Inst. Sympos. Ser.
Poly. Inst. of Brooklyn, 1963, pp. 453-491.

96. F. F. Kuo, "Network analysis by digital computer," Proc. IEEE, v. 54, 1966, pp. 820-829.
97. F. F. Kuo <& J. F. Kaiser (Editors), System Analysis by Digital Computer, Wiley, New

York, 1966.
98. F. H. Branin, Jr., "Computer methods of network analysis," Proc. IEEE, v. 55, 1967,

pp. 1787-1801.
99. G. H. Jensen, "Efficient matrix techniques applied to transmission tower design," Proc.

IEEE, v. 55, 1967, pp. 1997-2000.
100. G. H. Jensen, Designing Self-supporting Transmission Towers with the Digital Computer,

PICA Conference, 1967, pp. 303-319.
101. W. F. Tinney & C. E. Hart, "Power flow solution by Newton's method," Trans. AIEE,

v. PAS-86, 1967, pp. 1449-1460.
102. A. T. Trihaus & R. Zimering, A Digital Computer Program for an Exhaustive Fault Study

of a Large Power System Network, IEEE Power Industry Computer Applications Conference Rec,
Pittsburgh, 1967, pp. 343-349.

103. W. Weaver, Jr., Computer Programs for Structural Analysis, Van Nostrand, Princeton,
N.J., 1967.

104. O. C. Zienkiewicz. The Finite Element Method In Structural and Continuum Mechanics,
McGraw-Hill, New York, 1967.

105. J. S. Przemieniecki, Theory of Matrix Structural Analysis, McGraw-Hill, New York, 1968.
106. W. R. Spillers, "Analysis of large structures : Kron's methods and more recent work,"

Proc ASCE (To appear.)
107. G. W. Stagg e& A. H. El-Abiad, Computer Methods in Power System Analysis, McGraw-

Hill, New York, 1968.
10S. N. Sato & W. F. Tinney, "Techniques for exploiting the sparsity of the network admittance

matrix," Trans. AIEE, v. PAS-82, 1963, pp. 944-950.
109. F. Gustavson, W. Liniger & R. Willoughby, "Symbolic generation of an optimal Crout

algorithm for sparse systems of linear equations," J. Awoc. Co<np\it. M ich., v. 17, 1970, pp. 87-109.
110. A. Björck, "Solving linear least squares problems by Gram-Schmidt orthogonalization,"

Nordisk Tidskr. Informations-Behandling, v. 7, 1967, pp. 1-21. MR 35 #5126.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

954 ROBERT K. BRAYTON, FRED G. GUSTAVSON AND RALPH A. WILLOUGHBY

111. T. S. Motzkin, The Assignment Problem, Proc. Sympos. Appl. Math., vol. 6, Amer. Math
Soc, Providence, R. I., 1956, pp. 109-125. MR 19, 822.

112. J. Munkres, "Algorithms for the assignment and transportation problems," J. Soc
Indust. Appl. Math., v. 5, 1957, pp.32-38. MR 19, 1244.

113. L. R. Ford, Jr. & D. R. Fulkerson, Flows in Networks, Princeton Univ. Press, Princeton,
N. J., 1962. MR 28 #2917.

114. A. Yaspan, "On finding a maximal assignment," Operations Res., v. 14, 1966, pp. 646-651.
115. V. V. Klyuyev & N. I. Kokovkin-Shcherbak, On the Minimization of the Number of

Arithmetic Operations for the Solution of Linear Algebraic Systems, Stanford Comput. Sei. Report
CS-24, 1965.

116. S. Winograd, On the Number of Multiplications Necessary to Compute Certain Functions,
IBM Watson Research Center, RC 2285, 1968.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

