University of Wollongong
Research Online

Faculty of Informatics - Papers (Archive)
Faculty of Engineering and Information
Sciences

1975

Some results on weighing matrices

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au
Albert Leon Whiteman

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Seberry, Jennifer and Whiteman, Albert Leon: Some results on weighing matrices 1975.
https://ro.uow.edu.au/infopapers/963

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Some results on weighing matrices

Abstract

It is shown that if q is a prime power then there exists a circulant weighing matrix of order $q^{2}+q+1$ with q^{2} non-zero elements per row and column.

This result allows the bound N to be lowered in the theorem of Geramita and Wallis that " given a square integer k there exists an integer N dependent on k such that weighing matrices of weight k and order n and orthogonal designs $(1, k)$ of order $2 n$ exist for every $n>N$ ".

\section*{Disciplines}

Physical Sciences and Mathematics

\section*{Publication Details}

Jennifer Seberry Wallis and Albert Leon Whiteman, Some results on weighing matrices, Bulletin of the Australian Mathematical Society, 12, (1975), 433-447.

VOL. 12 (1975), 433-447.

Some results on weighing matrices

Jennifer Seberry Wallis and Albert Leon Whiteman

It is shown that if q is a prime power then there exists a circulant weighing matrix of order $q^{2}+q+1$ with q^{2} nonzero elements per row and column.

This result allows the bound N to be lowered in the theorem of Geramita and Wallis that "given a square integer k there exists an integer N dependent on k such that weighing matrices of weight k and order n and orthogonal designs ($1, k$) of order $2 n$ exist for every $n>N$ ".

1. Introduction

An orthogonal design of order n and type $\left(s_{1}, s_{2}, \ldots, s_{2}\right)$
$\left(s_{i}>0\right)$ on the commuting variables $x_{1}, x_{2}, \ldots, x_{\mathcal{l}}$ is an $n \times n$ matrix
A with entries from $\left\{0, \pm x_{1}, \ldots, \pm x_{\eta}\right\}$ such that

$$
A A^{t}=\left(\sum_{i=1}^{l} s_{i} x_{i}^{2}\right) I_{n}
$$

Alternatively, the rows of A are formally orthogonal and each row has precisely s_{i} entries of the type $\pm x_{i}$.

In [2], where this was first defined and many examples and properties of such designs were investigated, it is mentioned that

$$
A^{t} A=\left(\sum_{i=1}^{l} s_{i} x_{i}^{2}\right) I_{n}
$$

and so the alternative description of A applies equally well to the
Received 17 February 1975.
columns of A. It is also shown in [2] that $Z \leq \rho(n)$, where $\rho(n)$ (Radon's function) is defined by

$$
\rho(n)=8 c+2^{d}
$$

when

$$
n=2^{a} \cdot b, \quad b \text { odd, } a=4 c+d, \quad 0 \leq d<4 .
$$

Also in [2] it is shown that if there is an orthogonal design of order n and type $\left(a^{2}, b\right)$, then
(i) $n \equiv 2(\bmod 4) \Rightarrow b=c^{2}$ for some integer c,
(ii) $n=4 t, t$ odd $\Rightarrow b$ is the sum of three integer squares; while in [5] it is shown that if $n \equiv 4(\bmod 8)$ and if there exists an orthogonal design of order n and type
(i) (a, a, a, b), then $\frac{b}{a}$ is a rational square;
(ii) (a, a, b), then $\frac{b}{a}$ is the sum of two rational squares;
(iii) (a, b), then $\frac{b}{a}$ is the sum of three rational squares.

A weighing matrix of weight k and order n is a square $\{0,1,-1\}$ matrix, $W=W(n, k)$, of order n satisfying

$$
W w^{t}=k I_{n} .
$$

In [2] it is shown that the existence of an orthogonal design of order n and type $\left(s_{1}, \ldots, s_{Z}\right)$ is equivalent to the existence of weighing matrices A_{1}, \ldots, A_{l}, of order n, where A_{i} has weight s_{i} and the matrices, $\left\{A_{i}\right\}_{i=1}^{2}$, satisfy the matrix equation

$$
X Y^{t}+Y X^{t}=0
$$

in pairs. In particular, the existence of an orthogonal design of order n and type ($1, k$) is equivalent to the existence of a skew-symmetric weighing matrix of weight k and order n.

It is conjectured that:
(i) for $n \equiv 2(\bmod 4)$ there is a weighing matrix of weight k and order n for every $k<n-1$ which is the sum of two integer squares;
(ii) for $n \equiv 0(\bmod 4)$ there is a weighing matrix of weight k and order n for every $k \leq n$;
(iii) for $n \equiv 4$ (mod 8) there is a skew-symmetric weighing matrix of order n for every $k<n$, where k is the sum of at most three squares of integers (equivalently, there is an orthogonal design of type ($1, k$) in order n for every $k<n$ which is the sum of at most three squares of integers. In other words, the necessary condition for the existence of an orthogonal design of type ($1, k$) in order $n, n \equiv 4$ (mod 8$)$ is also sufficient);
(iv) for $n \equiv 0(\bmod 8)$ there is a skew-symmetric weighing matrix of order n for every $k<n$ (equivalently there is an orthogonal design of type $(1, k)$ in order n for every $k<n$);
(v) for $n \equiv 2(\bmod 4)$ there is an orthogonal design of type ($1, k$) in order n for every $k<n-1$ such that k is an integer square.

Conjecture (ii) above is an extension of the Hadamard conjecture (that is, for every $n \equiv 0(\bmod 4)$ there is a $\{1,-1\}$ matrix, H, of order n satisfying $H H^{t}=n I_{n}$) while (iv) and (iii) generalize the conjecture that for every $n \equiv 0(\bmod 4)$ there is a Hadamard matrix, H, of order n, with the property that $H=I_{n}+S$ where $S=-S^{t}$.

Conjecture (ii) was established in [10] for $n \in\{4,8,12, \ldots, 32,40\}$ and in [6] for $n=2^{t}$. Conjecture (iii) was established in [3, Theorem 17] for $n=2^{t} \quad(t \geq 3)$.

Conjectures (iv) and (iii) (and as a consequence conjecture (ii)) were established for $n=2^{t+1} \cdot 3, n=2^{t+1} \cdot 5, \quad t$ a positive integer, in [4] and in [11] for $n=2^{t+1} \cdot 9$. Also in [3] it was shown that only
$k=46,47$ in order 56 remain to be found and the conjectures will be settled for $n=2^{t+1} \cdot 7$.

It has been established [5] that given a square k there exists an $N(k)$ such that $W(n, k)$ exists for every $n>N$. Consequently an orthogonal design ($1, k$) exists in every order $2 n, n>N$.

Here we give some results which allow $N(k)$ to be lowered when k has a factor of 4 .

Let R be the back diagonal matrix. Then an orthogonal design or weighing matrix is said to be constructed from two circulant matrices A and B if it is of the form

$$
\left[\begin{array}{cc}
A & B R \\
B R & -A
\end{array}\right]
$$

and to be of Goethals-Seidel type if it is of the form

$$
\left[\begin{array}{cccc}
A & B R & C R & D R \\
-B R & A & D^{t_{R}} & -C^{t_{R}} \\
-C R & -D^{t_{R}} & A & B^{t_{R}} \\
-D R & C^{t_{R}} & -B^{t_{R}} & A
\end{array}\right]
$$

where A, B, C, D are circulant matrices.
Let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of V, a finite abelian group, containing $k_{1}, k_{2}, \ldots, k_{n}$ elements respectively. Write T_{i} for the totality of all differences between elements of S_{i} (with repetitions), and T for the totality of elements of all the T_{i}. If T contains each non-zero element of V a fixed number of times, λ say, then the sets $S_{1}, S_{2}, \ldots, S_{n}$ will be called $n-\left\{v ; k_{1}, k_{2}, \ldots, k_{n} ; \lambda\right\}$ supplementary difference sets.

2. Weighing matrices of odd order

If A is a $W(n, k)$, then $(\operatorname{det} A)^{2}=k^{n}$. Thus if n is odd and a $W(n, k)$ exists, then k must be a perfect square.

In [2] where they are first discussed it is shown that

$$
(n-k)^{2}-(n-k)+2>n
$$

must also hold. It is noted there that the "boundary" values of this condition are of special interest; that is, if

$$
(n-k)^{2}-(n-k)+1=n
$$

for in this case the zeros of A occur such that the incidence between any pair of rows is exactly one. So if we let $B=J-A^{*} A, B$ satisfies

$$
B B^{t}=(n-k-1) I_{n}+J_{n}, \quad B J=(n-k) J_{n} ;
$$

that is, B is the incidence matrix of the projective plane of order $n-k-1$.

Thus, the Bruck-Ryser Theorem on the non-existence of projective planes of various orders implied the non-existence of the appropriate $W(n, k)$.

We shall prove in this paper that if q is a prime power, then a circulant weighing matrix of the form

$$
W\left(q^{2}+q+1, q^{2}\right)
$$

can be constructed. Our method makes use of near difference sets.
In [8] Ryser has given the following definition of a near difference set.

Let $m \geq 4$ be an even integer, and let k and λ be positive integers. A near difference set

$$
D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}
$$

is a set of k residues modulo m with the property that, for any residue $a \not \equiv 0, \frac{m}{2}(\bmod m)$, the congruence

$$
d_{i}-d_{j} \equiv a(\bmod m)
$$

has exactly λ solution pairs $\left(d_{i}, d_{j}\right)$ with d_{i} and d_{j} in D and no solution pairs for $\alpha \equiv \frac{m}{2}(\bmod m)$.

A necessary condition for the existence of a near difference set with
parameters m, k, λ is that

$$
k(k-1)=\lambda(m-2)
$$

Let us put

$$
m=2 v
$$

Then the necessary condition becomes

$$
k(k-1)=2 \lambda(v-1)
$$

Examples of near difference sets are:-
(i) $\quad v=7, \quad k=4, \lambda=1, \quad m=14$,

$$
\begin{equation*}
v=13, \quad k=9, \quad \lambda=3, \quad m=26 \tag{ii}
\end{equation*}
$$

0	1	6	8	10	11	12	15	18

$$
\begin{equation*}
v=21, \quad k=16, \quad \lambda=6, \quad m=42 \tag{iii}
\end{equation*}
$$

0	1	10	11	18	20	23	25	26	29	30	34	36	37	38	40

In [1] Elliott and Butson proved that if q is an odd prime power, then we can construct a near difference set with parameters

$$
m=2\left(1+q+q^{2}\right), \quad k=q^{2}, \quad \lambda=\frac{3}{2} q(q-1)
$$

Spence [9] showed that the construction of Elliott and Butson is also valid when q is a power of 2 .

The three examples of near difference sets that we have given
illustrate the cases $q=2,3,4$ of the Elliott-Butson-Spence result.
Suppose that we are given a near difference set

$$
D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}
$$

with parameters m, k, λ. Then the polynomial

$$
\alpha(x)=\sum_{d \in D} x^{d}
$$

is the Hall polynomial associated with D. Since D is a near difference set we have
$\alpha(x) \alpha\left(x^{-1}\right) \equiv k+\lambda\left(x+x^{2}+\ldots+x^{v-1}+x^{v+1}+\ldots+x^{2 v-1}\right)\left(\bmod x^{2 v}-1\right)$.
If we write $T_{r}(x)=1+x+x^{2}+\ldots+x^{p-1}$ this takes the form

$$
\alpha(x) \alpha\left(x^{-1}\right) \equiv k+\lambda\left(T_{2 v}(x)-T_{2}\left(x^{v}\right)\right)\left(\bmod x^{2 v}-1\right):
$$

In the rest of this discussion let D denote the near difference set of Elliott-Butson-Spence. The parameters of D are given by

$$
m=2\left(q^{2}+q+1\right), \quad k=q^{2}, \quad \lambda=\frac{q(q-1)}{2}
$$

If $\alpha(x)=\sum_{d \in D} x^{d}$, then we have
$\alpha(x) \alpha\left(x^{-1}\right) \equiv q^{2}+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}+x^{v+1}+\ldots+x^{2 v-1}\right)$

$$
\left(\bmod x^{2 v}-1\right)
$$

where $v=1+q+q^{2}$. Let k_{1} be the number of odd integers in D, and k_{2} the number of even integers in D. Since a translate of D is also a near difference set with the same parameters we may assume without loss of generality that

$$
k_{2} \geq k_{1}
$$

For $x=-1$ we have

$$
\alpha(-1)=k_{2}-k_{1}, \quad \alpha^{2}(-1)=q^{2}
$$

Hence

$$
\alpha(-1)=q
$$

The two equations

$$
-k_{1}+k_{2}=q
$$

$$
k_{1}+k_{2}=q^{2}
$$

yield

$$
k_{1}=\frac{q^{2}-q}{2}, \quad k_{2}=\frac{q^{2}+q}{2}
$$

Let us now put

$$
F(x)=\sum_{\substack{d \in D \\ d \text { odd }}} x^{d}, \quad G(x)=\sum_{\substack{d \in D \\ d \text { even }}} x^{d} .
$$

Then we have

$$
\begin{aligned}
\alpha(x) & =F(x)+G(x), \\
\alpha\left(x^{-1}\right) & =F\left(x^{-1}\right)+G\left(x^{-1}\right),
\end{aligned}
$$

so that

$$
\alpha(x) \alpha\left(x^{-1}\right)=F(x) F\left(x^{-1}\right)+G(x) G\left(x^{-1}\right)+F(x) G\left(x^{-1}\right)+F\left(x^{-1}\right) G(x)
$$

It is clear that
(I) $\quad F(x) F\left(x^{-1}\right)+G(x) G\left(x^{-1}\right) \equiv$

$$
\equiv q^{2}+\frac{q(q-1)}{2}\left(x^{2}+x^{4}+\cdots+x^{2 v-2}\right)\left(\bmod x^{2 v}-1\right),
$$

(2) $\quad F(x) G\left(x^{-1}\right)+F\left(x^{-1}\right) G(x) \equiv$

$$
\equiv \frac{q(q-1)}{2}\left(x+x^{3}+\ldots+x^{v-2}+x^{v+2}+\ldots+x^{2 v-1}\right)\left(\bmod x^{2 v}-1\right) .
$$

We next put

$$
\alpha_{1}(x)=\sum_{\substack{d \in D \\ d \text { odd }}} x^{(d+v) / 2}, \alpha_{2}(x)=\sum_{\substack{d \in D \\ d \text { even }}} x^{d / 2} .
$$

Then the reduction of (1) $\bmod x^{v}-1$ yields
(3) $\alpha_{1}(x) \alpha_{1}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{2}\left(x^{-1}\right) \equiv q^{2}+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right)$

$$
\left(\bmod x^{v}-1\right)
$$

The reduction of (2) $\bmod x^{v}-1$ yields
(4) $\alpha_{1}(x) \alpha_{2}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{1}\left(x^{-1}\right) \equiv \frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right)$

$$
\left(\bmod x^{v}-1\right) .
$$

We shall prove the following theorem.
THEOREM 1. Let q be a prime power. Then a circulant weighing matrix of the form

$$
W\left(q^{2}+q+1, q^{2}\right)
$$

can be constructed.
Proof. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ be an Elliott-Butson-Spence near difference set with parameters

$$
m=2\left(q^{2}+q+1\right), \quad k=q^{2}, \quad \lambda=\frac{q(q-1)}{2}
$$

We again put $v=q^{2}+q+1$. Let S be the set of v integers: $0,1,2, \ldots, v-1$. We partition S into three subsets as follows:

$$
S=T_{1} \cup T_{2} \cup T_{3}
$$

where

$$
\begin{aligned}
& T_{1}=\left\{\frac{d+v}{2}(\bmod v), d \in D, d \text { odd }\right\}, \\
& T_{2}=\left\{\frac{d}{2}(\bmod v), d \in D, d \text { even }\right\}, \\
& T_{3}=\left\{s \in S, s \in T_{1}, s \notin T_{2}\right\} .
\end{aligned}
$$

There are k_{1} integers in T_{1}, k_{2} integers in T_{2}, and $v-k_{1}-k_{2}$
integers in T_{3}.
The sets T_{1} and T_{2} are disjoint. For if

$$
\frac{d_{i}+v}{2} \equiv \frac{d_{j}}{2}(\bmod v)
$$

then

$$
d_{i}-d_{j} \equiv v(\bmod 2 v), \quad\left(d_{i}, d_{j} \in D\right)
$$

in violation of the definition of a near difference set.

The initial row

$$
a_{0}, a_{1}, \ldots, a_{v-1}
$$

of the circulant $W\left(q^{2}+q+1, q^{2}\right)$ is now constructed as follows:

$$
a_{i}=\left\{\begin{array}{lll}
-1 & \text { if } & i \in T_{1} \\
1 & \text { if } & i \in T_{2} \\
0 & \text { if } & i \in T_{3}
\end{array}\right.
$$

Define $\psi(x)=\sum_{i=0}^{v-1} a_{i} x^{i}$. Then we have

$$
\begin{gathered}
\psi(x)=\alpha_{2}(x)-\alpha_{1}(x), \\
\psi\left(x^{-1}\right)=\alpha_{2}\left(x^{-1}\right)-\alpha_{1}\left(x^{-1}\right),
\end{gathered}
$$

so that

$$
\begin{aligned}
& \psi(x) \psi\left(x^{-1}\right)=\alpha_{1}(x) \alpha_{1}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{2}\left(x^{-1}\right)-\alpha_{1}(x) \alpha_{2}\left(x^{-1}\right)-\alpha_{1}\left(x^{-1}\right) \alpha_{2}(x) \\
& \equiv q^{2}+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right)-\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right) \\
& \left(\bmod x^{v}-1\right) \\
& \equiv q^{2}\left(\bmod x^{v}-1\right) \cdot \\
& \text { Replacing } x \text { by } \zeta\left(\text { where } \zeta^{v}=1\right) \text { we obtain } \\
& \psi(\zeta) \psi\left(\zeta^{-1}\right)=q^{2} .
\end{aligned}
$$

The last relation is valid for each vth root of unity ζ including $\zeta=1$. For $\zeta=1$ we have

$$
\psi(1)=k_{2}-k_{1}=\frac{q(q+1)}{2}-\frac{q(q-1)}{2}=q .
$$

We next apply the finite Parseval relation:

$$
\sum_{i=0}^{v-1} a_{i} a_{i+r}=\frac{1}{v} \sum_{j=0}^{v-1}\left|\psi\left(\zeta^{j}\right)\right|^{2} \zeta^{j r}
$$

For $r=0$ we have

$$
\sum_{i=0}^{v-1} a_{i}^{2}=\frac{1}{v} v q^{2}=q^{2}
$$

For $1 \leq r \leq v-1$ we get

$$
\sum_{i=0}^{v-1} a_{i} a_{i+r}=\frac{1}{v} \cdot q^{2} \cdot 0=0
$$

This completes the proof of the orthogonality of the circulant $w\left(q^{2}+q+1, q^{2}\right)$.

3. Other observations

We next note that the sets T_{1}, T_{2} constitute

$$
2-\left\{v ; k_{1}, k_{2} ; k_{1}+k_{2}-\frac{v-1}{2}\right\}
$$

supplementary difference sets. Since $k_{1}=\frac{q(q-1)}{2}, k_{2}=\frac{q(q+1)}{2}$, we have

$$
\lambda=k_{1}+k_{2}-\frac{v-1}{2}=k_{1}
$$

The result follows at once from

$$
\alpha_{1}(x) \alpha_{1}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{2}\left(x^{-1}\right) \equiv q^{2}+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right)
$$

$$
\left(\bmod x^{v}-1\right)
$$

We are now in the position to construct the Hadamard matrix, H_{292}, of Spence. We use the following well-known result.

Let $p=2 n+1$ be a prime. Let U be the set of quadratic residues of p, and V the set of quadratic non-residues of p. Then U and V constitute

$$
2-\left\{v ; k_{3}, k_{4} ; k_{3}+k_{4}-\frac{v+1}{2}\right\}
$$

supplementary difference sets. Here we have

$$
v=p=2 n+1 ; \quad k_{3}=k_{4}=n ; \quad \lambda=n-1
$$

Combining our results we find that if $v=q^{2}+q+1$ is a prime, then we construct

$$
2-\left\{v ; k_{1}, k_{2} ; k_{1}+k_{2}-\frac{v-1}{2}\right\}
$$

supplementary difference sets, and also

$$
2-\left\{v ; k_{3}, k_{4} ; k_{3}+k_{4}-\frac{v+1}{2}\right\}
$$

supplementary difference sets. It follows that we have

$$
4-\left\{v ; k_{1}, k_{2}, k_{3}, k_{4} ; k_{1}+k_{2}+k_{3}+k_{4}-v\right\}
$$

supplementary difference sets, which may be used to construct an Hadamard matrix $H_{4 v}$ of Williamson type.

In particular for $q=8$ we have $v=73$. Therefore we can construct H_{292}.

Our next objective is to show that the $k_{1}+k_{2}$ numbers in $T_{1} \cup T_{2}$ constitute an ordinary difference set with parameters

$$
v=q^{2}+q+I, \quad k=q^{2}, \quad \lambda=q^{2}-q
$$

For this purpose we form the polynomial

$$
A(x)=\alpha_{1}(x)+\alpha_{2}(x)
$$

so that

$$
A\left(x^{-1}\right)=\alpha_{1}\left(x^{-1}\right)+\alpha_{2}\left(x^{-1}\right)
$$

Then we have

$$
\begin{aligned}
& A(x) A\left(x^{-1}\right)=\alpha_{1}(x) \alpha_{1}\left(x^{-1}\right)+\alpha_{2}(x) \alpha_{2}\left(x^{-1}\right)+\alpha_{1}(x) \alpha_{2}\left(x^{-1}\right)+\alpha_{1}\left(x^{-1}\right) \alpha_{2}(x) \\
& \equiv q^{2}+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right)+\frac{q(q-1)}{2}\left(x+x^{2}+\ldots+x^{v-1}\right) \\
& \left(\bmod x^{v-1}\right)
\end{aligned}
$$

$\equiv q^{2}+q(q-1)\left(x+x^{2}+\ldots+x^{v-1}\right)\left(\bmod x^{v}-1\right)$.
The set T_{3} is the complement of $T_{1} \cup T_{2}$. Therefore the integers in T_{3} constitute a difference set with parameters

$$
v^{*}=v, \quad k^{*}=v-k=q+1, \quad \lambda^{*}=v-2 k+\lambda=1 .
$$

4. Applications to weighing matrices and orthogonal designs

The existence of the $W(21,16)$ allows us to make the following statements.

THEOREM 2. There exists a $W(n, 16)$ for every

```
n\in{16,18, 20, 21, 22, 24, 26,\ldots, 36, and all orders }\geq36}
```

Proof. In [5] it was noted that a $W(n, 16)$ exists for $n \in\{16,18,20, \ldots, 64$, and all orders $\geq 64\}$. Thus the existence of a $W(21,16)$ allows this set to be replaced by that of the enunciation.

THEOREM 3. There exist orthogonal designs $(1,9)$ and $(1,16)$ in every order $2 n, n \geq 21$.

Proof. These results follow using the $W(21,16)$ to obtain a (1,16) in order 42 and then noting from Tables 1 and 2 of [4] that each order $2 n, n \geq 21$ can be written as $2 m_{1}+2 m_{2}$ where $(1,9)$ and (1,16) exist for both orders $2 m_{1}$ and $2 m_{2}$.

THEOREM 4. There exists $a W\left(42, a^{2}+b^{2}\right)$ for integers a, b except possibly for $a^{2}+b^{2} \in\{18,25,29,36,37\}$.

Proof. Since a $W(22, k)$ and $W(20, k)$ exist for $k \in\left\{a^{2}+b^{2}: a^{2}+b^{2} \leq 20, a^{2}+b^{2} \neq 18\right\} \quad[4$; Table 2] we have $W(42, k)=W(22, k) \oplus W(20, k)$ for the same k.

There is a $W(42, k)$ for $k \in\{26,32,40\}$ by [4; Proposition 13]. Writing $A=W(21,16)$ we see

$$
\left[\begin{array}{cc}
A+I & A-I \\
A^{t}-I & -A^{t}-I
\end{array}\right]
$$

is a $W(42,34)$. Finally since 41 is a prime the construction of Goethals and Seidel [7] gives a $W(42,41)$ and we have the result.

THEOREM 5. Since there exists a $W=W\left(q^{2}+q+1, q^{2}\right)$ for every prime power q there exist orthogonal designs
(i) $\left(1, q^{2}\right)$ and $\left(q^{2}, q^{2}\right)$ in order $2\left(q^{2}+q+1\right)$;
(ii) $\left(1,1,1, q^{2}\right),\left(1,1, q^{2}, q^{2}\right),\left(1, q^{2}, q^{2}, q^{2}\right)$, $\left(q^{2}, q^{2}, q^{2}, q^{2}\right),\left(1,4, q^{2}\right),\left(1,1,2\left(q^{2}+1\right)\right)$, $\left(1, q^{2}, 2\left(q^{2}+1\right)\right),\left(q^{2}, q^{2}, 2\left(q^{2}+1\right)\right),\left(2\left(q^{2}+1\right), 2\left(q^{2}+1\right)\right)$ in every order $4\left(q^{2}+q+1\right)$;
(iii) $\left(1,1,2, q^{2}, q^{2}, q^{4}\right)$ (at least) in every order $8\left(q^{2}+q+1\right) ;$
(iv) $\left(2 q^{2}, 2\left(q^{2}+2 q+2\right)\right)$ in order $4\left(q^{2}+q+1\right)$ with $q^{2}+q+1$ a prime.

Proof. Use I, W in various combinations in the Geothals-Seidel array for (i), (ii), (iii).

For (iv) we note that $W^{*} A=0$ where A is the incidence matrix of the $\left(q^{2}+q+1, q+1,1\right)$ configuration satisfying

$$
A A^{t}=q I+J
$$

and * is the Hadamard product. For every prime order, p, there exist circulant matrices X, Y satisfying

$$
X X^{t}+Y Y^{t}=2(p+1) I-2 J .
$$

Then

$$
a W+b A, a W-b A, b X, b Y
$$

may be used in the Goethals-Seidel array to give the required result.
THEOREM 6. Since there exists a $W\left(q^{2}+q+1, q^{2}\right)$ for every prime power q there exist
(i) $W\left(2\left(q^{2}+q+1\right), 2\left(q^{2}+1\right)\right)$;
(ii) $W\left(4\left(q^{2}+q+1\right), 4\left(q^{2}+2\right)\right)$.

References

[1] J.E.H. Elliott and A.T. Butson, "Relative difference sets", Illinois J. Math. 10 (1966), 517-531.
[2] Anthony V. Geramita, Joan Murphy Geramita, Jennifer Seberry Wallis, "Orthogonal designs", J. Lin. Multilin. Algebra (to appear).
[3] Anthony V. Geramita and Jennifer Seberry Wallis, "Orthogonal designs II", Aequationes Math. (to appear).
[4] Anthony V. Geramita and Jennifer Seberry Wallis, "Orthogonal designs III: weighing matrices", Utilitas Math. 6 (1974), 209-236.
[5] Anthony V. Geramita and Jennifer Seberry Wallis, "Orthogonal designs IV: existence questions", J. Combinatorial Theory Ser. A (to appear).
[6] Anthony V. Geramita, Norman S. Pullman, and Jennifer S. Wallis, "Families of weighing matrices", Bull. Austral. Math. Soc. 10 (1974), 119-122.
[7] J.M. Goethals and J.J. Seidel, "Orthogonal matrices with zero diagonal", Canad. J. Math. 19 (1967), 1001-1010.
[8] H.J. Ryser, "Variants of cyclic difference sets", Proc. Amer. Math. Soc. 41 (1973), 45-50.
[9] Edward Spence, "Skew-Hadamard matrices of the Goethals-Seidel type", Canad. J. Math. (to appear).
[10] Jennifer Wallis, "Orthogonal (0, 1, -1) matrices", Proc. First Austral. Conf. Combinatorial Math., Newcastle, 1972, 61-84 (TUNRA, Newcastle, 1972).
[11] Jennifer Seberry Wallis, "Orthogonal designs V: orders divisible by eight", Utilitas Math. (to appear).

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra,
ACT.

Department of Mathematics, University of Southern California, Los Angeles, California, USA.

