
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1975 

Some results on weighing matrices Some results on weighing matrices 

Jennifer Seberry 
University of Wollongong, jennie@uow.edu.au 

Albert Leon Whiteman 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Seberry, Jennifer and Whiteman, Albert Leon: Some results on weighing matrices 1975. 
https://ro.uow.edu.au/infopapers/963 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages


Some results on weighing matrices Some results on weighing matrices 

Abstract Abstract 

It is shown that if q is a prime power then there exists a circulant weighing matrix of order q2 + q + 1 with 

q2 non-zero elements per row and column. 

This result allows the bound N to be lowered in the theorem of Geramita and Wallis that " given a square 
integer k there exists an integer N dependent on k such that weighing matrices of weight k and order n 
and orthogonal designs (1, k) of order 2n exist for every n > N". 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Jennifer Seberry Wallis and Albert Leon Whiteman, Some results on weighing matrices, Bulletin of the 
Australian Mathematical Society, 12, (1975), 433-447. 

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/963 

https://ro.uow.edu.au/infopapers/963


BULL. AUSTRAL. MATH. SOC. 

VOL. 12 (1975), 433-447. 

05B20, 15A36 

Some results on weighing matrices 

Jennifer Seberry Wallis and Albert Leon Whiteman 

It is shown that if q is a prime power then there exists a 

circulant weighing matrix of order 

zero elements per row and column. 

2 q + q + 1 non-

This result allows the bound N to be lowered in the theorem of 

Geram i ta and Wa I lis that " given a square integer k there exist s 

an integer N dependent on k such that weighing matrices of 

weight k and order n and orthogonal designs (1. k) of order 

2n exist for every n > N " 

1. Introduction 

An orthogonal design of order n and type (sl' s2' .•. , sl) 

(si > 0) on the commuting variables xl' x
2

' •••• xl is an n x n matrix 

A with entries from {o. ±X
l 

• ..•• ±X
l

} such that 

t (l 2) AA = L s.x. I . 
i=l 1.- 1.- n 

Alternatively, the rows of A are formally orthogonal and each row has 

precisely s. 
1.-

entries of the type ±X •• 
1.-

In [2J. where this was first defined and many examples and properties 

of such designs were investigated. it is mentioned that 

and so the alternative description of A applies equally well to the 
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434 Jennifer Seberry Wallis and Albert Leon Whiteman 

columns of A. It is also shown in [2J that Z ~ pen) ,where pen) 
(Radon's function) is defined by 

pen) 8e + 2d 

when 

n = 2a ·b, b odd, a = 4e + d, ° ~ d < 4 . 

Also in [2J it is shown that if there is an orthogonal design of order 

n and type (a2
, b) , then 

(i) n - 2 (mod 4) ~ b e 2 for some integer e, 

(ii) n 4t, t odd ~ b is the sum of three integer squares; 

while in [5J it is shown that if n = 4 (mod 8) and if there exists an 

orthogonal design of order n and type 

(i) (a, a, a, b) , then b 
a is a rational square; 

(ii) (a, a, b) then 
b is the sum of two rational squares; , a 

(iii) (a, b) then 
b is the sum of three rational , squares. a 

A weighing matrix of weight k and order n 

matrix, W = wen, k) , of order n satisfying 

is a square {a, 1, -l} 

In [2J it is shown that the existence of an orthogonal design of order 

n and type (8
1

, ... , 8 Z) is equivalent to the existence of weighing 

matrices Al , ... , AZ ' of order n , where A. 
'1-

matrices, 
z {A.}. ,satisfy the matrix equation 

'1- '1-=1 

has weight 8. 
'1-

and the 

in pairs. In particular, the existence of an orthogonal design of order n 

and type (1, k) is equivalent to the existence of a skew-symmetric 

weighing matrix of weight k and order n . 

It is conjectured that: 
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(i) for n :: 2 (mod 4) there is a weighing matrix of weight 

k and order n for every k < n - 1 which is the sum ?f 

two integer squares; 

(ii) for n :: 0 (mod 4) there is a weighing matrix of weight 

k and order n for every k ::: n ; 

(iii) for n:: 4 (mod 8) there is a skew-symmetric weighing 

matrix of order n for every k < n ,where k is the 
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sum of at most three squares of integers (equivalently, 

there is an orthogonal design of type (1, k) in order n 

for every k < n which is the sum of at most three squares 

of integers. In other words, the necessary condition for 

the existence of an orthogonal design of type (1, k) in 

order n, n:: 4 (mod 8) is also sufficient); 

(iv) for n - 0 (mod 8) there is a skew-symmetric weighing 

matrix of order n for every 

is an orthogonal design of type 

every k < n ); 

k < n (equivalently there 

(1, k) in order n for 

(v) for n _ 2 (mod 4) there is an orthogonal design of type 

(1, k) in order n for every k < n - 1 such that k 

is an integer square. 

Conjecture (ii) above is an extension of the Hadamard conjecture (that 

is, for every n:: 0 (mod 4) there is a {l, -l} matrix, H, of order n 

satisfying HHt = nI ) while (iv) and (iii) generalize the conjecture that n 

for every n:: 0 (mod 4) there is a Hadamard matrix, H, of order n, 

with the property that H = I + S where n 

Conjecture (ii) was established in [10J for 

n E {4, 8, 12, "', 32, 4o} and in [6J for n 

established in [3, Theorem l7J for n = 2t (t ~ 3) 

Conjecture (iii) was 

Conjectures (iv) and (iii) (and as a consequence conjecture (ii)) were 

established for n = 2t
+

l '3 n = 2t +
l '5 t a positive integer, in [4J 

and in [llJ for n = 2t +l '9 Also in [3J it was shown that only 
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k = 46, 47 in order 56 remain to be found and the conjectures will be 

settled for n 2t+lo7 • 

It has been established [5J that given a square k there exists an 

N(k) such that W(n, k) exists for every n > N Consequently an 

orthogonal design (1, k) exists in every order 2n, n > N . 

Here we give some results which allow N(k) to be lowered when k 

has a factor of 4 . 

Let R be the back diagonal matrix. Then an orthogonal design or 

weighing matrix is said to be constructed from two circuZant matrices A 

and B if it is of the form 

[
A BR] 

BR -A 

and to be of GoethaZs-SeideZ type if it is of the form 

A BR CR DR 

-BR A DtR _CtR 

-CR _DtR A 8 t R 

-DR CtR _BtR A 

where A, B, C, D are circulant matrices. 

Let Sl' S2' •.• , Sn be subsets of V, a finite abelian group, 

containing k
l

, k
2

, ... , k
n 

elements respectively. Write T. 
1.-

for the 

totality of all differences between elements of Si (with repetitions), 

and T for the totality of elements of all the 

non-zero element of V a fixed number of times, 

Sl' S2' ... , Sn will be called n - {V; kl , k2 , 

difference sets. 

T. 
1.-

... , 

If T contains each 

say, then the set s 

k . A} supplementary 
n' 

2. Weighing matrices of odd order 

If A is a W(n, k) ,then (det A)2 = kn. Thus if n is odd and a 

W(n, k) exists, then k must be a perfect square. 

In [2J where they are first discussed it is shown that 
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(n_k)2 - (n-k) + 2 > n 

must also hold. It is noted there that the "boundary" values of this 

condition are of special interest; that is, if 

2 (n-k) - (n-k) + 1 = n , 
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for in this case the zeros of A occur such that the incidence between any 

pair of rows is exactly one. So if we let B = J - A*A, B satisfies 

t BB = (n-k-l)I + J n n BJ = (n-k)J n 

that is, B is the incidence matrix of the projective plane of order 

n - k - 1 

Thus, the Bruck-Ryser Theorem on the non-existence of projective 

planes of various orders implied the non-existence of the appropriate 

Wen, k) 

We shall prove in this paper that if q is a prime power, then a 

circulant weighing matrix of the form 

can be constructed. Our method makes use of near difference sets. 

In [8J Ryser has given the following definition of a near difference 

set. 

Let m ~ 4 be an even integer, and let k and A be positive 

integers. A near difference set 

is a set of k residues modulo m with the property that, for any residue 

a "f. 0 , 
m "2 (mod m) , the congruence 

d. - d. = a (mod m) 
'1- J 

has exactly A solution pairs (d., d.) with d. and d. in D and no 
'1- J '1- J 

solution pairs for a = ~ (mod m) - 2 

A necessary condition for the existence of a near difference set with 
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parameters m, k, A is that 

k( k-l) A(m-2) • 

Let us put 

m = 2v • 

Then the necessary condition becomes 

k(k-l) = 2A(V-l) 

Examples of near difference sets are:-

(i) v = 7, k = 4, A = 1 , m = 14 , 

0 1 4 6 

(ii) v = 13 k = 9 A 3 m= 26 

0 1 6 8 \10 \n \12\15 \18\ 

(iii) v 21 k 16 A 6 , m 42 

o 1 \10 \n \18\20 \23\25 \26129 \30 1 34 \36\ 371 38140 1 

In [1] EI I iott and Butson proved that if q is an odd prime power, 

then we can construct a near difference set with parameters 

Spence [9] showed that the construction of EI I iott and Butson is also 

valid when q is a power of 2 

The three examples of near difference sets that we have given 

illustrate the cases q = 2, 3, 4 of the Elliott-Butson-8pence result. 

Suppose that we are given a near difference set 

with parameters m, k, A. Then the polynomial 
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is the Hall polynomial associated with D 

set we have 

Since D is a near difference 

If we write T (x) = 1 + x + x2 + ... + xr - l this takes the form r 

In the rest of this discussion let D denote the near difference set 

of Elliott-Butson-Spence. The parameters of D are given by 

If a.(x) L xd, then we have 
dED 

A=~ 
2 

a.(x)a.(x-l } = q2 + q(~-l) (x + x2 + ... + xV- l + xV+1 + ... + x2V-l ) 

(mod x2V -l) • 

where V = 1 + q + q2 Let kl be the number of odd integers in D, and 

k2 the number of even integers in D. Since a translate of D is also a 

near difference set with the same parameters we may assume without loss of 

generality that 

For x = -1 we have 

a.(-l) 

Hence 

a.(-l) = q • 

The two equations 
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yield 

2 
k - £...::::l. 

1 - 2 ' 

Let us now put 

F(x) L xd, G(x) L x
d 

dED dED 
dodd d even 

Then we have 

u(x) = F(x) + G(x) , 

so that 

It is clear that 

(1) F(X)F(x-l ) + G(x)G(x-l ) _ 

_ = q2 + ~ (~2 + ~ 4 + 2V-2) ( 2V) 2 ~ ~ • •. + x mod x -1 , 

(2) F(x)G(x-l ) + F(x-l)G(x) _ 

:: ~ (x + x3 + 
2 

v-2 v+2 2V-l) ( 2V) + x + x + •. , + x mod x -1 • 

We next put 

t (d+v)/2 
LX, u

2
(x) 

dED 
dodd 

Then the reduction of (1) mod xV_l yields 

The reduction of (2) mod xV_l yields 

I d/2 x 
dED 

d even 

V-I) + x 



Weighing matrices 

We shall prove the following theorem. 

THEOREM 1. Let q be a p1'ime potVel'. Then a cil'culant 'Weighing 

matl'ix of the fo1'm 

can be constl'ucted. 
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Proof. Let D = {dl , d2 , ..• , d
k

} be an Elliott-Butson-Spence near 

difference set with parameters 

k 

2 
V = q + q + 1 

2 
q A-~ - 2 • 

Let S be the set of V integers: We again put 

0, 1, 2, ... , v-l We partition S into three subsets as follows: 

where 

Tl {d;V (mod V), d E D, dOdd} , 

T2 {% (mod V), d E D, d even} 

T3 {s E S, s f Tl , s f T2} 

There are kl integers in Tl , k2 integers in T2 ,and V - kl - k2 

integers in T3 . 

then 

The sets Tl and T2 are disjoint. For if 

d.+v d. 
T::: 1- (mod V) 

(d., d. E D) , 
'Z- J 

in violation of the definition of a near difference set. 
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The init ial row 

of the circulant W(q2+q+l, q2) is now constructed as follows: 

a. = 1 if i E T2 ' 
"1-

,

-1 if i E Tl ' 

V-l • 
Define ~(x) = I a.x"1-

i=O "1-

so that 

o if i E T3 

Then we have 

= 2 + ili::ll ( + 2 + + V-l) ~ ( + 2 -q 2 x x ••• x - 2 x x + ••• 

_ 2 ( V) = q mod x -1 . 

Replacing x by s (where SV = 1 ) we obtain 

+ x V-l) 

The last relation is valid for each vth root of unity s including 

S = 1. For S = 1 we have 

~(l) = k - k = ~ -~ = q 
2 1 2 2 

We next apply the finite Parseval relation: 

For r = 0 we have 



For 1 < r S v-l we get 

V-l 

I 
i=o 

Weighing matrices 

V-l 

I 
i=O 

2 a. -z-

a.a. -z- -z-+r 
1 
v 

2 
q 

o • 

This completes the proof of the orthogonality of the circulant 

W(l+q+l, q2} . 

3. Other observations 

We next note that the sets Tl , T2 constitute 

2 { k k k + k _ V-l} 
- v; l' 2; 1 2 2 
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supplementary difference sets. Since k =~ 
1 2 

~,we have 
2 

The result follows at once from 

We are now in the position to construct the Hadamard matrix, H292 , 

of Spence. We use the following well-known result. 

Let p = 2n + 1 be a prime. Let U be the set of quadratic residues 

of p ,and V the set of quadratic non-residues of p. Then U and V 

constitute 

supplementary difference sets. Here we have 

v = p = 2n + 1; k3 = k4 = n 

Combining our results we find that if v 

then we construct 

A=n-l. 

q2 + q + 1 is a prime, 
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2 { k k k + k _ V-l} 
- v; l' 2; 1 2 2 

supplementary difference sets, and also 

supplementary difference sets. It follows that we have 

supplementary difference sets, which may be used to construct an Hadamard 

matrix H4v of Williamson type. 

In particular for q = 8 we have v = 73. Therefore we can 

construct H
292

• 

Our next objective is to show that the kl + k2 numbers in Tl U T2 

constitute an ordinary difference set with parameters 

v = q2 + q + 1, k = q2 , 2 A = q - q 

For this purpose we form the polynomial 

so that 

Then we have 

A(x)A(x-l ) = al(x)al(x-l ) + a
2

(x)a2 (x-l ) + a
l

(x)a2 (x-l ) + al (x-l )a2 (x) 

:: q2 + q(~-l) (x + x 2 + ... + xV- l ) + q(~-l) (x + x 2 + ... + xV
-
l ) 

(mod xV -1) 

2 (2 V-l) ( V) :: q + q(q-l) x + x + ••• + x mod x -1 

The set T3 is the complement of Tl U T
2

• Therefore the integers 

in T3 constitute a difference set with parameters 

V* V, k* v - k = q + 1, A* = v - 2k + A 1. 
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4. Applications to weighing matrices and orthogonal designs 

The existence of the W(21, 16) allows us to make the following 

statements. 

THEOREM 2. There exists a Wen, 16) for every 

n E {16, 18, 20, 21, 22, 24, 26, .•. , 36 , and all orders ~ 36} . 

Proof. In [5J it was noted that a Wen, 16) exists for 

n E {16, 18, 20, .•• , 64 , and all orders ~ 64} . Thus the existence of a 

W(21, 16) allows this set to be replaced by that of the enunciation. 

THEOREM 3. There exist orthogonal designs (1, 9) and (1, 16) in 

every order 2n, n ~ 21 • 

Proof. These results follow using the W(21, 16) to obtain a 

(1, 16) in order 42 and then noting from Tables 1 and 2 of [4J that each 

order 2n, n ~ 21 can be written as 2ml + 2m2 where (1, 9) and 

(1, 16) exist for both orders 2m
l 

and 2m
2 

THEOREM 4. There exists a W(42, a2+b2) for integers a, b except 

possibly for a2 
+ b2 E {18, 25, 29, 36, 37} . 

Proof. Since a W(22, k) and W(20, k) exist for 

k E {a 2+b2 a2+b2 ~ 20, a2+b2 # 18} [4; Table 2J we have 

W(42, k) = W(22, k) ® W(20, k) for the same k. 

There is a W(42, k) for k E {26, 32, 4o} by [4; Proposition l3J. 

Writing A = W(21, 16) we see 

is a W(42, 34) . Finally since 41 is a prime the construction of 

Goethals and Seidel [7J gives a W(42, 41) and we have the result. 

THEOREM 5. Since there exists a W = W(q2+q+l, q2) for every prime 

power q there exist orthogonal designs 
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( "0') (1 1 1 2) (1 1 2 2) (1 2 2 2) vv '" q , , ,q, q, ,q:, q ,q , 

(l, l, q2, q2), (1,4, l), (1,1, 2(q2i-1)), 

(1, l, 2 (q2+l)) , (q2, q2, 2(q2+1)), (2(q 2+l), 2(l+1)) 

in every order 
2 ' 

4(q +q+1) ; 

( .:.:.:) (1 2 2 4) vvv 1" 2, q , q , q (at Zeast) in every order 

8 (q2+q+1) ; 

(iv) (2q2, 2(q2+2q+2)) in order 4 (q2+q+1) with q2 + q + 1 

a prime. 

Proof. Use I, W in various combinations in the Geotha1s-Seide1 

array for (i), (ii) , (iii). 

For (iv) we note that W*A = 0 where A is the incidence matrix of 

the (q2+q+1, q+1, 1) configuration satisfying 

t 
AA = qI + J 

and * is the Hadamard product. For every prime order, p, there exist 

circulant matrices X, Y satisfying 

xxt + yyt = 2(p+1)I _ 2J 

Then 

aW+bA, aW-bA, bX, bY 

may be used in the Goetha1s-Seide1 array to give the required result. 

THEOREM 6. Since there exists a W(q2+q+1, q2) for every prime 

power q there exist 

(i) W(2(q2+q+1) , 2(q2+1)) ; 

(ii) W(4(q2+q+l) , 4(l+2)) 
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