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SOME RESULTS ON THE LENGTH OF PROOFS

BY

R. J. PARIKH

ABSTRACT. Given a theory  T, let \-^A mean "A has a proof in   T of at

most  k  lines".  We consider a formulation  PA* of Peano arithmetic with

full induction but addition and multiplication being ternary relations. We show

that \-k A is decidable for PA* and hence PA* is closed under a weak enrule. An

analogue of Gödel's theorem on the length of proofs is an easy corollary.

1. Introduction. In this paper we shall consider questions regarding the

lengthOjof proofs.   Now the length of (the shortest) proof of a given formula

in a formal system depends strongly on the way in which the system is pre-

sented.  E.g. adjoining one of the theorems as an axiom reduces the length

of some proofs. Thus in order to get significant results, we have either to

confine ourselves to particular formalisations of particular theories or else

to tormulate a criterion which distinguishes  "nice"  and "not so nice"

formalisations of the  same theory. We shall take here the  second approach.

In particular we shall consider theories formalised in some language of the

lower predicate   calculus   by   means   of   a   finite   number   of   axioms,   axiom

schemata  and  schematic  rules  of inference.   Formalisations  of this  kind will

include Hilbert type and Gentzen type formalisations of classical and in-

tuitionistic arithmetic.

2. Schematic systems. Since axiom schemata and rules of inference are

generally explained in the literature with the help of formula variables, in

order to define the notion of a schematic system we do the obvious, namely,

we  expand  the  notation  of the  predicate  calculus  to  include  metamathematical

symbols and emphasize substitution as the central idea. Precise details

follow:

(a) Notation of the predicate calculus:

(i) variables: x, y, z, x,, • • •,
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(ii) constants: c, c., c..,••• ,

(iii) rc-ary predicate symbols for n > Û:  F, G(x), f/(x, y), • • • ,

(iv) function symbols: /, g, h, /j, • • • ,

(v) logical symbols: -., &, V, —», V, 3   etc.,

(vi) brackets.

Remark.  We do not assume that all the apparatus mentioned in (ii)—>(v)

is present.

(b) Metanotation:

(i) metavariables: u, v, w, u., • • • ,

(ii) term variables: r, s, t, r,, • • •,

(iii) ra-ary predicate (formula) variables for n > 0: P, Q{x), R(x, y),- •

We can assume without loss of generality that the n in (iii) is bounded

above, but we shall need infinitely many w-ary predicate variables  for each

permissible n.

Terms will be  formed from variables,  constants, metavariables and term

variables, by means of the function symbols. Lower case Greek letters will

denote terms.   Terms which do not have metanotation will be called regular

terms, and will be denoted by early Greek letters a, ß, • • • .

Atomic formulae will be formed from the predicate variables and con-

stants by adjoining terms.  Formulae will be formed from these in the usual

way with truth functional connectives and quantifiers Vx, 3x, Vzz, 3w, • • • .

Formulae will'be denoted by script letters,  by roman if they are regular.

Substitution. A   substitution   o   will   be   an   assignment   of   variables

x ,,•••, x    to certain metavariables zz ,,•••, zz  , of regular terms a ,, • ■ • , a
L n I n ° i m

to certain term variables  :,,•••,/   ,  and of regular formulae  A, B,... to

certain predicate variables  P, Q{x),- ■ • .  The substitutions will be informal

objects used to study the formal system and the variables after the  P, Q, • . •

will always be such as to avoid conflict.

S will induce a map, also called S,  from certain terms to regular terms,

defined uniquely by

S(zz.) = x.,     <b(t.) - a .,       i = 1, • • •, «, j = 1, • • •, m,

and

S(/(v ...,ajk)) = /(S(ff1), .... Hak))

provided that right-hand side is defined,  and / is a &-ary function sym-

bol. We can define o(j) for certain formulae J  by
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Definition,  (i) J  atomic with regular predicate symbol: J = F(ct,, • • • , a,).

Then 0(3") = F(S(<7j),. • • , S(<7,)) provided that the right-hand side is defined,

(ii) J   atomic with a predicate variable  P(x,, • • • , x, ) for the predicate

symbol:  'S = P{o x, • • • , o k),  S(P(xp ■ • • , x^)) = A.   Then  S(î) =

5(xj, • • •, xk; ô(fjj), • • • , ö(ok))A  (if defined) where S is the usual substitution and

only free occurrences of the x . are substituted for.

(iii) §(? & §) = §(?) &S(§), etc.,

(iv)S((Vx)3:)=(Vx )§(?),

(v) S((V«)Î) = (VSG/HStf), etc.
Admissible restrictions. A restriction is called admissible if it is of the form

"provided a is free for u (for x) in  P" or "provided  u{x)  is not free in  P" or

"provided u(x) does not occur in P(ff)"  where u  is a metavariable, x is a vari-

able, a is a term and P  is a predicate variable.

It is clear what is meant by a substitution S obeying a restriction P.  E.g.

S obeys "provided a is free for u in P" iff S(cr) is free for ö(u) in ö(P). A

substitution obeys a finite set of restrictions iff it obeys all of them. Henceforth

we shall use the expression "restriction", meaning admissible restriction.

Thus an axiom schema will be simply an ordered pair (j, R) where J  is a

formula and  R  is a finite set of restrictions. Axioms falling under the   schema

will be formulae S(J") where S obeys R. Similarly a k-aty rule of inference will

be a sequence (j j, •••, f,, §, R) where j ., • • •, 3",, § are formulae and R  is a

finite set of restrictions, and will be applied as follows: "If   A ., • ■ • , A, , B  are

S(j ,),•••, S(j,), S(§), respectively and o obeys R, then derive B  from

AV'Ak-"
Since an individual axiom is a special case of an axiom schema, we shall

define a schematic system as one given by a finite number of axiom schemata and

a finite number of schematic rules of inference.  It is clear that a large majority of

existing systems in the literature are schematic systems in the sense just de-

scribed.

3. Two substitution lemmas. Given a proof in a schematic system (which we,

for convenience, imagine written in a tree form) by the analysis of this proof we

understand a corresponding tree of remarks explaining, for each formula, whether

it is an axiom and under which schema, and if derived by a rule, by which rule.

By an analysis we shall mean here a tree of such remarks, not necessarily asso-

ciated with any (possible) proof. Since there are only finitely many analyses of

length k,  questions regarding proofs of length k can be reduced to questions re-

garding proofs with a particular analysis Cf. The following lemma enables us to

dispense with the informal notion of analysis in favour of a syntactic object.

Lemma A.  Given an analysis (X, we can effectively find formulae j .,•••, J   ;

§!'• • • > §   iK with a finite set R of restrictions, such that the formula A  has a
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proof with analysis   (Í   iff there is a substitution   S   obeying  R such that

§(?) = §(§,) (i-i,...,«), S(K) = A.
Moreover, the sequence o(j   ), • • • , o(j    ), A, is the required proof.

Proof. By induction on k = length of U.

(a) & = 1.  Then the analysis reduces to an axiom schema, m = 0.

(b) k > 1.  Let the last step of U consist of applying the rule (£., • • • ,

<£,, DU, R.) to certain previously derived formulae.

Let the component analyses or these previo"^ formulae have sequences

ÏJ.3í¿;gÍ.---.g¿;K1;...,3;{,...; K| associated with them. We

assume   that   all   metasymbols   in   these   different   groups   have   been  renamed

so that there are no common ones, among different groups or with the X.., !)R.

Then the sequence for the analysis A  will be ?}, • • • , J1 , H., J2, • ■ • ,

• • • ' ^/;§}> • • • , §„¡> i-,,§!»••■, ■*-/!'H» The restrictions are obtained by

putting together all the different restrictions.

Suppose   there   exists   a   substitution   o   for   this   sequence,   i.e. such that

§(?;.) = S(§j), S(K.) = S(£.) and S(l) = A.
Then by induction hypothesis, each S(M.) will be provable with the

corresponding subproof and, moreover, ö(3H) = A  will be provable from the

o(oL.) by the given rule.   But ö(K.) = b{x .).  This shows there is a proof as

required.

Conversely suppose there is a proof as required. Then each of the pre-

mises in the  last rule will be provable  with the  corresponding subproof, and

the last formula A   provable with the last rule.  Hence there will exist sub-

stitutions §.,•••, S,, ö    for all these. Since the metavariables have all

been renamed to avoid conflicts, we can combine ô  , • ■ • , S,, S'   into one

substitution S as required.    Q.E.D.

Notation. In the following, PA  will mean one of the usual schematic

systems of Peano arithmetic with S, +, •  and the full induction schema, PA*

will mean the corresponding system with +, •  replaced by ternary predicates

A, M  and axioms saying that these represent functions. If T is either of

these two systems,  then   T,   will mean the system with induction confined to

formulae of logical complexity < /. (Here logical complexity is the number of

logical symbols.)  For any theory T,   r T A  will mean A  is provable in T

with < k   applications of rules of inference. {PA, PA* are of equal strength,

but proofs in PA* will often be longer.) Presburger arithmetic will mean

arithmetic with S, +, 0 but without multiplication. It is known [Pr] that PA

(and hence also PA*) is complete with respect to closed formulae in which

multiplication does not appear.

Lemma B. Let 3^,- • • , "5m, §j,- •-,§;, AA^x), • ■ ■ , Ap{x), R  be such

that 3\," •, ¡?m, §,,•••,§, are formulae of PA*, AA_x), • ■ ■ , A Ax) are
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regular formulae of PA*, m = I + p, and R  is a set of restrictions.   Then

there is a formula  B{x) of Presburger arithmetic such that, for all n, B(n)

is   equivalent   to   the   proposition,  "there   is   a   substitution & obeying R such

that S(3\) = S(§.) for i < / and S(3:/   .) = A.{n) for i <p."

Proof.   The first part of the argument applies to all schematic   systems

with 0, S  as symbols.  The last few steps will apply only to PA*. Fix n

and denote A .{n) by the expression §, +..   Then we need to find an § obey-

ing R  such that S(3".) = S(§ ) is a regular formula of PA* for i < m. We

first show how to reduce this to the sameicroblem but for the case when the

j ., 6. are all atomic.
z' '-'i

If x,, • • • , x  ,   include all the variables and u,, ■ ■ •, u     include all the
1 ' «' l '    m

metavariables occurring in the j ., §., R, then we can assume without loss of

generality that the b{u .) are all among x  ,•••, x ,,■••, x (     .  The meta-

variables are thus eliminated.

Suppose 3". = (3".' & j").  If §.   is not atomic and a substitution S

exists then §    must have the form (§'   & §'!). Moreover, §(3"  ) = S(§ ) iff

o(i  ) = My'.) and o(i"") = §(§'!)•  Thus we get a correspondence between

the subformulae of the J~., §. and by taking minimal subformulae, we can

assume that one side, say j.,  is always atomic.

Let u = II* 3  ' where c. = number of logical symbols in §..  If u - 1

then the \j. ate all atomic. Consider minimal relations P <Q, P ~ Q on

the predicate variables such that < is transitive, ~ is an equivalence re-

lation and P<Q&.Q<P<-+P^Q.   Moreover,   if   P   occurs   in 3\   and   Q

occurs in §;. then Q < P; Q ~ P   if §. is atomic.  It is decidable if such re-

lations   exist   and   if   they   do   not,   clearly  ô  cannot   exist,   otnerwise we could

take P < Q to mean the number of logical symbols in S(P) < the number of

logical symbols in v{Q).

Suppose u > 1. Then there exists a P  such that P  is maximal in <, P

occurs in J ., §.  is not atomic.

Case 1. \). is of the form §'. —» §". Replace P and every predicate

symbol equivalent to it by the formula P   —> P    where   P , P    are  two new

predicate variables. Replace the pair 3\ = P(-), g¿ = §'.(-) -* §"(-) by the

two pairs  P'(-), §'(-) and P"(-), §"(-)• Similarly for predicate variables

equivalent   to P.    The restrictions   on P are   easily   translated   in   terms   of

restrictions on P', P" etc. and u decreases. (If we cannot carry out this

procedure   because   of   an   implication   corresponding,   say,   to   a   conjunction,

then d cannot exist.)

All truth functional combinations are handled similarly.

Case 2. Q. is of the form  (Vx)Çj' .  The reduction is similar, but the

condition "a is free for y  in P" becomes "y  is not free in P" or "x does
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not occur in a"" if y / x.   The condition  "o is free for x in P" is dropped,

etc.

After a finite number of steps we get u = 1. The lj. are all atomic.

Now we can also assume without loss of generality that the o(J\),

M£) .) are all essentially atomic.  For let x,,- • •, x    be all the variables

occurring in R. If there exists a substitution o,  we can define o (P) = the

leftmost atomic subformula of o{P) preceded by all the quantifiers (Vx), (3x.),

i = 1, ■ • • , n, in whose scope it falls.  Then o   is a solution if o is.

We can also assume that we know the predicate symbols involved.  For

to each pair J. = P(-), £j   = F(—), we can assume that the predicate symbol

for the predicate variable P  is  F.  To all predicate variables not covered

by this consideration, a fixed regular formula  A   can be assigned without

loss of generality.  Thus we can assume for each predicate variable P that

S(P(yI,...,yi)) = (ß1xI)...(ß/t)Fp(ö1(v:1...)yl),...)9g(yl,...,yi))

where the Q. ate quantifiers,   Fp  is known, and the 6. are certain terms

depending on the y ..  Given two such (not obviously  inequivalent) formulae,

they will be equal iff the corresponding terms are equal.

The argument so far applied to arbitrary schematic systems containing

S and 0.  The remainder of the argument (below) applies only to PA*.

An atomic formula in PA* must be of the form (i) 6 = 6,  (ii) A(0, 6,6)

or (iii) M{6, 6,6")  where  6, 6', 6"  ate of the form  Sq0 or Sqx where x  is

a variable. Moreover, the possible variables  can be restricted   to   a finite set

of possibilities.

Thus a substitution is given completely by specifying (a) for each Fp

whether it is =, A   or M  and for each  6 whether it is  Sq0 or Sqx  and (b)

specifying the values q . where  6. = S  lQ ot S  1x  ot the term variable t . =

SQlQ ot Sq\.

Now, part (a) consists of choosing one among finitely many possibilities.

For each of these possibilities, the condition for o to give v(j) = o(§ .) re-

duces to the various numbers q . satisfying certain equations in Presburger

arithmetic.  Thus  if we  consider all possible  ways   in which  ö   can   exist   for

a particular n,  we get an equivalence: o exists iff B An) V •• • V B (n)

where each B . is a formula in Presburger arithmetic. Now take B{x) to be

B j(x) V ... V Br(x). This proves Lemma B.     Q.E.D.

4.  Applications to length of proofs.

Theorem 1.  (a) // is uniformly decidahle in k, A  if \-     * A  holds or not.

(b) Let  B{x) be a formula of PA*, k £ N.   Then the set \n\ r PA* B(n)\ is a

finite union of arithmetic (linear) progressions.
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Proof,  (a) is an immediate consequence of Lemmas A, B and the fact that

Presburger arithmetic is decidable.  To see (b) we notice the following.  It follows

from Lemmas A and B that there is a formula B (x) of Presburger arithmetic such

that  \~pa* B(n) iff B in) is true. However, by [GS], the set \n\B in) is true! is

semilinear, i.e. a finite union of arithmetic progressions.    Q.E.D.

Theorem 2. Let  T be  PA  or PA*, k, k   £ N.   Then there exists a number I

depending only on k,   k   such that, for every formula A  of complexity < k ,

\-Z-A  iff (-* A.  Moreover,   I can be found effectively from  k,   k .

Proof.  We confine ourselves to a particular analysis U of k lines and in-

vestigate the existence of substitutions for the sequence (3*^ • • • « 3"m> K>

§ 1 » • ■ • » b    A, R)  where J l? • • • , j    » a •«••"» a   , K  i s the sequence provided

by Lemma A.  Since c{A) < k , there are only finitely many ways in which A   can

be decomposed into atomic formulae.  The rest of the argument is quite similar to

that in Lemma B.

(In fact suppose the maximum complexity of any formula occuring as axiom,

axiom schema or in a schematic rule of inference, is  a. Then the complexity of any

J.» a- or ^ is at most a. Since m = k — 1, the initial value of u is uQ =

3 3    . Now the analysis of Lemma B reduces the value of u  until it be-

comes 1. If the maximum complexity m(u) of any formula at a certain stage in this

reduction was x,   then the maximum complexity at a preceding stage could not

have been greater than  2x + 1.  Now mil) = k  since the images can be taken to be

essentially atomic, and miu + l) < 2miu) + 1. We immediately see that / =

m(«0)<3B°.)

Theorem 3.(2)   \-pfif (Vx)A(x) iff there is a k such that (V«) \-kpA* Ain).

Proof.  One implication is trivial.  A proof of (VxM(x) of / lines gives

uniform proofs of Ain)  tor all n,  of / + 2  lines.

For the converse, we note that the arguments of Theorems 1 and 2 can be

formalized in  PA*. Thus suppose we have

(V«)  h*       A(b).
PA ~

Then for the corresponding formula B(x) of Presburger arithmetic, (Vx)ß(x) is

true and hence   hpa* (Vx)B(x). Combining this with (formal versions of) Theorems

1 and 2, we get

^PA^n)   ^A*A^"-

(2) This result (for PA) was originally conjectured by Kreisel, to whom I am also

indebted for continuing encouragement.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



36 R. J. PARIKH

However, by  [KW],  a truth definition for PA*  can be given within PA*. Thus we

get   r-P/4*(VxM(x).     Q.E.D.

Theorem 4. Le/ T èe one o/ Zee usual formalisations of analysis; f any

function from N to N. Then there exists a Theorem A of PA* and a number n

such that hVf A holds but r-pA* A  does not hold where  k = f{n).

Proof.   Let the consistency of PA* be expressed as a formula (Vx)B(x).

This formula has a proof in T of, say, / steps.  Take n = I + 2, then for every

m, r-nTB(m). Howevet,  (\/m)\-pA*B{m) would give   \-pA* (Vx)ß(x).  Hence

(3w)-i  hp^ßW.  Take A  tobe B(m).    Q.E.D.

This result, of course, will hold for much weaker systems than analysis.

We do not know if Theorems 1—4 hold for PA.  The problem, of course, is in

proving Lemma B, since atomic formulae of PA  can be much more complex than

those of PA*.
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