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Abstract: In this paper we give necessary and sufficient conditions for all zeros of palindromic
polynomial of even degree R(z) = 1 + λ(z + z2 + ...+ zn−1) + zn, with λ ∈ R, to be on the unit
circle and we find γ ∈ R for which S(z) = R(z)+γzn has all its zeros inside or on the unit circle .
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Let P (z) = a0 + a1z + ... + anz
n be a polynomial of degree n, n ≥ 1, ai ∈ R, i = 0, ..., n.

Then P is palindromic if ai = an−i, for every i = 0, 1, ..., n. In this paper we give neces-
sary and sufficient conditions for all zeros of palindromic polynomial of even degree n, n ≥ 1,
R(z) = 1 + λ(z + z2 + ... + zn−1) + zn, with λ ∈ R, to lie on the unit circle. Furthermore, we
prove that the polynomial S(z) = R(z) + γzn, with γ ≥ λ− 2 (γ > 0, λ ≥ 0), has all its zeros in
the closed unit disc. More details can be found in [1, 4].

1 Classical results

Theorem 1.1 (Eneström-Kakeya, real coefficients case). Let P (z) =

n∑
i=0

aiz
i be a polynomial

such that 0 < a0 ≤ a1 ≤ . . . ≤ an. Then, P (z) has all its zeros in the closed unit disc.

Definition 1.2. Let the polynomial P (z) =

n∑
i=0

aiz
i, ai ∈ R. Define the associated polynomial

P ∗(z) = znP

(
1

z

)
= a0z

n + a1z
n−1 + . . .+ an = a0

n∏
j=1

(z − z∗j ),

whose zeros z∗k are the inverses of the zeros zk of P (z), that is, z∗k =
1

z̄k
.

Definition 1.3. If P (z) = P ∗(z), that is, P (z) = znP

(
1

z

)
, the polynomial P (z) is said to be

palindromic.

It is clear that if P (z) =

n∑
i=0

aiz
i, ai ∈ R, i = 0, ..., n, is palindromic, then ai = an−i,

i = 0, 1, ..., n, as we mentioned above.

Definition 1.4. Given P (z) with real coefficients, the sequence of polynomials Pj(z) is defined
by:

Pj(z) =

n−j∑
k=0

a
(j)
k zk, where P0(z) = P (z) and
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Pj+1(z) := a
(j)
0 Pj(z)− a

(j)
n−jP

∗
j (z), j = 0, 1, . . . , n− 1, (1.1)

with P ∗
0 (z) = P ∗(z).

From (1.1), the coefficients of Pj+1(z) satisfy the recurrence relation

a
(j+1)
k = a

(j)
0 a

(j)
k − a

(j)
n−ja

(j)
n−j−k, k = 0, 1, . . . n− j and j = 0, 1, . . . n. (1.2)

Definition 1.5. For each polynomial Pj(z) we shall denote the constant term a
(j)
0 by δj and

δj+1 = a
(j+1)
0 = |a(j)0 |2 − |a(j)n−j |

2, j = 0, 1, . . . , n− 1.

Lemma 1.6. If Pj has pj zeros in |z| < 1 and if δj+1 ̸= 0, then Pj+1 has

pj+1 =

{
pj , if δj+1 > 0
n− j − pj , if δj+1 < 0

zeros in |z| < 1. Furthermore, Pj+1 has the same zeros on |z| = 1 as Pj.

The proof of this lemma may be found in Marden [3], p. 195.
The next result is due to Schur [5, 6] and the proof follows from Lemma 1.6.

Lemma 1.7. If 0 < |a0| < |an|, then P (z) has all its zeros in the closed unit disc if, and only
if, P ∗

1 (z) has all its zeros in the closed unit disc.

Using the same notation presented in [2], let a = (a1, a2, ..., an−1) ∈ Rn−1 and L : Rn−1 → R
be a function defined by

L(a) := min
y∈R

n−1∑
j=1

|aj − y|.

With a permutation σ on {1, 2, ..., n − 1} for which aσ(1) ≤ aσ(2) ≤ ... ≤ aσ(n−1) one has: if

n is even, then L(a) =

n−1∑
j=1

|aj − aσ(n/2)|; if n is odd, then L(a) =

n−1∑
j=1

|aj − y| for every y in a

closed interval [aσ(⌊n/2⌋), aσ(⌈n/2⌉)], where ⌊t⌋ := max(−∞, t] ∩ Z and ⌈t⌉ := min[t,∞) ∩ Z. In
addition, considering m(a) (resp. m(a)) defined by m(a) := aσ(⌈n/2⌉) (resp. m(a) := aσ(⌊n/2⌋))
then m(a) = m(a) when n is even.

Theorem 1.8. Let P (z) =

n∑
i=0

aiz
i be a palindromic polynomial of degree n with an > 0, and

let a = (a1, a2, ..., an−1).

1. Suppose m(a) + L(a) ≤ 2an.

(a) If P (1) ≥ 0, then all zeros of P lie on the unit circle. In this case, there are at least

two zeros of the form eiθ with −2π

n
≤ θ ≤ 2π

n
.

(b) If P (1) < 0, then P has real zeros β > 1 and β−1 and the other zeros lie on the unit
circle.

2. Suppose m(a) ≥ L(a) + 2an. Then one of the following holds:

(a) All the zeros of P lie on the unit circle. When n is odd, there are three or five zeros

of the form eiθ with
(n− 1)π

n
≤ θ ≤ (n+ 1)π

n
. When n is even, −1 is a zero with

multiplicity 2 or 4.

(b) P has real zeros β < −1 and β−1 and the other zeros lie on the unit circle.

The proof of this result may be found in [2].
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2 Main Results

Theorem 2.1. The zeros of the polynomial R(z) = 1 + λ(z + z2 + ... + zn−1) + zn, λ ∈ R, of
even degree n > 1, lie on the unit circle if and only if − 2

n−1 ≤ λ ≤ 2.

Proof. From Theorem 1.8, a = (λ, λ, ..., λ), m(a) = m(a) = λ and L(a) = 0.
If m(a) + L(a) ≤ 2, i.e., λ ≤ 2, as R(1) = 2 + (n− 1)λ ≥ 0 when λ ≥ − 2

n−1 , from item (1)

(a) of Theorem 1.8 follows that all zeros of R(z) lie on the unit circle when − 2
n−1 ≤ λ ≤ 2.

Furthermore, if m(a) +L(a) = λ ≤ 2 and R(1) = 2+ (n− 1)λ < 0, i.e., λ < − 2
n−1 , R(z) has

one real root in (1,∞). In fact,

lim
z→1

R(z) = 2 + (n− 1)λ < 0 and lim
z→+∞

R(z) > 0,

that is, there is a signal change of R(z) in (1,∞). This case is described in item (1) (b) of
Theorem 1.8.

If λ > 2 (m(a) > L(a) + 2), R(z) has one real root in (−∞,−1). In fact,

lim
z→−∞

R(z) > 0 and lim
z→−1

R(z) = 2− λ < 0,

that is, there is a signal change of R(z) in (−∞,−1). Observe that this case is described in item
(2) (b) of Theorem 1.8.

So, for n even, we prove that the zeros of R(z) lie on the unit circle if, and only if,
− 2

n−1 ≤ λ ≤ 2.

Remark 2.2. If n is even and λ = 2, we have R(−1) = 0 and z = −1 is a zero of multiplicity 2
of R(z), as described in item (2) (a) of Theorem 1.8.

Theorem 2.3. The perturbed polynomial

S(z) = R(z) + γzn = 1 + λ(z + z2 + ...+ zn−1) + (1 + γ)zn, (λ ≥ 0, γ > 0, n even)

has all zeros in the closed unit disc if γ ≥ λ− 2 and has at least one zero outside the closed unit
disc if γ < λ− 2.

Proof. For λ = 0, we have S(z) = 1 + (1 + γ)zn and the proof is immediate.
From here, we consider λ > 0.
We write the polynomials S(z) and S1(z) in the form

S(z) = snz
n + sn−1z

n−1 + . . .+ s0,

where sn = 1 + γ, si = λ, i = 1, . . . , n− 1, and s0 = 1, and

S1(z) = s
(1)
n−1z

n−1 + s
(1)
n−2z

n−2 + . . .+ s
(1)
0 ,

where the coefficients s
(1)
k , k = 0, 1, . . . , n− 1, are defined by equation 1.2 using j = 0. So,

s
(1)
k = s0sk − snsn−k.

Substituting the values of sk, k = 0, ..., n, we have

s
(1)
n−1 = s

(1)
n−2 = ... = s

(1)
1 = −γλ < 0 and s

(1)
0 = −γ(γ + 2) < 0.

Note that, as γ > 0, 0 < 1 < 1 + γ, i.e., 0 < s0 < sn, Lemma 1.7 can be applied to conclude
that the zeros of S(z) lie in the closed unit disc if and only if the zeros of S∗

1(z) do.
Observe that

−S∗
1(z) = |s(1)n−1|+ |s(1)n−2|z + ...+ |s(1)1 |zn−2 + |s(1)0 |zn−1.
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If |s(1)0 | ≥ |s(1)1 | > 0, the coefficients of −S∗
1(z) are ordered and by the Eneström-Kakeya

Theorem, the zeros of −S∗
1(z) lie in |z| ≤ 1. As the zeros of S∗

1(z) and −S∗
1(z) are the same, the

zeros of S∗
1(z) lie in |z| ≤ 1 too.

But
|s(1)0 | − |s(1)1 | = γ(γ + 2− λ) ≥ 0.

Then, |s(1)0 | ≥ |s(1)1 | is equivalent to γ ≥ λ− 2.
So, for γ ≥ λ− 2, S(z) has all its zeros in |z| ≤ 1.
Now we prove that, if γ < λ− 2, S(z) has at least one zero outside the unit disc.
As

|s(1)0 | − |s(1)n−1| = γ(γ + 2− λ),

|s(1)0 | < |s(1)n−1| is equivalent to γ < λ− 2.
By the Vieta’s formula, we have

ζ1ζ2...ζn−1 = (−1)n−1 s
(1)
n−1

s
(1)
0

,

where ζi, i = 1, ..., n− 1, are the zeros of S∗
1(z).

So, if γ < λ− 2, follows that

|ζ1ζ2...ζn−1| =

∣∣∣∣∣s
(1)
n−1

s
(1)
0

∣∣∣∣∣ > 1.

Then, at least one zero of S∗
1(z) lie outside the unit disc and, consequently, S(z) has at least

one zero outside the unit disc.

Remark 2.4. For γ = 0 we have S(z) = R(z) and the zeros of S(z) lie on the unit circle under
the conditions of Theorem 2.1.

3 Numerical Examples

Example 3.1. Let us consider the polynomial R(z) = 1 +
5

3

(
z + z2 + z3

)
+ z4. Figure 1

displays the zeros of R(z) (represented by •) and S(z) for γ = 0.5 (represented by *). Note that
the conditions of Theorem 2.1 are satisfied and the zeros of R(z) lie on the unit circle. From
Theorem 2.3 the zeros of the perturbed polynomial S(z), for all γ ≥ 0, lie inside or on the unit
circle.

Example 3.2. Let us consider the polynomial R(z) = 1+2z+2z2+2z3+2z4+2z5+z6. Figure
2 displays the zeros of R(z) (represented by •) and S(z) for γ = 0.8 (represented by *). The
conditions of Theorem 2.1 are satisfied and the zeros of R(z) lie on the unit circle (from Remark
2.2, z = −1 is a zero of multiplicity 2 of R(z)). From Theorem 2.3 the zeros of the perturbed
polynomial S(z), for all γ ≥ 0, lie inside or on the unit circle.
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Figure 1: Zeros of S(z) = 1 +
5

3

(
z + z2 + z3

)
(1 + γ)z4 for γ = 0

(dots) and γ = 0.5 (stars).
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Figure 2: Zeros of S(z) = 1+2z+2z2+
2z3 + 2z4 + 2z5 + (1 + γ)z6 for γ = 0
(dots) and γ = 0.8 (stars).

Example 3.3. Let us consider the polynomial R(z) = 1+4(z+ z2+ z3)+ z4. Figure 3 displays
the zeros of R(z) (represented by •) and S(z) for γ = 2 (represented by *) and γ = 4 (represented
by +). As λ = 4 > 2, from Theorem 2.1 R(z) has one real zero in (−∞,−1). From Theorem
2.3, the zeros of S(z) lie inside or on the unit circle when γ ≥ 2 and for 0 < γ < 2, S(z) has at
least one zero outside the unit circle.
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Figure 3: Zeros of S(z) = 1+4(z+ z2+ z3)+ (1+γ)z4 for γ = 0 (dots), γ = 1 (stars) and γ = 2
(plus).

Acknowledgment

Grant #2013/08012-8, São Paulo Research Foundation (FAPESP).

References

[1] V. Botta, L. F. Marques, M. Meneguette, Palindromic and perturbed polynomials: zeros
location, Acta Math. Hungar., Published online: 11 Dec 2013.

[2] D. Kwon, Reciprocal polynomials with all but two zeros on the unit circle, Acta Math.
Hungar., 134 (4) (2012), 472–480.

[3] M. Marden, “Geometry of Polynomials”, American Mathematical Society (Providence,
1966).
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