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Abstract. Let G = (V, E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G). In this paper, first some sharp upper and lower bounds on the largest and least eigenvalues

of graphs are given when vertices are removed. Some conjectures in [M. Aouchiche. Comparaison

Automatisée d’Invariants en Théorie des Graphes. Ph.D. Thesis, École Polytechnique de Montréal,

February 2006.] and [M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search

for extremal graphs, 20. Automated comparison of graph invariants. MATCH Commun. Math.

Comput. Chem., 58:365–384, 2007.] involving the spectral radius, diameter and matching number

are also proved. Furthermore, the extremal graph which attains the minimum least eigenvalue among

all quasi-tree graphs is characterized.
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1. Introduction. Throughout this paper, we consider only simple graphs, here-

in called just graphs. LetG = (V,E) be a graph on vertex set V = {v1, v2, . . . , vn} and
edge set E = E(G). The distance between vertices u and v is denoted by d(u, v). The

diameter of a graph is the maximal distance between any two vertices. The adjacency

matrix of a graph G is denoted by A(G) and defined as the n×n matrix (aij), where

aij = 1 if vivj ∈ E(G) and 0 otherwise. Since A(G) is a real symmetric matrix, its

eigenvalues must be real, and may be ordered as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). The

largest eigenvalue λ1(G) or ρ(G) is called the spectral radius or the index of G. By

Perron-Frobenius Theorem, λ1(G) is simple and has a unique positive unit eigenvector

corresponding to it. We will refer to such an eigenvector as the Perron vector of G. It

is known that λn(G) = −λ1(G) for a bipartite graph G (see [7]). A unit eigenvector

corresponding to λn(G) is called a least vector of G.
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A kite Kin,ω is the graph obtained from a complete graph Kω and a path Pn−ω

by adding an edge between a vertex of Kω and an end point of Pn−ω . A matching in

a graph is a set of disjoint edges, and the maximum cardinality of a matching over all

possible matching in a graph G is called the matching number of G, denoted by µ.

In a susceptible-infectious-susceptible (SIS) type of network infection, the steady-

state infection of the network is determined by a phase transition at the epidemic

threshold τc =
1
λ1

: When the effective infection rate τ > τc, the network is infected,

whereas below τc, the network is virus free. Motivated by a 1
λ1(A) threshold separating

two different phases of a dynamic process on a network, we want to change the

network in order to enlarge the network’s epidemic threshold τc, or, equivalently,

to lower λ1(A). We are searching for a strategy so that, after removing k vertices,

λ1(A) is minimal. Recently, Li et al. [13] presented a lower bound for the spectral

radius of a graph in which some vertices are removed, and Mieghem et al. [16] gave

lower and upper bounds for the spectral radius of a graph when some edges are

removed. Naturally, Xing and Zhou [23] established an upper bound for the least

eigenvalue of a graph when some vertices are removed using the components of the

least vector. Furthermore, the authors [23] also gave lower and upper bounds for the

least eigenvalue of a graph when some edges are removed. In Section 2 of this paper,

we consider the case of connected graphs, and present an incomparable sharp lower

bound for the spectral radius of a graph and an incomparable sharp upper bound for

the least eigenvalue of a graph when some vertices are removed.

In [1, 2], Aouchiche et al. gave the following conjectures involving index, diameter

and matching number of G (see also [3]).

Conjecture 1.1 ([4]). Let G be a connected graph with diameter D. Then

λ1(G) +D ≤ n− 1 + 2 cos
π

n+ 1
,

and equality holds if and only if G ∼= Pn.

Conjecture 1.2 ([1, 2, 3]). Let G be a connected graph with matching number

µ. Then

λ1(G) − µ ≤ n− 1− ⌊n/2⌋,

and equality holds if and only if G ∼= Kn.

Conjecture 1.3 ([1, 2, 3]). Let G be a connected graph with matching number

µ. Then

λ1(G)

µ
≤

√
n− 1,

and equality holds if and only if G ∼= K1,n−1.
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D. Stevanović [20] proved Conjectures 1.2 and 1.3. However, we observed that

the extremal graphs in the statement of Conjecture 1.3 are not complete. Moreover,

Stevanovic’s theorem is also missing some extremal graphs. When n = 5, K5 is also

the extremal graph in Conjecture 1.3 which is not considered in [20]. In Section 3

of this paper, we show that Conjecture 1.1 is right, and Conjectures 1.2 and 1.3 still

hold when removing the condition that G is connected.

Recently, researchers have paid much attention to the least eigenvalues of graphs

with a given value of graph invariant, for instance: order and size [5, 6, 10, 19],

unicyclic graphs with a given number of pendant vertices [15], matching number and

independence number [21], number of cut vertices [22], connectivity [24], domination

number [25]. A connected graph G is called a quasi-tree graph if there exists v ∈ V (G)

such that G−v is a tree. H. Liu and M. Lu [14] determined the maximal and the second

maximal spectral radii among all quasi-tree graphs. In section 4, we characterize the

extremal graph which attains the minimum least eigenvalue among all quasi-tree

graphs.

2. On the largest and least eigenvalues of graphs when vertices are

removed.

Theorem 2.1. Let G be a connected graph with V (G) = V1 ∪ V2 = {v1, . . . , vn}
where V1 = {v1, . . . , vk} and V2 = {vk+1, . . . , vn}, and G[Vi] be the induced subgraphs

of G for i = 1, 2. Suppose that A and Ai are the adjacency matrices of G and G[Vi]

for i = 1, 2, respectively. Let X = (x1, . . . , xk, xk+1, . . . , xn)
t be the Perron vector of

G, where xi corresponds to vi for i = 1, . . . , n. Then

λ1(A1) ≥ λ1(A)−
∑

vivj∈E[V1,V2]
xixj

∑

vi∈V1
x2
i

,

and equality holds if and only if X1 = (x1, . . . , xk)
t is an eigenvector of G1 corre-

sponding to λ1(A1).

Proof. Let A =

(

A1 B1

B2 A2

)

and X =

(

X1

X2

)

where X1 = (x1, . . . , xk)
t and

X2 = (xk+1, . . . , xn)
t. Since AX = λ1(A)X , thus

{

λ1(A)X1 = A1X1 +B1X2,

λ1(A)X2 = B2X1 +A2X2.
(2.1)

Note that

Xt
1B1X2 =

k
∑

i=1

n
∑

j=k+1

xiaijxj =
∑

vivj∈E[V1,V2]

xixj
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and by the second equation in (2.1),

Xt
2B2X1 +Xt

2A2X2 = λ1(A)X
t
2X2.

Thus,

λ1(A) = XtAX = (Xt
1 Xt

2)

(

A1 B1

B2 A2

)(

X1

X2

)

= Xt
1A1X1 +Xt

2B2X1 +Xt
1B1X2 +Xt

2A2X2

= Xt
1A1X1 +

∑

vivj∈E[V1,V2]

xixj + λ1(A)X
t
2X2.

Note that Xt
1X1 +Xt

2X2 = 1, then

λ1(A1) ≥ Xt
1A1X1

Xt
1X1

=
λ1(A) − λ1(A)X

t
2X2 −

∑

vivj∈E[V1,V2]
xixj

Xt
1X1

= λ1(A) −
∑

vivj∈E[V1,V2]
xixj

∑

vi∈V1
x2
i

.

Equality holds if and only if X1 is an eigenvector of G1 corresponding to λ1(A1).

For any graph G (not necessarily connected) with V (G) = V1 ∪ V2 and corre-

sponding graphs G[Vi] for i = 1, 2 are the induced subgraphs of G. Suppose that A

and Ai are the adjacency matrices of G and G[Vi] for i = 1, 2, respectively. C. Li et

al. [13] gave a lower bound on λ1(A1), that is,

λ1(A1) ≥
(

1− 2
∑

vi∈V2

x2
i

)

λ1(A) +
∑

vivj∈E(G[V1])

xixj ,

where X = (x1, . . . , xn)
t is the eigenvector of G corresponding to λ1(G). Let Gi =

G − vi, Then λ1(G1) ≥ (1 − 2x2
i )λ1(G). Nikiforov [17] improved the lower bound of

λ1(G1). When G is connected, we provide a necessary and sufficient condition for the

lower bound is attained (see Theorem 2.2).

Theorem 2.2 ([17]). Let G be a connected graph with order n. Let vi ∈ V (G)

and Gi = G − vi. Suppose that X = (x1, . . . , xi−1, xi+1, . . . , xn, xi)
t is the Perron

vector of G corresponding to λ1(G). Then

λ1(Gi) ≥ λ1(G)
1− 2x2

i

1− x2
i

and equality holds if and only if X1 = (x1, . . . , xi−1, xi+1, . . . , xn)
t is an eigenvector

of Gi corresponding to λ1(G1).
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Proof. Let A =

(

A1 b

bt 0

)

and X =

(

X1

xi

)

where A1 is the adjacency matrix

of Gi. Since AX = λ1(A)X , thus we have λ1(A)xi = btX1. Therefore,

λ1(A) = XtAX = (Xt
1 xi)

(

A1 b

bt 0

)(

X1

xi

)

= Xt
1A1X1 + xib

tX1 +Xt
1bxi

= Xt
1A1X1 + 2λ1(A)x

2
i .

Note that Xt
1X1 + x2

i = 1, then

λ1(A1) ≥
Xt

1A1X1

Xt
1X1

= λ1(A)
1 − 2x2

i

1− x2
i

.

Obviously, the equality holds if and only if X1 = (x1, . . . , xi−1, xi+1, . . . , xn)
t is an

eigenvector of Gi corresponding to λ1(Gi).

Corollary 2.3. Let G be a connected graph with order n. Suppose that X =

(x1, x2, . . . , xn)
t is the Perron vector of G, where x1 ≥ x2 ≥ · · · ≥ xn. Then

maxni=1 λ1(Gi) ≥ λ1(G)n−2
n−1 , and the equality holds if and only if G ∼= Kn. Meanwhile,

minni=1 λ1(Gi) ≥ 0, and the equality holds if and only if G ∼= K1,n−1.

Proof. Let X = (x1, x2, . . . , xn)
t be the Perron vector of G where xi corresponds

to vi for i = 1, . . . , n. It is easy to see that f(x) = 1−2x2

1−x2 is a decreasing function

when 0 < x < 1. So λ1(Gi) attains the maximum if vi = vn and the minimum

if vi = v1. Note that 1√
n

≤ x1 ≤
√
2
2 and 0 < xn ≤ 1√

n
. Therefore λ1(G1) ≥ 0

and the equality holds if and only if x1 =
√
2
2 , that is G ∼= K1,n−1. On the other

hand, λ1(Gn) ≥ λ1(G)n−2
n−1 and the equality holds if and only if xn = 1√

n
. Then

xi =
1√
n
for i = 1, . . . , n and then G is a regular graph. By Theorem 2.2, the equality

holds if and only if X1 = (x1, . . . , xn−1)
t =

(

1√
n
, . . . , 1√

n

)t

is the eigenvector of Gn

corresponding to λ1(Gn), that is Gn is also a regular graph. Therefore, it is easy to

see that G ∼= Kn.

Theorem 2.4. Let G be a connected graph with V (G) = V1 ∪ V2 = {v1, . . . , vk,
vk+1, . . . , vn} where V1 = {v1, . . . , vk} and V2 = {vk+1, . . . , vn} and Gi = G[Vi] be the

subgraphs of G for i = 1, 2. Suppose that A and Ai are the adjacency matrices of G

and Gi for i = 1, 2, respectively. Let X = (x1, . . . , xk, xk+1, . . . , xn)
t be a least vector

of G where xi corresponds to vi for i = 1, . . . , n. Then

λn(A1) ≤
λn(A)

(

1− 2
∑

vi∈V2
x2
i

)

+
∑

vivj∈E(G2)
xixj

1−∑vi∈V2
x2
i

,

and equality holds if and only if X1 = (x1, . . . , xk)
t is a least vector of G1.
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Proof. Let A =

(

A1 B

Bt A2

)

and X =

(

X1

X2

)

where X1 = (x1, . . . , xk)
t and

X2 = (xk+1, . . . , xn)
t. Since AX = λn(A)X , thus

{

λn(A)X1 = A1X1 +BX2,

λn(A)X2 = BtX1 +A2X2.

Then

λn(A) = XtAX = (Xt
1 Xt

2)

(

A1 B

Bt A2

)(

X1

X2

)

= Xt
1A1X1 +Xt

2B
tX1 +Xt

1BX2 +Xt
2A2X2

= Xt
1A1X1 + 2Xt

2(B
tX1 +A2X2)−Xt

2A2X2

= Xt
1A1X1 + 2λn(A)X

t
2X2 −Xt

2A2X2.

Note that Xt
1X1 +Xt

2X2 = 1, then

λn(A1) ≤
Xt

1A1X1

Xt
1X1

=
λn(A)− 2λn(A)X

t
2X2 +

∑

vivj∈E(G2)
xixj

Xt
1X1

=
λn(A)

(

1− 2
∑

vi∈V2
x2
i

)

+
∑

vivj∈E(G2)
xixj

1−∑vi∈V2
x2
i

.

Equality holds if and only X1 is a least vector of A1 corresponding to λn(A1).

Corollary 2.5. Let G be a connected graph with V (G) = V1∪V2 = {v1, . . . , vk,
vk+1, . . . , vn} where V1 = {v1, . . . , vk} and V2 = {vk+1, . . . , vn} and Gi = G[Vi] be the

subgraphs of G for i = 1, 2. Suppose that A and Ai are the adjacency matrices of G

and Gi for i = 1, 2, respectively. Let X = (x1, . . . , xk, xk+1, . . . , xn)
t be a least vector

of G where xi corresponds to vi for i = 1, . . . , n. If xi = 0 for i = k + 1, . . . , n, then

λn(A) = λn(A1).

Proof. By Theorem 2.4, λn(A1) ≤ λn(A). On the other hand, by Cauchy inter-

lacing theorem, λn(A1) ≥ λn(A). Thus, λn(A1) = λn(A).

3. On conjectures involving the spectral radius of graphs. The following

inequalities are well-known Courant-Weyl inequalities.

Lemma 3.1. Let A and B be n× n Hermitian matrices and C = A+B. Then

λi(C) ≤ λj(A) + λi−j+1(B) (n ≥ i ≥ j ≥ 1),

λi(C) ≥ λj(A) + λi−j+n(B) (1 ≤ i ≤ j ≤ n).
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Similar to the Courant-Weyl inequalities, we have the following result.

Lemma 3.2. Let G be a graph with vertex set V (G) and edge set E(G). Suppose

G1 and G2 are two subgraphs of G such that V (G) = V (G1) ∪ V (G2) and E(G) =

E(G1) ∪ E(G2) with E(G1), E(G2) 6= ∅. Then λ1(G) ≤ λ1(G1) + λ1(G2), equality

holds if and only if G, G1 and G2 have a common eigenvector corresponding to λ1(G),

λ1(G1) and λ1(G2).

Proof. Let A, A1 and A2 be the adjacent matrices of G, G1 and G2, respectively.

Obviously, A = A1 + A2. Suppose that X is a eigenvector of A corresponding to

λ1(A), then

λ1(A) = XtAX = XtA1X +XtA2X ≤ λ1(A1) + λ1(A2).

If λ1(A) = λ1(A1)+λ1(A2), then λ1(A1) = XtA1X and λ1(A2) = XtA2X , that is, X

is a common eigenvector of A1 and A2 corresponding to λ1(A1) and λ1(A2). For the

converse, suppose that X is a common eigenvector of A, A1 and A2 corresponding

to λ1(G), λ1(G1) and λ1(G2), then it is easy to see that λ1(A1) = XtA1X and

λ1(A2) = XtA2X . Therefore λ1(A) = λ1(A1) + λ1(A2).

By the above lemma, we get the following corollary.

Corollary 3.3. Let G be a graph with vertex set V (G) and edge set E(G).

Suppose G1 and G2 be two subgraphs of G such that V (G1) = V (G2) = V (G) and

E(G) = E(G1)∪E(G2) with E(G1), E(G2) 6= ∅. If one of G1 and G2 has an isolated

vertex, and the other is connected, then λ1(G) < λ1(G1) + λ1(G2).

Proof. Without loss of generality, we may assume that G1 is connected and

G2 contains an isolated vertex, say u. Since G1 is connected, by Perron-Frobenius

Theorem, the eigenvector, say X = (x1, . . . , xn) of G1 corresponding to λ1(G1) is

positive, that is xi > 0 for i = 1, . . . , n. By Lemma 3.2, λ1(G) ≤ λ1(G1) + λ1(G2).

If λ1(G) = λ1(G1) + λ1(G2), then X is also the eigenvector of G2 corresponding to

λ1(G2). Then A(G2)X = λ1(G2)X . Since u is an isolated vertex of V (G2), we have

(λ1(G2)X)u = λ1(G2)xu > 0. But on the other hand, (λ1(G2)X)u = (A(G2)X)u = 0,

a contradiction. Therefore λ1(G) < λ1(G1) + λ1(G2).

Let M(n,D) be the graph obtained from a complete graph on n−D+2 vertices

by removing an edge, adding a pendant path of ⌈D/2⌉ − 1 edges to one end vertex

of the removed edge, and adding a pendant path of ⌊D/2⌋ − 1 edges to its other end

vertex as shown in Fig. 1.
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Fig. 1. The graph M(n,D).

E.R. van Dam [8] and P. Hansen and D. Stevanović [12] independently determined

that the graph M(n,D) attains the maximal spectral radius among all graphs on n

vertices with diameter D.

Lemma 3.4 ([8], [12]). Let n and D be integers with 1 < D < n. Then the

graph M(n,D) is the unique graph with maximal spectral radius among all graphs on

n vertices with diameter D.

Theorem 3.5 (Conjecture 4.2, [4]). Let G be a connected graph with diameter

D. Then

λ1(G) +D ≤ n− 1 + 2 cos
π

n+ 1

and the equality holds if and only if G ∼= Pn.

Proof. Let M = M(n,D) be shown in Fig. 1. If G 6= M , then by Lemma 3.4,

λ1(G) < λ1(M). Thus, λ1(G) + D < λ1(M) + D. Therefore in the following, it is

sufficient to show that λ1(M) + D ≤ n − 1 + 2 cos π
n+1 , with equality if and only if

G ∼= Pn.

Let M ′ = M [V (M)\{v0, . . . , v⌈D
2
⌉−2, v⌈D

2
⌉+2, . . . , vD}]. Then it is easy to see that

M ′ = Kn−D − v⌈D
2
⌉−1v⌈D

2
⌉+1. Therefore, M ′ contains a Hamiltonian path with end

vertices v⌈D
2
⌉−1, v⌈D

2
⌉+1, say v⌈D

2
⌉−1P1v⌈D

2
⌉+1. Then P = v0v1 · · · v⌈D

2
⌉−1P1v⌈D

2
⌉+1

· · · vD is a Hamiltonian path of M(n,D). Let M1 = P and M2 = M\E(M1). It is

clear that M2 consists of a complete graph of order n−D+1 deleting an Hamiltonian

cycle and D− 1 isolated vertices. Then λ1(M1) = 2 cos π
n+1 and λ1(M2) = n−D− 1.

Then by Lemma 3.2,

λ1(M) ≤ λ1(M1) + λ1(M2) = n−D − 1 + 2 cos
π

n+ 1
.(3.1)

Therefore, λ1(M) +D ≤ n− 1 + 2 cos π
n+1 .

If G ∼= Pn, then D = n− 1 and λ1(G) = 2 cos π
n+1 . Therefore the equality holds.

For the converse, we may assume that λ1(G)+D ≤ n−1+2 cos π
n+1 . Then G ∼= M

by Lemma 3.2 and the inequality (3.1) is equality. If M2 6= ∅, then 2 ≤ D ≤ n − 2.

Since M1
∼= Pn and M2 consists of a complete graph of order n −D + 1 deleting a
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Hamiltonian cycle and D − 1 isolated vertices. Therefore, by Corollary 3.3,

λ1(M) < λ1(M1) + λ1(M2) = n−D − 1 + 2 cos
π

n+ 1
,

that is, λ1(M) + D < n − 1 + 2 cos π
n+1 , a contradiction. Then M2 = ∅ and M =

M1
∼= Pn. Thus, we complete the proof.

Corollary 3.6. Let G be a connected graph with diameter D. Then

λ1(G) ≤ n−D − 1 + 2 cos
π

n+ 1

and the equality holds if and only if G ∼= Pn.

Lemma 3.7 ([11]). Let Gn,µ be the set of graphs on n vertices with matching

number µ. For any G ∈ Gn,µ, we have

(i) If n = 2µ or n = 2µ + 1, then ρ(G) ≤ ρ(Kn) with equality if and only if

G ∼= Kn.

(ii) If 2µ + 2 ≤ n < 3µ + 2, then ρ(G) ≤ 2µ with equality if and only if G ∼=
K2µ+1 ∪Kn−2µ−1.

(iii) If n = 3µ+ 2, then ρ(G) ≤ 2µ with equality if and only if G ∼= Kµ ∨Kn−µ

or G ∼= K2µ+1 ∪Kn−2µ−1.

(iiii) If n > 3µ+ 2, then ρ(G) ≤ 1
2 (µ− 1 +

√

(µ− 1)2 + 4µ(n− µ)) with equality

if and only if G ∼= Kµ ∨Kn−µ.

Theorem 3.8. Let G be a graph on n ≥ 3 vertices with spectral radius λ1(G)

and matching number µ. Then

λ1(G)− µ ≤ n− 1− ⌊n/2⌋

and the equality holds if and only if G ∼= Kn or G ∼= Kn−1 ∪K1 and n is even.

Proof. Let G be a graph with matching number µ. Then µ ≤ ⌊n/2⌋, thus we

distinguish the following three cases.

Case 1. µ = ⌊n/2⌋.

Then,

λ1(G)− µ = λ1(G)− ⌊n/2⌋ ≤ n− 1− ⌊n/2⌋.(3.2)

Case 2. n−2
3 ≤ µ ≤ n/2− 1.

Then by Lemma 3.7 (ii) and (iii), λ1(G) ≤ 2µ. Therefore, we obtain

λ1(G)− µ ≤ µ ≤ n/2− 1 ≤ n− 1− ⌊n/2⌋.(3.3)
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Case 3. µ ≤ n
3 − 1.

Similar to the proof in [20], λ1(G)− µ < n− 1− ⌊n/2⌋.

If G ∼= Kn, then λ1(G) = n − 1 and µ = ⌊n/2⌋, thus the equality holds. If

G ∼= Kn−1∪K1 and n is even, then λ1(G) = n− 2 and µ = n/2− 1, thus the equality

holds.

For the converse, we may suppose that λ1 − µ = n − 1 − ⌊n/2⌋. Then all the

inequalities in (3.2) and (3.3) are equalities. Since the inequality (3.2) is equality,

λ1(G) = n − 1 and µ = ⌊n/2⌋, then G ∼= Kn. Since the inequality (3.3) is equality.

Then G ∼= K2µ+1 ∪Kn−2µ−1 by Lemma 3.7 (ii), and λ1(G) = 2µ, µ = n/2− 1 and n

is even. Thus, G ∼= Kn−1 ∪K1 and n is even.

Theorem 3.9. Let G be a graph on n ≥ 6 vertices with spectral radius λ1(G)

and matching number µ. Then

λ1(G)

µ
≤

√
n− 1

and equality holds if and only if G ∼= K1,n−1.

Proof. If G is empty, then the result follows immediately. If G is not empty, then

we have 1 ≤ µ ≤ ⌊n/2⌋. Thus, we consider the following two cases.

Case 1. n/3− 1 < µ ≤ ⌊n/2⌋.

Then by Lemma 3.7 (i), (ii) and (iii), λ1(G) ≤ 2µ, thus λ1(G)
µ

≤ 2 <
√
n− 1 since

n ≥ 6.

Case 2. 1 ≤ µ ≤ n/3− 1.

If µ = 1, then G ∼= K3 ∪Kn−3 or G ∼= K1,i ∪Kn−i−1 for 1 ≤ i ≤ n − 1. Thus,

λ1(G) ≤ λ1(K1,n−1) =
√
n− 1 since n ≥ 6. Equality holds if and only if G ∼= K1,n−1.

If 2 ≤ µ ≤ n/3− 1, similar to the proof in [20], λ1(G)
µ

<
√
n− 1.

Therefore, λ1(G)
µ

≤
√
n− 1 with equality if and only if G ∼= K1,n−1.

Remark 3.10. The order n ≥ 6 of the graph in Theorem 3.9 is needed. By a

direct computation, when n = 3, λ1(G)
µ

≤ 2 with equality if and only if G ∼= K3; when

n = 4, λ1(G)
µ

≤ 2 with equality if and only if G ∼= K3 ∪K1; when n = 5, λ1(G)
µ

≤ 2

with equality if and only if G ∼= K5 or K1,4 or K3 ∪K2.

4. The minimum least eigenvalue among all quasi-tree graphs. A graph

G is called minimizing (respectively, maximizing) in a certain class of graphs if the

least eigenvalue (respectively, spectral radius) of G attains theminimum (respectively,
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maximum) among all graphs in the class.

Lemma 4.1. The graph K2,n−2 is the unique maximizing graph among all bipar-

tite quasi-tree graphs.

Proof. Let G be a quasi-tree maximizing graph among all bipartite quasi-tree

graphs. Let V (G) = {v1, v2, . . . , vn} and X = (x1, x2, . . . , xn)
t be the Perron vec-

tor of G. Assume that G′ = G − v1 is a tree. Let V (G) = S ∪ T , where S and

T are the partitions of V (G) such that S and T are independent sets. Let xu =

{maxxi|vi ∈ S\{v1}}. Without loss of generality, we may assume that
∑

vi∈S\{v1} xi

≤∑vi∈T\{v1} xi. We first prove the following claim.

Claim 1. v1 ∈ S and v1vi ∈ E(G) for all vi ∈ T .

By contradiction, we suppose that v1 ∈ T . Note that G is a maximizing graph

among all bipartite quasi-trees, then v1vi ∈ E(G) for all vi ∈ S. Let G⋆ = G −
{v1vi|vi ∈ S}+ {v1vi|vi ∈ T }. Therefore, G⋆ is also a bipartite quasi-tree graph. But

ρ(G⋆) ≥ XtA(G⋆)X = XtA(G)X − 2x1

∑

vi∈S

xi + 2x1

∑

vi∈T

xi ≥ XtA(G)X = ρ(G).

If ρ(G⋆) = ρ(G), then X is also the Perron vector of G⋆. Since ρ(G⋆)X = ρ(G)X ,

thus (A(G⋆)x)i = (A(G)x)i for i = 1, . . . , n. But on the other hand, for vi ∈ S,

(A(G)x)i = x1 +
∑

vj∈N(vi)
xj , and A(G⋆)xi =

∑

vj∈N(vi)
xj , a contradiction. Hence,

ρ(G⋆) > ρ(G). This contradicts the maximality of G.

Claim 2. No vertex of S\{u} in G′ has a neighbor with degree one.

If not, suppose that w ∈ S\{u} has a neighbor, say w′ with dG′(w′) = 1. Then

let G⋆ = G− ww′ + uw′. Obviously, G⋆ is a bipartite quasi-tree graph. But

ρ(G⋆) ≥ XtA(G⋆)X = XtA(G)X − 2xwxw′ + 2xuxw′ ≥ XtA(G)X = ρ(G).

Similar to the proof of Claim 1, we have ρ(G⋆) > ρ(G), a contradiction.

Claim 3. No vertex of T in G′ has a neighbor with degree one.

If not, suppose that w ∈ T has a neighbor, say w′ with dG′(w′) = 1. Then we let

G⋆ = G−ww′ + uw′ + v1w
′. Obviously, G⋆ is a bipartite quasi-tree graph. But since

∑

vi∈S\{v1} xi ≤
∑

vi∈T\{v1} xi, we have x1 ≥ xw. Then

ρ(G⋆) ≥ XtA(G⋆)X = XtA(G)X − 2xwxw′ + 2x1xw′ + 2xuxw′ > XtA(G)X = ρ(G),

a contradiction.

Claim 4. The degree of the vertex of T in G′ is one.

If not, suppose that w ∈ T and dG′(w) ≥ 2. Without loss of generality, suppose

w1, w2 are two neighbors of w in G′. Let P1 = ww1 · · · and P2 = ww2 · · · be the
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longest path passing the vertex w,w1 and w,w2 in G′, respectively. Then the end

vertices of P1 and P2 must be leaves of G′ (since G′ is a tree). But by Claims 2 and

3, the neighbor of leaves must be u. Then there is a cycle in G′, this contradicts that

G′ is a tree.

Then by Claims 1–4, G ∼= K2,n−2. Thus, we complete the proof.

Theorem 4.2. The graph K2,n−2 is the unique minimizing graph among all

quasi-tree graphs.

Proof. Let G be a minimizing graph among all quasi-tree graphs, and assume

that G − v1 is a tree. Let X be a least vector of G. Denote V+ = {vi|xi ≥ 0}, V− =

{vi|xi < 0}. If v1 ∈ V+, then we delete all edges between v1 and the vertex of V+.

Similarly, if v1 ∈ V−, then we delete all edges between v1 and the vertex of V−. We get

a bipartite graph, denoted by G0. Obviously, G0 is a quasi-tree, and λn(G) ≥ λn(G0).

So it is sufficient to determine the minimizing graph among all bipartite quasi-tree

graphs. If G is a bipartite graph, then λn(G) = −λ1(G). Then by Lemma 4.1, the

graph K2,n−2 is the unique minimizing graph among all bipartite quasi-tree graphs.
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