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Some results on weighing matrices

Jennifer Seberry Wallis and Albert Leon Whiteman

It is shown that if g 1is a prime power then there exists a
circulant weighing matrix of order q2 + g +1 with q2 non-
zero elements per row and column.

This result allows the bound XN to be lowered in the theorem of
Geramita and Wallis that "given a square integer Kk there exists
an integer N dependent on k such that weighing matrices of

weight %k and order #n and orthogonal designs (1, k) of order

2n exist for every n > N ".

1. Introduction
An orthogonal design of order n and type (sl, Egs vens sZ)
(si > O) on the commuting variables Tys Tps wevs Ty is an n x n matrix

A with entries from {O, ixl, ooy ixz} such that

7
AAt = [ sixz.]I .
= v
Alternatively, the rows of A4 are formally orthogonal and each row has

precisely Si entries of the type ixi

In [2], where this was first defined and many examples and properties

of such designs were investigated, it is mentioned that
l

AtA = [ )} sim%]I
i=1 v 7

and so the alternative description of 4 applies equally well to the
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434 Jennifer Seberry Wallis and Albert Leon Whiteman

columns of A . It is also shown in [2] that I =< p(n) , where p(n)

(Radon's function) is defined by

p(n) = 8e + 2
when
n=2%p , b odd, a=be+d, 0=d<hk.
Also in [2] it is shown that if there is an orthogonal design of order

n and type (ae, b) , then

2 (mod 4) = b = e for some integer ¢ ,

(i) n

(ii) n=U4t, todd ® b is the sum of three integer squares;

while in [5] it is shown that if % = 4 (mod 8) and if there exists an

orthogonal design of order »n and type

(i) (a, a, a, b) , then g- is a rational square;
(ii) (a, a, b) , then 2’ is the sum of two rational squares;

(iii) (a, b) , then 2- is the sum of three rational squares.

A weighing matrix of weight k and order n is a square {0, 1, -1}

matrix, W = W(n, k) , of order #n satisfying

In [2] it is shown that the existence of an orthogonal design of order

n and type (31, cees SZ) is equivalent to the existence of weighing

matrices 4 ceey AZ , of order n , where Ai has weight 8; and the

l’

. i . . .
matrices, {Ai}i=l , satisfy the matrix equation

xr* + yxt = 0

in pairs. In particular, the existence of an orthogonal design of order =
and type (1, k) is equivalent to the existence of a skew-symmetric

weighing matrix of weight k and order = .

It is conjectured that:
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(i) for »n = 2 (mod 4) there is a weighing matrix of weight
k and order n for every k <xn -1 which is the sum of

two integer squares;

(ii) for # =0 (mod 4) there is a weighing matrix of weight

k and order n for every k = n ;

(1ii) for n = L (mod 8) there is a skew-symmetric weighing
matrix of order n for every k < n , where k 1is the
sum of at most three squares of integers (equivalently,
there is an orthogonal design of type (1, k) in order =
for every k < n which is the sum of at most three squares
of integers. 1In other words, the necessary condition for
the existence of an orthogonal design of type (1, k) in

order n , 7 = U4 (mod 8) is also sufficient);

(iv) for 7 = 0 (mod 8) there is a skew-symmetric weighing
matrix of order n for every k <n (equivalently there
is an orthogonal design of type (1, k) in order n for

every k <n );

(v) for n =2 (mod 4) +there is an orthogonal design of type
(1, ¥) in order n for every %k <»n -1 such that k

is an integer square.

Conjecture (ii) above is an extension of the Hadamard conjecture (that

is, for every n = 0 (mod 4) there is a {1, -1} matrix, H , of order =
satisfying HHt = nIn ) while (iv) and (iii) generalize the conjecture that

for every n = 0 (mod 4) there is a Hadamard matrix, H , of order = ,
with the property that H = In + S where S = —St .
Conjecture (ii) was established in [10] for

ot . Conjecture (iii) was

n € {4, 8, 12, ..., 32, 40} and in [6] for =

established in [3, Theorem 17] for n = 2t (t=3) .

Conjectures (iv) and (iii) (and as a consequence conjecture (ii)) were

+ +
established for n = 2t l'3 , M= 2t 1'5 » t a positive integer, in [4]

2t+l-9 . Also in [3] it was shown that only

and in [I11] for n
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k = 46, 47 in order 56 remain to be found and the conjectures will be

settled for n = 2 7T .

It has been established [5] that given a square %k there exists an
N(%) such that W(n, k) exists for every #n > N . Consequently an

orthogonal design (1, k) exists in every order 2n , n >N .

Here we give some results which allow N(k) to be lowered when k

has a factor of L4 .

Let R be the back diagonal matrix. Then an orthogonal design or

weighing matrix is said to be comstructed from two circulant matrices A

A BR
BR A

and to be of Goethals-Seidel type if it is of the form

and B if it is of the form

A BR CR DR

R 4 DR ctr
<k -D'r a4 BiR
£ £

-DR C°R -B'R A
where A, B, C, D are circulant matrices.
Let Sl, Py

containing kl, k2, cees kn elements respectively. Write Ti for the

ey Sn be subsets of V , a finite abelian group,

totality of all differences between elements of Si (with repetitions),
and T for the totality of elements of all the Ti . If T contains each
non-zero element of V a fixed number of times, A say, then the sets

Sl, Sé, aey Sn will be called #»n - {v; kl, k2, cees kn; A} supplementary

difference sets.

2. Weighing matrices of odd order

If 4 isa Wn, k) , then (det A)2 = %" . Thus if » 1is odd and a

W(n, k) exists, then k must be a perfect square.

In [2] where they are first discussed it is shown that
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(nk)? - (nk) + 2> n
must also hold. It is noted there that the "boundary" values of this
condition are of special interest; that is, if
2
(n-k)* - (n-k) +1L=n,
for in this case the zeros of A4 occur such that the incidence between any
pair of rows is exactly one. So if we let B =J - A*4 , B satisfies
BB = (nk-1)I_+J_ , BJ = (n-k)J. ;
n n’ n?
that is, B 1is the incidence matrix of the projective plane of order
n-k-1.

Thus, the Bruck-Ryser Theorem on the non-existence of projective
planes of various orders implied the non-existence of the appropriate

Win, k) .

We shall prove in this paper that if ¢ 1is a prime power, then a

circulant weighing matrix of the form

2 2
W(q +q+l, q )
can be constructed, Our method makes use of near difference sets,

In [&] Ryser has given the following definition of a near difference

set.

Let m= 4 be an even integer, and let %k and A be positive
integers. A near difference set

p=1d,, d,s ..., d

2> A
is a set of k residues modulo m with the property that, for any residue

a0, g-(mod m) , the congruence

d. -d., = a (mod m)
7%

has exactly A solution pairs (di’ dj) with di and dj in D and no

solution pairs for a = = (mod m) .

(3

A necessary condition for the existence of a near difference set with
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parameters m, kK, A is that
k(k-1) = A(m-2) .
Let us put
m=2v .
Then the necessary condition becomes
k(k-1) = 2a(v-1) .

Examples of near difference sets are:-

(1) v=T7, k=4, A=1, m=14 ,
oj1 k|6,
(ii) v=13, k=9, A=3, m=26,

(iii) v=2l, k=16, A=6, m=h2,

0|21 |lo|11|18|20(23|25|26|29[30|3k{36]37]|38]ko

In [1] Eltiott and Butson proved that if ¢q 1is an odd prime power,

then we can construct a near difference set with parameters

m=2(+q+q?) . k=q°, A=%qlg-1) .

Spence [9] showed that the construction of Elliott and Butson is also

valid when ¢q is a power of 2 .

The three examples of near difference sets that we have given

illustrate the cases g = 2, 3, 4 of the Elliott-Butson-Spence result.

Suppose that we are given a near difference set

D={d)s dys +ens 4y}

with parameters m, k, A . Then the polynomial
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alx) = } 2
dep
is the Hall polynomial associated with D . Since D 1is a near difference
set we have
=1y~ - + -
a(z)o(c™) 2 k+ Az + 2+ ...+ 20T 4w L+ 2 l) (mod 2°0-1)
. 2 r-1 .
If we write Tr(x) =1l+x+x°+ .., + X this takes the form

a(x)a(x_l)

k + X[T2v(x)-T2(mv)) (moa xgv—l)

In the rest of this discussion let D denote the near difference set

of Flliott-Butson-Spence. The parameters of D are given by

m= 2(q2+q+l) , k= q2 s A= Qi%f&l .

If a(x) = z xd , then we have
dep
a(x)a(x—l) E q2 + quz:l)‘ (x + P R T I xzv'l)

(mod x2 -l) .

where v =1+ g + q2 . Let kl be the number of odd integers in D , and

k2 the number of even integers in D . Since a translate of D 1is also a

near difference set with the same parameters we may assume without loss of

generality that

For £ = -1 we have

2
a(-1) =k, -k > 0(-1) = 4° .

Hence
a(-1) = q .
The two equations

_kl+k2=q,
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2
kl + k2 =4,
yield
2 2
L =44 . =313
1 2 2 2
Let us now put
Flx) = 2 xd , Glz) = Z -’L’d .
€D dep
d odd d even
Then we have
a(x) = Flx) + G(x) ,

ale™) = 7(=™) + (™) ,

so that
a(x)a[x_l] = F(x)F(x‘l) + G(x)G[x—l] + F(x)G(x_l] + F(x-l)G(x) .
It is clear that

(1) F(x)F(x—l) + G(x)G(x_l)
= q2 + gi%fil ze + a:h + ...+ x20-2) (moa xzv—l) s

Hl

(2) F(x)G(x'l] + F(x"l]G(x) =

= gi%fll (x + P I I x2v-1) (mod xev-l] .
We next put
o (x) = ) Larv)/2 s oy(x) = ) /2
dep dep
d odd d even

Then the reduction of (1) mod 2’1 yields
-1 -1\ _ 2 -1 2 V-1
(3) o (@ (= )+0L2(x)0t2[x } =gq +9%—)(x+x ot )
{mod xv-l) .

The reduction of (2) mod z -1 yvields
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() ocl(x)uz[x'l) + az(x)al[x_l) = 9—(12_1—) @+ a®+ ..+ 277

(mod xv-l) .
We shall prove the following theoren.

THEOREM 1. Let q be a prime power. Then a circulant weighing
matrix of the form

2 2
w(q®+q+1, ¢°)
can be constructed.

Proof. Let D = {d , d

1 ces dk} be an Elliott-Butson-Spence near

2’

difference set with parameters

m=2(g®qn) , k=q°, >‘='q“@z‘~_y‘

We again put v = q2 +q+1 . Let S be the set of v integers:
0, 1, 2, ¢e., v=1 . We partition S into three subsets as follows:

S = Tl U T2 urT

3
where
7. = {22 (moq v), 4 € D, d odad
l 2 ? kd L]
T = i~(mod v), d €D, d even
2 2 L4 t] L]
T, = {s €5, 8k T 8 f T2} .

There are K. integers in T. , k. integers in T

1 1 - , and vV - kl -k

2 2

integers in T

3
The sets Tl and T2 are disjoint. For if
i 9
> = > (mod v)

then

di - dj = v (mod 2v) , (di’ dj €D,

in violation of the definition of a near difference set.
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The initial row

G Ayr vt By

of the circulant W(q2+q+l, q2] is now constructed as follows:

-1 if i €T,

1
_ 1l if 7 €T .
ai = 2
0 if 1 ¢ .
i 1 T3
v=1 i
Define yY(x) = Z ax” . Then we have
1=0
W(z) = a,(x) - o (x) ,

V™) = ay(e™) - @),
so that

-1 -1
) ) Joi (2)

q2 + gi%fil-(x v xE ..+ xv_l) - a(g-1) (x+ 22+ ..+ xv_l)

W(x)wﬁr'l) = al(x)al(x“l) + 0 (x)ag(x - al(x)ag(x-l) _ al(x

]

(mod xv—l)

= ¢° (moa z°-1) .
Replacing x by ¢ [where Cv =1 ) we obtain

W™ =42 .

The last relation is valid for each wvth root of unity T including

T=1. For T =1 we have

_ _alg+l)  glg-1) _
V(L) =k, -k =TT - =g

We next apply the finite Parseval relation:
=1 V-1 . .
-1 Jy 12,97
Ioaas =5 1 E)% .
1=0 J=0

For r = 0 we have
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L S T R
L Gty =4
1=
For 1 =r = v-1 we get
v-1
L1, 2 ,.,_
aa;,,=5 "4 0=0.

1=0 /

This completes the proof of the orthogonality of the circulant

W(qP*q1, ¢°) .

3. Other observations

We next note that the sets Tl’ T2 constitute

. -1
2 - {v, kl, kz’ kl + k2 -3 }

supplementary difference sets. Since kl = ﬂi%fll.’ k2 = ﬂi%;ll., we have

R L

The result follows at once from

al(x)al(m'l] + az(x)az(x'l) g%+ gi%fll-(x T e Ty

(mod xv-l) .
We are now in the position to construct the Hadamard matrix, H292 N

of Spence. We use the following well-known result.

et p=2n+ 1 be a prime. Let U be the set of quadratic residues
of p , and V the set of quadratic non-residues of p . Then U and V

constitute

. . Al
2 - {v, k3, kh’ k3 +ky - > }

supplementary difference sets. Here we have

Combining our results we find that if v = q2 +qg+1 is a prime,

then we construct
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. . i
2 - {v, kl, k2, kl + ky > }

supplementary difference sets, and also

v+l
- . . + - —
2 {v, kgs By kg + Ky = }
supplementary difference sets. It follows that we have
b~ vy &, Ky, kas Kys Ky o+ Ry + R+ Ky - v}
supplementary difference sets, which may be used to construct an Hadamard

matrix HLU of Williamson type.

In particular for g¢q = 8 we have v = 73 . Therefore we can
construct Hé92 .
Our next objective is to show that the kl + k2 numbers in Tl U T2

constitute an ordinary difference set with parameters

v=q+q+1, k=q>, A=4¢°-q.

For this purpose we form the polynomial

Az) = ul(x) + az(x)
so that
a™) = al(x_l) + aeﬁx_l) .
Then we have
A(z)A(xY) = al(x)al(x-l) + az(x)ag(x—l] + al(x)ae(x'l) + al(x—l)ug(x)

=q° + gi%f;l (x+2° + ...+ xv'l) + gi%fll (x+2° + ...+ "1

(mod xv-l)
=q% + qlg-1)(x + 2 + ov + 2°Y) (mod &¥-1)
The set T3 is the complement of Tl V] T2 . Therefore the integers
in T, constitute a difference set with parameters

3

vi=v, K*=v-k=g+1l, AM=0v-2k+2A=1.
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4., Applications to weighing matrices and orthogonal designs

The existence of the W(21, 16) allows us to make the following

statements.
THEOREM 2. There exists a W(n, 16) for every
n € {16, 18, 20, 21, 22, 24k, 26, ..., 36 , and all orders = 36} .

Proof. In [5] it was noted that a W(n, 16) exists for
n € {16, 18, 20, ..., 64 , and all orders = 6L} . Thus the existence of a
W(21, 16) allows this set to be replaced by that of the enunciation.

THEOREM 3. There exist orthogonal designe (1, 9) and (1, 16) in

every order 2n, n= 21,

Proof. These results follow using the W(21, 16) to obtain a
(1, 16) in order .42 and then noting from Tables 1 and 2 of [4] that each

order 2n , n = 21 can be written as 2ml + 2m2 where (1, 9) and

(1, 16) exist for both orders 2m, and  2m,

THEOREM 4. There exists a W(h2, a2+b2) for integers a, b except
possibly for @+ b ¢ {18, 25, 29, 36, 37} .
Proof. Since a W(22, k) and W(20, k) exist for

k € {a2+b2 : a%4p® < 20, a®+b? # 18} [4; Table 2] we have
w(k2, k) = w(22, k) ® W(20, k) for the same k .

There is a W(L2, k) for %k € {26, 32, Lo} by [4; Proposition 13].

Writing 4 = W(21, 16) we see
A+T A-T
Aber ator

is a W(k2, 34) . Finally since Ll is a prime the construction of

Goethals and Seidel [7] gives a W(L2, 41) and we have the result.

THEOREM 5. Since there exists a W = W(q2+q+1, q2) for every prime
power q there exist orthogonal designs

(i) (1, q2) and (qz, q2) in order 2(q2+q+1) 3
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(it) (l’ 1, 1, qg)’ (l’ 1, q2, qg)’ (l’ q2b q2a q2),
2 .
(@ & &, D) (1 b D), (@, 1, 2(PH),
2 2 2
@, % 2(@®+1)), (8 4°, 2(d°+1)), (2(¢°4), 2(¢P+1))

in every order h(q2+q+lj H

(iii) (1, 1, 2, qg, qe, qh) (at least) in every order
8(q7+q+1) ;
. 2 2 . 2 . 2
(iv) (2q°, 2(q“+2q+2)) in order 4(q"+q+l) with q~ +q +1
a prime.

Proof. Use I, W in various combinations in the Geothals-Seidel

array for (1), (i), (iii).
For (iv) we note that W*4 = 0 where A 1is the incidence matrix of
the [q2+q+l, qt+l, l) configuration satisfying

AAt =ql +J

and * 1s the Hadamard product. For every prime order, p , there exist

circulant matrices X, Y satisfying

xx® o+ vyt = 2(p+1)I - 2J .

Then
aW+bh, aW-bA, bX, bY

may be used in the Goethals-Seidel array to give the required result.

THEOREM 6. Since there exists a W(q-+q+l, q°) for every prime

power q there exist
() W(Q(q2+q+l), 2(q2+l)] 3

(it) W(h(q2+q+1), h(q2+2)) .
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