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Abstract. Let R be a commutative ring. The annihilator graph of R, denoted by AG(R),
is the undirected graph with all nonzero zero-divisors of R as vertex set, and two distinct
vertices x and y are adjacent if and only if annR(xy) 6= annR(x) ∪ annR(y), where for
z ∈ R, annR(z) = {r ∈ R : rz = 0}. In this paper, we characterize all finite commutative
rings R with planar or outerplanar or ring-graph annihilator graphs. We characterize all
finite commutative rings R whose annihilator graphs have clique number 1, 2 or 3. Also, we
investigate some properties of the annihilator graph under the extension of R to polynomial
rings and rings of fractions. For instance, we show that the graphs AG(R) and AG(T (R))
are isomorphic, where T (R) is the total quotient ring of R. Moreover, we investigate some
properties of the annihilator graph of the ring of integers modulo n, where n > 1.
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1. Introduction

Let R be a commutative ring with nonzero identity. We denote the sets of all

zero-divisors and nilpotent elements of R by Z(R) and Nil(R), respectively. In 1999,

Anderson and Livingston introduced the zero-divisor graph of R, denoted by Γ(R),

that is the graph with vertices Z(R)
∗

= Z(R)\{0} and distinct vertices x and y being

adjacent in Γ(R) if and only if xy = 0. Beck introduced this concept in 1988 but

he allowed all the elements of R as vertices and was mainly interested in colorings.

Several other classes of graphs associated with algebraic structures have been defined

and studied (cf. [2], [6], [10], [14], [13], [22]). One of the most important class of

graphs associated with the algebraic structures is that of Cayley graphs (cf. [19],
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[20], [21]). Recently, in [12], the concept of the annihilator graph has been defined

and studied. The annihilator graph of R, denoted by AG(R), is an undirected graph

with vertex set Z(R)
∗

, and two distinct vertices x and y are adjacent if and only

if annR(xy) 6= annR(x) ∪ annR(y), where for z ∈ R, annR(z) = {r ∈ R : rz = 0}.

Let G be an additive abelian group and let S be a symmetric subset of G. The

Cayley graph Cay(G, S) is the graph with vertex set G and two vertices x and y are

adjacent if and only if x− y ∈ S. It is easy to see that the induced subgraph of the

Cayley graph Cay(R,S), where S = R \ Z(R), with vertex set Z(R)∗ is a subgraph

of the annihilator graph AG(R). Indeed, assume that x − y ∈ S, and suppose on

the contrary that x and y are not adjacent in AG(R). Then, by [12], Lemma 2.1, we

have annR(x) ⊆ annR(y) or annR(y) ⊆ annR(x). Without loss of generality, we may

assume that annR(x) ⊆ annR(y). So x− y ∈ Z(R), which is a contradiction.

By [12], Lemma 2.1, the zero-divisor graph Γ(R) is a (spanning) subgraph of the

annihilator graph AG(R). Many results on zero-divisor graphs of commutative rings

have been obtained (cf. [3], [4], [5], [8], [9], [15], [17]). Let AGN(R) be the (induced)

subgraph of AG(R) with vertices Nil(R)∗ = Nil(R) \ {0}. Recall that R is reduced

if Nil(R) = 0. Also, Min(R) is the set of all minimal prime ideals of R. In [2], the

authors studied the situations that the unit, unitary and total graphs are ring-graph

or outerplanar. Also, in [1], they studied the ring-graph and outerplanarity for co-

maximal and zero-divisor graphs. In the second section of this paper, we completely

characterize all finite commutative rings with planar or outerplanar or ring-graph an-

nihilator graphs. In the third section we characterize all finite commutative rings R,

whose annihilator graphs have clique number 1, 2 or 3. In the fourth section, we

investigate the annihilator graph of the extension of R to polynomial rings and rings

of fractions. Also, we show that the graphs AG(R) and AG(T (R)) are isomorphic,

where T (R) is the total quotient ring of R. Finally, in the fifth section, we investi-

gate some properties of the annihilator graph of the ring of integers modulo n, where

n > 1. For instance, we study cut-vertices and cut-sets in AG(Zn).

Now, we recall some definitions and notation on graphs. Let G be a simple graph

with vertex set V (G) and let C be a cycle of G. A chord in G is any edge joining

two nonadjacent vertices in C. A primitive cycle is a cycle without chord. Moreover,

if any two primitive cycles intersect in at most one edge, then we say G has the

primitive cycle property (PCP). The number of primitive cycles of G is the free rank

of G and is denoted by frank(G). We have rank(G) := q−n+r, where q, n and r are

the number of edges of G, the number of vertices of G and the number of connected

components of G, respectively.

A graph G is called planar if it can be drawn in the plane without crossing edges.

A graph G is an outerplanar graph if it can be drawn in the plane without crossing

in such a way that all of the vertices belong to the unbounded face of the drawing.
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The precise definition of a ring-graph can be found in section 2 of [18]. Also, in [18],

the authors showed that the following conditions are equivalent:

(i) G is a ring-graph,

(ii) rank(G) = frank(G),

(iii) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

So every ring-graph is planar. Moreover, in [18], authors showed that every outer-

planar graph is a ring-graph. A set A ⊂ V (G) is said to be a cut-set if its removal

increases the number of connected components of G and no proper subset of A satis-

fies the same condition. A cut-set consisting of only one element is called a cut-vertex

of G. Suppose that x, y ∈ V (G). If x is adjacent to y, then y is a neighbour of x. We

use the notation x−y to say that x and y are adjacent in a graph G. The girth of G,

denoted by gr(G), is the length of a shortest cycle in G (gr(G) = ∞ if G contains

no cycles). Also we denote the complete graph with n vertices by Kn and we denote

the complete bipartite graph by Km,n. We denote the star graph by K1,n. Let k be

a positive integer. For a graph G, a k-coloring of the vertices of G is an assignment

of k colors to the vertices of G in such a way that no two adjacent vertices receive the

same color. The chromatic number of G, denoted by χ(G), is the smallest number k

such that G admits a k-coloring. Any subgraph of G is called a clique if it is complete

and the size of a largest clique in a graph G is denoted by cl(G). A graph G is called

weakly perfect provided χ(G) = cl(G) (cf. [23]).

2. Ring-graphs and outerplanar annihilator graphs

In this section, we investigate all finite commutative rings R such that their an-

nihilator graphs are planar or outerplanar or ring-graph. Throughout this section,

R is a finite commutative ring with nonzero identity and F is a finite field. Specially,

F4 is a field with four elements.

Theorem 2.1. The annihilator graph AG(R) is planar if and only if R is isomor-

phic to one of the following rings:

(i) Z2 × Z2 × Z2,

(ii) Z2 × Z4, Z2 × Z2[x]/(x
2), Z2 × F, Z3 × F,

(iii) Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2, Z9,

Z4[x]/(2x, x
2), Z3[x]/(x

2), F4[x]/(x
2), Z4[x]/(x

2 + x+ 1), Z25, Z5[x]/(x
2).

P r o o f. Clearly, by [12], Lemma 2.1, the zero-divisor graph Γ(R) is a (spanning)

subgraph of the annihilator graph AG(R). Hence if Γ(R) is not planar, then AG(R)

is not planar either. So in order to investigate the planarity of AG(R), we need only
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to study the rings R whose zero-divisor graphs are planar. In [3] and [16] it was

shown that Γ(R) is planar if and only if R is isomorphic to one of the following rings:

(i) Z2 × Z2 × Z2, Z2 × Z2 × Z3,

(ii) Z2 × Z4, Z2 × Z2[x]/(x
2), Z2 × F, Z3 × F, Z3 × Z4, Z3 × Z2[x]/(x

2), Z2 × Z8,

Z2 × Z2[x]/(x
3), Z2 × Z4[x]/(2x, x

2 − 2), Z2 × Z9, Z2 × Z3[x]/(x
2), Z3 × Z9,

Z3 × Z3[x]/(x
2),

(iii) Z4,Z2[x]/(x
2),Z8,Z2[x]/(x

3),Z4[x]/(2x, x
2−2),Z2[x, y]/(x, y)

2, Z4[x]/(2x, x
2),

Z9, Z3[x]/(x
2), F4[x]/(x

2), Z4[x]/(x
2 − 2), Z4[x]/(x

2 + 2x+ 2),

Z4[x]/(x
2 + x + 1), Z25, Z5[x]/(x

2), Z16, Z2[x]/(x
4), Z2[x, y]/(x

2 − y2, xy),

Z2[x, y]/(x
2, y2), Z4[x]/(2x, x

3 − 2), Z4[x, y]/(x
2 − 2, xy, y2 − 2, 2x),

Z4[x, y]/(x
2, xy − 2, y2), Z4[x]/(x

2), Z4[x]/(x
2 − 2x), Z8[x]/(2x, x

2 − 4), Z27,

Z9[x]/(x
2 − 3, 3x), Z9[x]/(x

2 − 6, 3x), Z3[x]/(x
3).

Now we study the planarity of AG(R), when R is one of the above rings. By

Figure 1, it is easy to see that AG(Z2 × Z2 × Z2) is planar.

(1, 0, 1) (0, 1, 0)

(1, 0, 0)(0, 1, 1)

(1, 1, 0) (0, 0, 1)

Figure 1. AG(Z2 × Z2 × Z2).

In Figure 2, the graph AG(Z2 × Z2 × Z3) has a copy of K
3,3, and so it is not

planar.

(1, 0, 2) (0, 1, 1)

(1, 0, 1) (0, 1, 2)

(1, 0, 0) (0, 1, 0)

Figure 2.

If R is isomorphic to Z2 × F with |F| = m, then AG(R) ∼= K1,m−1. Hence

AG(Z2 × F) is planar. Also if R is isomorphic to Z3 × F with |F| = m, then one can

easily check that AG(R) ∼= K2,m−1. Thus AG(Z3 × F) is planar.

If R ∼= Z2 × Z4 or R ∼= Z2 × Z2[x]/(x
2), then we have AG(Z2 × Z4) ∼= AG(Z2 ×

Z2[x]/(x
2)). Let R ∼= Z2 × Z4. Then, by Figure 3, it is obvious that AG(Z2 × Z4) is

planar.
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(1, 2) (1, 0)

(0, 2)

(0, 1)

(0, 3)

Figure 3. AG(Z2 × Z4).

If R ∼= Z3 × Z4 or R ∼= Z3 × Z2[x]/(x
2), then we have AG(Z3 × Z4) ∼=

AG(Z3 × Z2[x]/(x
2)). Now, one can easily find a copy of K3,3 with vertex set

{(1, 0), (2, 0), (1, 2), (0, 1), (0, 2), (0, 3)} in AG(Z3 × Z4) (see Figure 4), and so it is

not planar.

(1, 2) (0, 3)

(2, 0) (0, 2)

(1, 0) (0, 1)

Figure 4.

If R is isomorphic to one of the rings Z2 × Z8, Z2 × Z2[x]/(x
3) or Z2 ×

Z4[x]/(2x, x
2 − 2), then we have AG(Z2 × Z8) ∼= AG(Z2 × Z2[x]/(x

3)) ∼= AG(Z2 ×

Z4[x]/(2x, x
2 − 2)). Let R ∼= Z2 × Z8. By Figure 5, the graph AG(Z2 × Z8) has

a subdivision of K5. So AG(Z2 × Z8) is not planar.

(1, 0) (0, 4)

(0, 2)(0, 1)

(0, 6)

(1, 4)

(1, 2)

(1, 6)

Figure 5.

If R ∼= Z2 × Z9 or R ∼= Z2 × Z3[x]/(x
2), then we have AG(Z2 × Z9) ∼= AG(Z2 ×

Z3[x]/(x
2)). Let R ∼= Z2 × Z9. Then, by Figure 6, one can find a copy of K

3,3.

Hence AG(Z2 × Z9) is not planar.

Also, if R ∼= Z3 × Z9 or R ∼= Z3 × Z3[x]/(x
2), then AG(Z3 × Z9) ∼= AG(Z3 ×

Z3[x]/(x
2)). Let R ∼= Z3 × Z9. Then one can find a copy of K

5 with vertex set

{(0, 3), (0, 6), (1, 3), (1, 6), (2, 3)} in AG(Z3 × Z9), so AG(Z3 × Z9) is not planar.
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(1, 0)

(1, 3)

(1, 6)

(0, 1)
(0, 2)

(0, 3)

(0, 4)

(0, 5)

(0, 6)

(0, 7)
(0, 8)

Figure 6. AG(Z2 × Z9).

Now, we study the situation when R is a local ring. Badawi in [12] proved that

AGN(R) is a complete graph. Since for finite local rings we have Z(R) = Nil(R) if

|Z(R)| > 6, hence AG(R) contains a copy of K5, and so it is not planar. It is easy

to see that the following rings have |Z(R)| = 8, and hence their annihilator graphs

are not planar:

Z16, Z2[x]/(x
4), Z2[x, y]/(x

2 − y2, xy), Z2[x, y]/(x
2, y2), Z4[x]/(2x, x

3 − 2),

Z8[x]/(2x, x
2 − 4), Z4[x, y]/(x

2 − 2, xy, y2 − 2, 2x), Z4[x, y]/(x
2, xy − 2, y2),

Z4[x]/(x
2), Z4[x]/(x

2 − 2x), Z4[x]/(x
2 − 2), Z4[x]/(x

2 + 2x+ 2).

Also in the following rings we have |Z(R)| = 9, and hence their annihilator graphs

are not planar:

Z27, Z9[x]/(x
2 − 3, 3x), Z9[x]/(x

2 − 6, 3x), Z3[x]/(x
3).

Now, one can easily check that the following isomorphisms hold:

AG(Z4) ∼= AG(Z2[x]/(x
2)) ∼= K1,

AG(Z8) ∼= AG(Z2[x]/(x
3)) ∼= AG(Z4[x]/(2x, x

2 − 2))

∼= AG(Z2[x, y]/(x, y)
2) ∼= AG(Z4[x]/(2x, x

2))

∼= AG(F4[x]/(x
2)) ∼= AG(Z4[x]/(x

2 + x+ 1)) ∼= K3,

AG(Z9) ∼= AG(Z3[x]/(x
2)) ∼= K2,

AG(Z25) ∼= AG(Z5[x]/(x
2)) ∼= K4.

By the above discussion the result holds. �
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In the next theorem, we characterize all rings with ring-graph annihilator graphs.

Theorem 2.2. The annihilator graph AG(R) is a ring-graph if and only if R is

isomorphic to one of the following rings:

(i) Z2 × F, Z3 × Z3,

(ii) Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2,

Z4[x]/(2x, x
2), Z9, Z3[x]/(x

2), F4[x]/(x
2), Z4[x]/(x

2 + x+ 1).

P r o o f. Since every ring-graph is planar, it is enough to study the rings with

planar annihilator graphs. Since

frank(AG(Z2 × Z2 × Z2)) = 7 and rank(AG(Z2 × Z2 × Z2)) = 4,

by Figure 1, AG(Z2 × Z2 × Z2) is not a ring-graph. If R is isomorphic to Z2 × Z4,

by Figure 3, we have

rank(AG(Z2 × Z4)) = 6− 5 + 1 = 2 and frank(AG(Z2 × Z4)) = 3.

Thus AG(Z2 × Z4) is not a ring-graph. Also AG(Z2 × Z4) ∼= AG(Z2 × Z2[x]/(x
2)),

and so AG(Z2×Z2[x]/(x
2)) is not a ring-graph. If R is isomorphic to Z2×F, then it

is easy to see that AG(Z2×F) is a star graph. Hence AG(Z2×F) is a ring-graph. If R

is isomorphic to Z3 ×F, then AG(R) is isomorphic to K2,m−1, where |F| = m. Thus

rank(AG(Z3 × F)) = m− 2 and frank(AG(Z3 × F)) = (m− 1)(m− 2)/2. Therefore

AG((Z3 ×F)) is a ring-graph if and only if (m− 1)(m− 2)/2 = m− 2, which implies

that m = 2 or m = 3. So AG(Z3×F) is a ring-graph if and only if F ∼= Z2 or F ∼= Z3.

Also, in view of the proof of Theorem 2.1, the annihilator graphs of all rings

Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2,

Z4[x]/(2x, x
2), Z9, Z3[x]/(x

2), F4[x]/(x
2) and Z4[x]/(x

2 + x+ 1)

are ring-graphs. The graphs AG(Z25) and AG(Z5[x]/(x
2)) are isomorphic to K4,

and so they are not ring-graphs. �

In the next theorem, by using the fact that every outerplanar graph is a ring-

graph in conjunction with Theorem 2.2, we determine all rings R with outerplanar

annihilator graphs.

Theorem 2.3. The annihilator graph AG(R) is outerplanar if and only if R is

isomorphic to one of the following rings:

(i) Z2 × F, Z3 × Z3,

(ii) Z4, Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2), Z2[x, y]/(x, y)

2,

Z4[x]/(2x, x
2), Z9, Z3[x]/(x

2), F4[x]/(x
2), Z4[x]/(x

2 + x+ 1).
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P r o o f. Since a graph G is outerplanar if and only if it does not contain a sub-

division of a complete graph K4 or a complete bipartite graph K2,3, one can check

that no ring-graph annihilator graphs contain a subdivision of a complete graph K4

or a complete bipartite graph K2,3. Now the result follows immediately from Theo-

rem 2.2. �

3. Clique numbers of the annihilator graphs

We begin this section with a lemma which shows that the annihilator graph of the

product of three fields is weakly perfect.

Lemma 3.1. Let K1,K2 and K3 be fields. Then cl(AG(K1 × K2 × K3)) =

χ(AG(K1 ×K2 ×K3)) = 3.

P r o o f. Suppose that (a, b, c) is in Z(K1 ×K2 ×K3). Then at least one of a, b

or c is zero. So, if

A1 = {(a, b, c) ∈ K1 ×K2 ×K3 : a = 0 and b 6= 0 6= c},

A2 = {(a, b, c) ∈ K1 ×K2 ×K3 : b = 0 and a 6= 0 6= c},

A3 = {(a, b, c) ∈ K1 ×K2 ×K3 : c = 0 and a 6= 0 6= b},

A4 = {(a, b, c) ∈ K1 ×K2 ×K3 : a = b = 0 and c 6= 0},

A5 = {(a, b, c) ∈ K1 ×K2 ×K3 : a = c = 0 and b 6= 0},

A6 = {(a, b, c) ∈ K1 ×K2 ×K3 : b = c = 0 and a 6= 0},

then Z(K1 ×K2 × K3)
∗ =

6⋃

i=1

Ai. Now, by the definition of the annihilator graph

AG(R), every vertex in A1 is adjacent to every vertex in A2, A3 and A6, every vertex

in A2 is adjacent to every vertex in A1, A3 and A5, every vertex in A3 is adjacent

to every vertex in A1, A2 and A4, every vertex in A4 is adjacent to every vertex

in A3, A5 and A6, every vertex in A5 is adjacent to every vertex in A2, A4 and A6

and every vertex in A6 is adjacent to every vertex in A1, A4 and A5. Also, each Ai

for i = 1, . . . , 6 is an independent set. Hence cl(AG(K1 × K2 × K3)) = 3, and so

χ(AG(K1 × K2 × K3)) > 3. Since each Ai for i = 1, . . . , 6 is an independent set,

we can color every vertex in A1 by λ1. Now, since every vertex in A2 is adjacent to

every vertex in A1, we color every vertex in A2 by λ2. Also, every vertex in A3 is

adjacent to every vertex in A1 and A2. Therefore we need another color λ3 for every

vertex in A3. Every vertex in A4 is adjacent to every vertex in A3, A5 and A6, and

so we can color the vertices in A4 by λ1 or λ2. Without loss of generality, we color
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every vertex in A4 by λ1. Since every vertex in A5 is adjacent to A2 and A4, we

cannot color the vertices in A5 by λ1 and λ2. So we color every vertex in A5 by λ3.

Finally, since every vertex in A6 is adjacent to A1, A4 and A5, we color the vertices

in A6 by λ2. Hence χ(AG(K1 ×K2 ×K3)) = 3. �

In the next theorem we characterize all finite rings R whose annihilator graphs

have clique number 1, 2 or 3.

Theorem 3.2. Let R be a finite commutative ring and letK1,K2 andK3 be finite

fields. Also, let F4 be a field with four elements. Then the following statements hold:

(a) cl(AG(R)) = 1 if and only if R is isomorphic to Z4 or Z2[x]/(x
2).

(b) cl(AG(R)) = 2 if and only if R is isomorphic to one of the following rings:

K1 ×K2, Z2 × Z4, Z2 × Z2[x]/(x
2), Z9, Z3[x]/(x

2).

(c) cl(AG(R)) = 3 if and only if R is isomorphic to one of the following rings:

K1 ×K2 ×K3, Z3 × Z4, Z3 × Z2[x]/(x
2), Z8, Z2[x]/(x

3), Z4[x]/(2, x)
2,

F4[x]/(x
2), Z4[x]/(x

2 + x+ 1), Z2[x, y]/(x, y)
2, Z4[x]/(2x, x

2 − 2).

P r o o f. (a) Clearly, by [12], Lemma 2.1, the zero-divisor graph Γ(R) is a (span-

ning) subgraph of the annihilator graph AG(R). Hence if cl(AG(R)) = n, then

cl(Γ(R)) 6 n. So cl(AG(R)) = 1 if and only if cl(Γ(R)) = 1. Also by [15], Proposi-

tion 2.2, cl(Γ(R)) = 1 if and only if R is isomorphic to Z4 or Z2[x]/(x
2).

(b) In order to characterize all rings R with cl(AG(R)) = 2, we need only to study

the rings R with cl(Γ(R)) = 1 or 2. It is easy to see that if cl(Γ(R)) = 1, then

cl(AG(R)) = 1. Now, by [15], page 226, cl(Γ(R)) = 2 if and only if R is isomorphic

to one of the following rings:

K1 ×K2, K1 × Z4, K1 × Z2[x]/(x
2), Z8, Z9,

Z3[x]/(x
2),Z2[x]/(x

3), Z4[x]/(2x, x
2 − 2).

If R ∼= K1 × K2 with |K1| = n and |K2| = m, then one can easily check that

AG(R) ∼= Kn−1,m−1. Thus cl(AG(K1 ×K2)) = 2.

If R ∼= K1 ×Z4 or K1×Z2[x]/(x
2) with |K1| = n, then AG(K1 ×Z4) ∼= AG(K1 ×

Z2[x]/(x
2)). Let R ∼= K1 × Z4. Then AG(K1 × Z4) contains a complete graph Kn

with vertex set {(0, 2), (r1, 2), (r2, 2), . . . , (rn−1, 2)}, where ri 6= 0 for i = 1, . . . , n−1,

and so cl(AG(R)) > n. Thus, for n > 3 we have that cl(AG(K1 × Z4)) > 3. Now,
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if n = 2, then K1
∼= Z2, and so cl(AG(Z2 × Z4)) = 2. If R ∼= Z8, then we have

AG(Z8) ∼= K3. Thus cl(AG(Z8)) = 3.

If R ∼= Z9 or Z3[x]/(x
2), then we have AG(Z9) ∼= AG(Z3[x]/(x

2)) ∼= K2. Thus

cl(AG(Z9)) = cl(AG(Z3[x]/(x
2))) = 2. If R ∼= Z2[x]/(x

3) or Z4[x]/(2x, x
2 − 2), then

we have AG(Z2[x]/(x
3)) ∼= AG(Z4[x]/(2x, x

2 − 2)) ∼= K3. Therefore, for clicque

subgraph is cl(AG(Z2[x]/(x
3))) = cl(AG(Z4[x]/(2x, x

2 − 2))) = 3.

(c) In order to characterize all rings R with cl(AG(R)) = 3, we need only to study

the rings R with cl(Γ(R)) = 1, 2 or 3. In view of the proof of part (b), we have

cl(AG(Z3 × Z4)) = cl(AG(Z3 × Z2[x]/(x
2))) = cl(AG(Z8)) = cl(AG(Z2[x]/(x

3))) =

cl(AG(Z4[x]/(2x, x
2−2))) = 3. Now we study the rings R with cl(Γ(R)) = 3. By [9],

Theorem 4.4, cl(Γ(R)) = 3 if and only if R is isomorphic to one of the following rings:

Z4 × Z4, Z4 × Z2[x]/(x
2), Z2[x]/(x

2)× Z2[x]/(x
2),

K1 ×K2 ×K3, K1 ×K2 × Z4, K1 ×K2 × Z2[x]/(x
2),

K1 × Z8, K1 × Z9, K1 × Z3[x]/(x
2), K1 × Z2[x]/(x

3),

K1 × Z4[x]/(2x, x
2 − 2), Z16,Z2[x]/(x

4), Z4[x]/(2x, x
3 − 2),

Z4[x]/(x
2 − 2), Z4[x]/(x

2 + 2x+ 2), F4[x]/(x
2), Z4[x]/(x

2 + x+ 1),

Z2[x, y]/(x, y)
2, Z4[x]/(2, x)

2,Z27, Z3[x]/(x
3), Z9[x]/(3x, x

2 − 3),

Z9[x]/(3x, x
2 − 6), Z2[x, y]/(x

2, y2 − xy), Z2[x, y]/(x
2, y2),

Z8[x]/(2x− 4, x2), Z4[x]/(x
2), Z4[x]/(x

2 − 2x),

Z4[x, y]/(x
2, xy − 2, y2, 2x, 2y) or Z4[x, y]/(x

2, xy − 2, x2 − xy, 2x, 2y).

If R ∼= Z4 × Z4, then AG(Z4 × Z4) contains a complete graph K5 with ver-

tex set {(2, 1), (2, 2), (2, 3), (1, 2), (3, 2)}. Thus cl(AG(Z4 × Z4)) > 5. If R ∼=

Z4 × Z2[x]/(x
2), then AG(R) contains a complete graph K5 with vertex set

{(2, 1), (2, x), (2, 1 + x), (1, x), (3, x)}. Therefore cl(AG(Z4 × Z2[x]/(x
2))) > 5. If

R ∼= Z2[x]/(x
2) × Z2[x]/(x

2), then AG(R) contains a complete graph K5 with

vertex set {(x, 1), (x, x), (x, 1 + x), (1 + x, x), (1, x)}. Thus cl(AG(R)) > 5. If R ∼=

K1×K2×K3, then by Lemma 3.1, cl(AG(R)) = 3. If R ∼= K1×K2×Z4, then AG(R)

contains a complete graph K4 with vertex set {(0, 1, 2), (1, 1, 0), (1, 0, 2), (0, 0, 2)}.

Therefore cl(AG(R)) > 4. If R ∼= K1 × K2 × Z2[x]/(x
2), then AG(R) contains

a complete graph K4 with vertex set {(0, 1, x), (1, 1, 0), (1, 0, x), (0, 0, x)}. Hence

cl(AG(R)) > 4. If R ∼= K1 × Z8, then AG(R) contains a complete graph K4 with

vertex set {(0, 1), (1, 2), (1, 4), (1, 6)}. Thus cl(AG(R)) > 4. If R ∼= K1 × Z9, then

AG(R) contains a complete graph K4 with vertex set {(1, 3), (1, 6), (0, 3), (0, 6)}. So

cl(AG(R)) > 4. If R ∼= K1 ×Z3[x]/(x
2), then AG(R) contains a complete graph K4

with vertex set {(1, x), (1, 2x), (0, x), (0, 2x)}. Thus cl(AG(R)) > 4.
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Now, if R ∼= K1 × Z2[x]/(x
3), then AG(R) contains a complete graph K4 with

vertex set {(1, x), (1, x2 + x), (0, x), (0, x2 + x)}, and so cl(AG(R)) > 4. If R ∼=

K1 × Z4[x]/(2x, x
2 − 2), then AG(R) contains a complete graph K4 with vertex set

{(1, 2), (1, 2 + x), (0, 2), (0, 2 + x)}. So cl(AG(R)) > 4. If R is isomorphic to one of

the following rings:

Z16, Z2[x]/(x
4), Z4[x]/(2x, x

3 − 2), Z4[x]/(x
2 − 2),

Z4[x]/(x
2 + 2x+ 2), Z2[x, y]/(x

2, y2 − xy), Z2[x, y]/(x
2, y2),

Z8[x]/(2x− 4, x2), Z4[x]/(x
2), Z4[x]/(x

2 − 2x),

Z4[x, y]/(x
2, xy − 2, y2, 2x, 2y) or Z4[x, y]/(x

2, xy − 2, x2 − xy, 2x, 2y),

then its annihilator graph is isomorphic to K7. Thus, for clicque subgraph is

cl(AG(R)) = 7. If R ∼= F4[x]/(x
2), Z4[x]/(x

2+x+1), Z2[x, y]/(x, y)
2 or Z4[x]/(2, x)

2,

then its annihilator graph is isomorphic to K3. Hence cl(AG(R)) = 3. If R ∼= Z27,

Z3[x]/(x
3), Z9[x]/(3x, x

2 − 3) or Z9[x]/(3x, x
2 − 6), then its annihilator graph is iso-

morphic to K8. Therefore cl(AG(R)) = 8. Now by the above discussion the result

holds. �

4. Extension rings

In this section, we compare some properties of the annihilator graph AG(R) with

the graphs AG(R[x]) and AG(S−1R). Note that McCoy’s theorem states that

f(x) ∈ R[x] is a zero-divisor if and only if there is a nonzero element r ∈ R such

that rf(x) = 0. Also it is proved that a polynomial f(x) over a commutative ring R

is nilpotent if and only if each coefficient of f(x) is nilpotent (cf. [11]).

Proposition 4.1. Let R be a finite commutative ring with |Z(R)∗| > 1 and

R 6∼= Z2 × Z2. Then the annihilator graph AG(R) is a complete graph if and only

if R is a local ring.

P r o o f. First assume that the annihilator graph AG(R) is a complete graph.

We shall show that R is a local ring. If R is a finite commutative ring and Z(R) is an

ideal of R, then R is a local ring with Z(R) = Nil(R) its unique maximal ideal. So it

is enough to show that Z(R) is an ideal of R. Let |Z(R)∗| = 2. So Z(R) = {0, x, y}

where x 6= y. If xy 6= 0, then x2 = y2 = 0. Hence Z(R) = Nil(R). Therefore Z(R)

is an ideal of R. Now, suppose that xy = 0. Then the zero-divisor graph Γ(R) is

a complete graph. Moreover, in [8], Theorem 2.10, it was shown that for any finite

commutative ring R, if Γ(R) is complete, then either R ∼= Z2 × Z2 or R is a local
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ring with characteristic p or p2 and |Γ(R)| = ps − 1, where p is a prime and s > 1.

Thus the result follows. Now assume that |Z(R)∗| > 3. Let x, y be distinct elements

in Z(R)∗. It is enough to show that x + y ∈ Z(R). Since Γ(R) is connected, there

is a nonzero element r ∈ R such that rx = 0 (or ry = 0). Now, because AG(R) is

a complete graph, r − y is an edge of AG(R). So annR(ry) 6= annR(r) ∪ annR(y).

Thus there exists r′ ∈ R such that r′ry = 0 and r′r 6= 0 and r′y 6= 0. Hence

r′r(x + y) = 0. Therefore x+ y ∈ Z(R).

Conversely, since for a finite local ring we have Z(R) = Nil(R), the result follows

from [12], Theorem 3.10. �

Theorem 4.2. Let R be a finite commutative ring with |Z(R)∗| > 1 and R 6∼=

Z2 × Z2. If AG(R) is complete, then AG(R[x]) is also complete.

P r o o f. It is enough to show that every zero-divisor element in R[x] is nilpotent.

Then, by [12], Theorem 3.10, AG(R[x]) is complete. Since AG(R) is complete, by

Proposition 4.1, R is a local ring. So Z(R) = Nil(R). Now, let f(x) ∈ Z(R[x]), where

f(x) = a0 + a1x+ . . .+ anx
n. Thus a0, . . . , an ∈ Nil(R), which implies that f(x) is

nilpotent. �

Recall that the diameter of a graphG, denoted by diam(G), is equal to sup{d(a, b) :

a, b ∈ V (G)}, where d(a, b) is the length of the shortest path connecting a and b.

Corollary 4.3. Let R be a finite commutative ring with |Z(R)∗| > 1 and R 6∼=

Z2 × Z2. Then diam(AG(R)) = diam(AG(R[x])).

P r o o f. By [12], Theorem 2.2, we have diam(AG(R)) = 1 or 2. Assume that

diam(AG(R)) = 1. So AG(R) is a complete graph. Therefore, by Theorem 4.2, the

annihilator graph AG(R[x]) is also a complete graph. Hence diam(AG(R[x])) = 1.

Now if diam(AG(R)) = 2, then there are distinct elements a, b ∈ Z(R)∗, such that

a − b is not an edge of AG(R). We show that a − b is not an edge of AG(R[x])

either. Since a − b is not an edge of AG(R), annR(ab) = annR(a) ∪ annR(b). So,

annR(a) ⊆ annR(b) or annR(b) ⊆ annR(a). Now (without loss of generality), we

set annR(a) ⊆ annR(b). So annR(ab) = annR(b). Suppose that f(x) ∈ annR[x](ab)

where f(x) = a0 + a1x + . . . + anx
n. Hence aba0 = aba1 = . . . = aban = 0.

Since annR(ab) = annR(b), ba0 = ba1 = . . . = ban = 0. Thus f(x) ∈ annR[x](b).

Hence annR[x](ab) ⊆ annR[x](b). Therefore annR[x](ab) = annR[x](a) ∪ annR[x](b), so

a− b is not an edge of AG(R[x]), and since diam(AG(R[x])) 6 2, we conclude that

diam(AG(R[x])) = 2. �

Theorem 4.4. Let R be a commutative ring. If R is not an integral domain,

then the annihilator graph AG(R[x]) is not planar.
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P r o o f. First suppose that R is not a reduced ring. So there exists a nonzero

nilpotent element a ∈ R. Let n be the least positive integer such that an = 0. Then

one can find a copy of K5 with vertex set {a, ax, ax2, ax3, ax4} in AG(R[x]), and so

AG(R[x]) is not planar. Now assume that R is a reduced ring. Hence there exist

a, b ∈ R such that a 6= b and ab = 0. Then, by Figure 7, the graph AG(R[x]) has

a copy of K3,3, and so AG(R[x]) is not planar. �

ax bx

a b

a+ ax b+ bx

Figure 7.

The following corollary immediately follows from Theorem 4.4.

Corollary 4.5. Let R be a commutative ring. If R is not an integral domain,

then gr(AG(R[x])) ∈ {3, 4}.

In the rest of the section, we study the annihilator graph of the ring of fractions

S−1R, where S is a multiplicatively closed subset of R. It is obvious that if r ∈ Z(R),

then r/s ∈ Z(S−1R) for every s ∈ S. Now, let r/s ∈ Z(S−1R). Thus there is

a nonzero element r′/s′ ∈ S−1R such that (r/s) · (r′/s′) = 0/1. So there exists u ∈ S

such that urr′ = 0. Clearly ur′ 6= 0, because otherwise r′/s′ = 0/1. Thus r ∈ Z(R).

Proposition 4.6. LetR be a commutative ring. If r and r′ are arbitrary elements

of R such that annR(r) ⊆ annR(r
′), then annS−1R(r/s) ⊆ annS−1R(r

′/s′) for every

s, s′ ∈ S.

P r o o f. Assume that annR(r) ⊆ annR(r
′), and suppose on the contrary that

annS−1R(r/s) 6⊆ annS−1R(r
′/s′). Then there is r′′/s′′ ∈ S−1R such that (r/s) ×

(r′′/s′′) = 0/1 and (r′/s′)(r′′/s′′) 6= 0/1. So there exists u ∈ S such that urr′′ = 0,

and, for every v ∈ S, vr′r′′ 6= 0. So ur′′ ∈ annR(r). Thus ur
′′ ∈ annR(r

′). So we

have ur′r′′ = 0, which is the required contradiction. �

Lemma 4.7. Let R be a commutative ring. If a1/s1 is adjacent to a2/s2 in

AG(S−1R), then either a1 is adjacent to a2 or a1s2 is adjacent to a2s1 in AG(R) for

every s1, s2 ∈ S.

P r o o f. First assume that a1 6= a2. Since a1/s1−a2/s2 is an edge in AG(S−1R),

there is b/s in AG(S−1R) such that (b/s)(a1a2/s1s2) = 0, (b/s)(a1/s1) 6= 0 and

(b/s)(a2/s2) 6= 0. Hence there exists v ∈ S such that vba1a2 = 0, vba1 6= 0 and
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vba2 6= 0, and so a1 is adjacent to a2 in AG(R). Now assume that a1 = a2. Since

a1/s1 6= a2/s2, we have a1s2 6= a2s1. Also a1s2/s1s2 is adjacent to a2s1/s1s2 in

AG(S−1R), and so a1s2 is adjacent to a2s1 in AG(R). �

By Lemma 4.7, one can see that if AG(S−1R) is a complete graph, then AG(R)

is complete.

Lemma 4.8. Let R be a commutative ring. If annR(x1) = annR(x2), then x1

and x2 have the same neighbours in AG(R).

P r o o f. Suppose that x is adjacent to x1 in AG(R). So we have annR(xx1) 6=

annR(x) ∪ annR(x1). Hence there is x
′ such that x′xx1 = 0, x′x1 6= 0 and x′x 6= 0.

Now, since annR(x1) = annR(x2), we have x′xx2 = 0 and x′x2 6= 0. Therefore

annR(xx2) 6= annR(x)∪ annR(x2), and so x is adjacent to x2 in AG(R). Also, if x is

adjacent to x2 in AG(R), then similarly x is adjacent to x1 in AG(R). So x1 and x2

have the same neighbours in AG(R). �

Lemma 4.9. LetR be a commutative ring. Suppose that s is an arbitrary element

in S. If r ∈ Z(R), then of r/s and r/1 have the same neighbours in AG(S−1R).

P r o o f. By Lemma 4.8, it is enough to show that annS−1R(r/s) = annS−1R(r/1).

So if a/t ∈ annS−1R(r/s), then we have (a/t)(r/s) = 0/1. Hence there exists

u ∈ S such that uar = 0. Also (a/t)(r/1) = ar/t = aru/(tu) = 0/1, and

so a/t ∈ annS−1R(r/1). Now, if a/t ∈ annS−1R(r/1), then there exists u ∈ S

such that uar = 0. Also (a/t)(r/s) = ar/(ts) = aru/(tsu) = 0/1. Therefore

a/t ∈ annS−1R(r/s). �

Let T (R) = S−1R be the total quotient ring of R, where S = R − Z(R). In [7],

Theorem 2.2, Anderson and Shapiro showed that the graphs Γ(R) and Γ(T (R)) are

isomorphic. For x, y ∈ R, they defined a relation ∼ as follows: x ∼ y if annR(x) =

annR(y). Clearly ∼ is an equivalence relation on R. Let T = T (R). Denote the

equivalence relations on Z(R)∗ and Z(T )∗ by ∼R and ∼T , respectively, and denote

their equivalence classes by [a]R and [a]T , respectively. They proved that there

is a bijection between equivalence classes of Γ(T (R)) and Γ(R), and they defined

a bijection ϕ : Z(R)∗ → Z(T )∗ by ϕ(x) = ϕα(x), where ϕα : [aα] → [aα/1] is

a bijection and x ∈ [aα]. In the next theorem, using the above notation, we show

that AG(R) is isomorphic to AG(T (R)).

Theorem 4.10. Let R be a commutative ring. Then the graphs AG(R) and

AG(T (R)) are isomorphic.
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P r o o f. By the proof of [7], Theorem 2.2, we have the bijection ϕ : Z(R)∗ →

Z(T )∗ defined by ϕ(x) = ϕα(x), where ϕα : [aα] → [aα/1] is a bijection and x ∈ [aα].

Thus we only need to show that x and y are adjacent in AG(R) if and only if ϕ(x)

and ϕ(y) are adjacent in AG(T (R)); i.e., annR(xy) 6= annR(x) ∪ annR(y) if and

only if annT (ϕ(x)ϕ(y)) 6= annT (ϕ(x)) ∪ annT (ϕ(y)). Let x ∈ [a]R, y ∈ [b]R, l ∈ [c]R,

w ∈ [a/1]T , z ∈ [b/1]T and t ∈ [c/1]T . We need only to show that xyl = 0, xl 6= 0 and

yl 6= 0 if and only if wzt = 0, wt 6= 0 and zt 6= 0. Note that annT (x) = annT (a) =

annT (w), annT (y) = annT (b) = annT (z) and annT (l) = annT (c) = annT (t). Hence

xyl = 0 ⇔ xy ∈ annT (l) = annT (t) ⇔ xyt = 0 ⇔ xt ∈ annT (y) = annT (z)

⇔ xtz = 0 ⇔ tz ∈ annT (x) = annT (w) ⇔ wzt = 0.

Since ϕ is an isomorphism between the graphs Γ(R) and Γ(T (R)), we have xl 6= 0

and yl 6= 0 if and only if wt 6= 0 and zt 6= 0. �

Theorem 4.11. Let R be a finite commutative ring. If p is a prime ideal of R,

then the annihilator graph AG(S−1R) is complete, where S = R− p.

P r o o f. Since Rp is a finite local ring, Z(Rp) = Nil(Rp). So, by [12], Theo-

rem 3.10, AG(Rp) is complete. �

5. Annihilator graphs of Zn

In this section, we examine the existence of cut-vertices and cut-sets in AG(Zn).

We determine the reduced rings whose annihilator graphs are bipartite graphs. Also

we show that AG(Zn) is bipartite for a certain n.

Theorem 5.1. Let n > 6. Then r ∈ Zn is a cut-vertex of AG(Zn) if and only if

2r = n and r is a prime integer.

P r o o f. First assume that r is a cut-vertex of AG(Zn). Since the zero-divisor

graph is the (spanning) subgraph of the annihilator graph AG(R), every cut-vertex

in AG(R) is a cut-vertex in Γ(R). Therefore, by [17], Lemma 2.2, n = 2r. Now,

we prove that r is a prime integer. Since r is a cut-vertex of the annihilator graph

AG(Zn), there exist vertices α and β such that α−r−β is the only path that connects

α to β. Now, since α is not adjacent to β in AG(Zn), hence by [12], Lemma 2.1,

annR(α) ⊆ annR(β) or annR(β) ⊆ annR(α). Without loss of generality, we may

assume annR(α) ⊆ annR(β). Let t be a nonzero element in Zn \ {r}. If tα = 0, then

tβ = 0. So we have the path α−t−β, which is impossible. Now, since α ∈ Z(Zn), we

have αr = 0. Therefore annR(α) = {0, r}. If r is not prime, then there are positive
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integers q, q′ 6= 1 such that qq′ = r. Hence we have annR(αq) 6= annR(α) ∪ annR(q)

and annR(αq
′) 6= annR(α)∪annR(q

′), which implies that α is adjacent to q and q′ in

AG(Zn). If qβ = 0 or q′β = 0, then we have the path α− q− β or α− q′ − β, which

is impossible. So qβ 6= 0 and q′β 6= 0. In this situation one can easily check that

annR(βq) 6= annR(β)∪ annR(q) and annR(βq
′) 6= annR(β)∪ annR(q

′), and therefore

we have the paths α − q − β and α − q′ − β, which is again impossible. Thus r is

prime.

Conversely, by [12], Theorem 3.8, AG(Zn) ∼= K1,m for some m > 1. Thus it

contains a cut-vertex. �

Theorem 5.2. If |Min(Zn)| = 2 and every minimal prime ideal has at least

3 elements, then the nonzero elements in a minimal prime ideal of Zn with minimal

cardinality form a cut-set of AG(Zn).

P r o o f. Since |Min(Zn)| = 2 and every minimal prime ideal has at least 3 ele-

ments, we have n = pq, where p and q are distinct prime integers with p, q 6= 2. So

let A = {x ∈ Zn : p | x, q ∤ x} and B = {x ∈ Zn : q | x, p ∤ x}. One can easily

see that A ∪ {0} and B ∪ {0} are minimal prime ideals of Zn and AG(Zn) ∼= Km,n,

where |A| = m and |B| = n and A,B are two parts in AG(Zn). �

In the next theorem, we determine some conditions under which AG(Zn) is weakly

perfect.

Theorem 5.3. Suppose that Zn is a finite reduced ring. If |Min(Zn)| 6 3, then

AG(Zn) is weakly perfect.

P r o o f. Since |Min(Zn)| 6 3 and Zn is a reduced ring, we have n = p, pq or

pqr where p, q and r are distinct prime integers. If n = p, then Z(Zn) = {0}. If

n = pq, then Zn = Zpq
∼= Zp×Zq

∼= K1×K2, where K1 and K2 are finite fields with

p and q elements, respectively. So AG(K1 ×K2) ∼= Kp−1,q−1. Hence cl(AG(Zpq)) =

χ(AG(Zpq)) = 2. If n = pqr, then Zn = Zpqr
∼= Zp×Zq×Zr

∼= K1×K2×K3, where

K1,K2 and K3 are finite fields with p, q and r elements, respectively. Therefore, by

Lemma 3.1, cl(AG(Zpqr)) = χ(AG(Zpqr)) = 3. �

Theorem 5.4. Let R be a commutative reduced ring. Then AG(R) is bipartite if

and only if there exist two distinct prime ideals p1 and p2 of R such that p1∩p2 = {0}.

In addition, if AG(R) is bipartite, then it is a complete bipartite graph.

P r o o f. Suppose that p1 and p2 are distinct prime ideals of R such that

p1∩p2 = {0}. Then, in view of the proof of [3], Theorem 2.4, we have Z(R) = p1∪p2.

Set V1 = p1 \ {0} and V2 = p2 \ {0}. Now, we show that AG(R) is bipartite
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with two parts V1 and V2. If a, b ∈ V1 and a is adjacent to b, then annR(ab) 6=

annR(a) ∪ annR(b). Hence there exists a nonzero element c ∈ R such that abc = 0,

ac 6= 0 and bc 6= 0. Since p1∩ p2 = {0} and a, b ∈ V1, we have c ∈ p2. So ac ∈ p1∩ p2,

which is a contradiction. Also, for every a ∈ V1 and b ∈ V2, we have ab = 0 since

p1∩ p2 = {0}. Therefore AG(R) is a complete bipartite graph.

Conversely, suppose that AG(R) is bipartite. Since, by [12], Lemma 2.1, Γ(R) is

a (spanning) subgraph of AG(R), we have that Γ(R) is bipartite. Hence, by [3], The-

orem 2.4, there exist two distinct prime ideals p1 and p2 of R such that p1∩ p2 = {0}.

�

Theorem 5.5. The graph AG(Zn) is bipartite if and only if one of the following

holds.

(i) n = 4 or 9.

(ii) n = p1p2, where p1 and p2 are distinct prime integers.

(iii) n = 4p, where p is a prime integer and p 6= 2.

P r o o f. First assume that the graph AG(Zn) is bipartite. If there exist at least

three distinct prime integers in divisors of n, say p1, p2 and p3, then p1 is adjacent to

p2 and p3 and p2 is adjacent to p3. So, we have the cycle p1 − p2 − p3 − p1 of length

three. Therefore AG(Zn) is not bipartite. Hence there exist at most two distinct

prime integers in divisors of n. Now let n = pr1p
s
2 for some distinct prime integers

p1, p2 and nonzero positive integers r and s. Set Ap1p2
= {r ∈ N : r | n, p1 | r, p2 | r}.

Since Ap1p2
is a complete subgraph of AG(Zn) and |Ap1p2

| = pr−1
1 ps−1

2 , we have

r, s 6 2. If r = s = 2, then n = p21p
2
2, and so p1 is adjacent to p

2
2 and p1p2, and p22 is

adjacent to p1p2. Thus AG(Zn) is not bipartite. If r = 2 and s = 1, then n = p21p2.

Since Ap1p2
is a complete subgraph of AG(Zn) and |Ap1p2

| = p1, we have p1 = 2.

So n = 4p2, where p2 6= 2. Also if r = 1 and s = 2, then similarly n = 4p1, where

p1 6= 2. If r = 1 and s = 1, then n = p1p2. If n = pr1, then |Z(Zn)| = pr−1
1 . Also,

AG(Zn) is a complete graph with pr−1
1 − 1 vertices. So AG(Zn) is bipartite if and

only if pr−1
1 − 1 6 2. Hence pr−1

1 = 3 or pr−1
1 = 2. If pr−1

1 = 3, then p1 = 3 and

r = 2. Thus n = 9. If pr−1
1 = 2, then p1 = 2 and r = 2. Thus n = 4.

Conversely, one can easily check that AG(Z4) ∼= K1, AG(Z9) ∼= K2, AG(Zp1p2
) ∼=

Kp1−1,p2−1, where p1 and p2 are distinct prime integers and AG(Z4p) ∼= K3,2p−2,

where p is prime a integer and p 6= 2. �

Lemma 5.6. The graph AG(Zpn) is weakly perfect, where p is a prime integer.

In addition, AG(Zpn) has chromatic number pn−1 − 1.
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P r o o f. Clearly Z(Zpn) is an ideal of Zpn . Then Z(Zpn) = Nil(Zpn). So by [12],

Theorem 3.10, AG(Zpn) is a complete graph with pn−1 − 1 vertices. Hence AG(Zpn)

is weakly perfect and has chromatic number pn−1 − 1. �

Lemma 5.7. The graphs AG(Zp1p2
) and AG(Zp1p2p3

) for some distinct prime

integers p1, p2, p3 are weakly perfect. In addition,

χ(AG(Zp1p2
)) = 2 and χ(AG(Zp1p2p3

)) = 3.

P r o o f. Let R ∼= Zp1p2
. Then one can easily check that AG(R) is bipartite.

So AG(R) is weakly perfect and χ(AG(R)) = 2. Let R ∼= Zp1p2p3
. Then R ∼=

K1 × K2 × K3, where K1,K2 and K3 are fields with |K1| = p1, |K2| = p2 and

|K3| = p3. Hence, by Lemma 3.1, AG(R) is weakly perfect and χ(AG(R)) = 3. �
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