Erratum and Addendum: Some Results on the Behavior and Estimation of the Fractal Dimensions of Distributions on Attractors ${ }^{1}$

C. D. Cutler ${ }^{2}$

The following corrections should be made:

1. On p. 682, the distinction between the smooth and semifractal cases is not quite accurate. Specifically, the smooth case arises whenever (a) $p_{j}=r^{-n N}$ for all j, or (b) all nonzero p_{j} are equal and the set remaining after the elimination of all empty subcubes is a lower-dimensional hyperplane, rather than a Cantor set.

Case (b) was not noted in the paper, but in fact provides examples of lower-dimensional smooth measures. In this case the measure m has a density g with respect to σ-Hausdorff measure on the supporting σ-dimensional hyperplane.

The semifractal case requires that all nonzero p_{j} be equal and that a Cantor set be obtained after elimination of all empty subcubes.
2. On p. 687, the statement that $\hat{\sigma}$ has no (finite) moments is attributed to the fact that $\bar{R}_{n}=1 / \hat{\sigma}$ has a Gaussian distribution. But the Gaussian is only an approximation to the distribution of \bar{R}_{n} and this is not sufficient to lead to conclusions about moments. The failure of $\hat{\sigma}$ to have finite moments follows from the fact that the distribution of $R_{n}(X)$ has substantial mass in neighborhoods of zero. This is a direct consequence of considering the ratio of two distances in order to eliminate the local density effect.

[^0]The following is an addendum to Theorem B.2:

1. The hypotheses of Theorem B. 2 can be weakened slightly (in a potentially useful way). Specifically, condition (B.6) can be replaced by

$$
\operatorname{Cov}\left(Y_{n, i} / a_{n}, Y_{n, j} / a_{n}\right)=o\left(k_{n}^{-1}\right)
$$

and there exists a value μ such that

$$
\begin{equation*}
\left|\mu_{n} / a_{n}-\mu / a_{n}\right|=o\left(k_{n}^{-1 / 2}\right) \tag{B.6*}
\end{equation*}
$$

where $\left\{a_{n}\right\}$ is the sequence determined in condition (B.7). Hence it is possible to restrict attention to the rescaled variables $\tilde{Y}_{n, j}=Y_{n, j} / a_{n}$.

[^0]: ${ }^{1}$ This paper originally appeared in J. Stat. Phys. 62:651-708 (1991).
 ${ }^{2}$ Department of Statistics \& Actuarial Science, University of Waterloo, Ontario, Canada.

