SOME RING THEORETIC
SCHRODER-BERNSTEIN THEOREMS

BY
IAN G. CONNELL

1. Introduction. If g and b are objects in a category let us write a < b to indicate
that there is a map from a to b, and a~b to indicate that there is an equivalence
(i.e., invertible map) between a and b. The question then arises whether the category
has the Schroder-Bernstein property, viz:

a<b and bLa=a~5h.

(The classical Schroder-Bernstein theorem refers to the category of sets and
faithful mappings; in this category an equivalence is a faithful onto mapping.)

The case we investigate here is the following. Let R be a ring and 4 an R-module.
(All rings are supposed to be associative with 1 and all modules right unitary
modules.) The objects of the category are the elements of 4 and the maps are
pairs (a, x) where a € A, x € R. The product (a, x)(b, y) is defined if and only if
b=ax and then is (a, xy). Thus (a, x) is a map from a to ax, the maps of the form
{(a, 1) are the identities, and the equivalences are maps of the form (a, #) where
u € R*, the group of units of R.

The property in question is simply: if @ and b are elements of 4 generating the
same submodule (that is, there exist x, y € R such that ax=5 and by=a) then there
exists a unit u € R* such that au=»5. If 4 has this property we say that 4 is P;.

It will be convenient to extend this notion. The direct sum A" of n copies of 4 is
canonically a module over the ring R,,, of n by n matrices, and we say that 4 is P,
if A™ is P, as a module over R,. It is easily seen that this is equivalent to the
following condition on A: if the two sets {a, ..., a,} and {b,, .. ., b,} generate the
same R-submodule of A then there exists an invertible matrix U e R¥, such that

(ay,...,a)U=(b,,...,b,). (The order chosen for the @; and b; does not matter
since permutation matrices are invertible.)

If A is P, for all n we say that 4 is P, ; and if all R-modules are P, or P,, we say
that R is =, or 7, respectively. When we say that R is P, we are referring to Ras a
module over itself.

Further notation: R(R) denotes the Jacobson radical of the ring R; [ R
denotes the complete direct product of the rings R;; (P A4; denotes the direct sum
of the modules 4;. When we say that R is artinian or noetherian we are referring
to right ideals (since we insist that all modules be right modules). By integral
domain, or simply domain, we understand a commutative ring without zero divisors.
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2. Preliminaries.

PROPOSITION 1. R is =, if and only if for each pair x, y € R there exists anr € R
such that x+(1—xy)r € R*.

Proof(*). If Ris m; then the R-module R/J is P;, where J=(1 —xy)R. Now
xy=1modJ so 1+J and x+J both generate R/J, hence there exists a unit # such
that (1+Ju=x+J, i.e., u=x+(1—xy)r for some r.

Conversely let A be an R-module, a,b€ 4 and x, y € R such that ax=b, by
=q. If x+ (1 —xy)r=u € R* then au=», which shows that 4 is P, and, since 4 is
arbitrary, that R is ;.

This criterion will usually be applied in the form: if xy+z=1 then there exists
an r such that x+zr e R*.

PROPOSITION 2. For any positive integers n and k, Ry, is m, if and only if Ry,

is m,.

By the isomorphism R, ~ R, this clearly results from the following special
case.

COROLLARY 1. R is m, if and only if R, is my.

Proof. If R, is =, it follows by definition that R is =,. Conversely let R be =,
and xy+z=1 an equation in R, The columns of z regarded as elements of the free
R-module R™ generate a submodule M and the above equation states that the
columns of x mod M generate the R-module R™*/M. But the columns of the unit
matrix 1 taken mod M also generate R"/M, and since R is m, there exists u € R,
such that lu=x mod M, i.e., u=x+zt for some ¢ € R, and therefore R, is ;.

COROLLARY 2. If R is w., then so is R, for each n.
COROLLARY 3. If the rings R, are all m,, or w, then so is R=]] R,.

For R,y=]T Ry, s0 it is enough to consider the case n=1, which is clear since
R*=TT R¥?).

PrOPOSITION 3. If R is m, then R is m, for each divisor k of n; in particular, R
is ™.

(*) This characterization can be stated in a more symmetrical, though not so convenient,
form as follows: Let R, denote the set of (x, ¥) € Rx R for which there exists an r such that
xr+y e R* and R, the set of (x, y) for which there exists an r such that x+ yr € R*. Then R is
m if and only if R,= R,;. Another characterization is given in Proposition 14 below.

(%) This result is also obvious from the point of view of universal algebra: the class of =,
rings, or w, rings, is equationally defined. For example when n=1 we have besides the usual
ring operations and axioms of equational type two more binary operations f(x, y) and g(x, y)
and the additional equations [x+ (1 —xy) f(x, »)]g(x, y)=g(x, Yix+ (1 —xy) f(x, y)]=1. Hence
direct products exist in this category and are constructed in the usual cartesian way. For the
my, property one needs a number of 2n2-ary operations with appropriate equations; and for the
7 property all these operations and equations are adjoined.
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Proof. By Corollary 1 above, it is sufficient to deal with the case k=1; for then
in general, if n=km and R is =, then R.,= Ry, i8 7, Whence R, is =, therefore
mn,, and R is m,. Thus consider xy+z=1, x, y,z€ R, and form X=diag(x, I),
Y=diag (y, I), Z=diag (z, 0) € R.,, where I and 0 denote the n—1 by n—1 identity
and zero matrices respectively. Since R, is m, there exists W e R, such that
X+ZW e RY,. This gives x+ zw € R*, where w is the top left entry in W, as required.

This proposition cannot be generalized to the P, property; for example, the
cyclic group of order 5, as a Z-module, is not P, but is P, for all =2 (see §6
below).

ProOPOSITION 4, If R/R(R) is m,, or 7, then so is R.

Proof. Since R(R ) =R(R),(?) and R,,/R(R ) = [R/R(R)]ny, by Proposition 2,
Corollary 1, it is sufficient to consider the case n=1. Suppose then xy+z=1,
X, ¥, z € R, and therefore Xy+Z=1, letting the bar indicate images in R= R/R(R).
By assumption ¥+ ZF=ii e R* for some 7€ R, so x+zr=u+j, j e R(R). Now if
#p="vii=1, then (u+j)v=1+k, k € R(R); but then 14k € R* 50 u+j has a right
inverse, similarly a left inverse, and u+j € R* as required.

If R is =, and J is any ideal then R/J is =,. (This follows from the original defi-

nition of =, by giving each R/J-module its canonical structure as an R-module.)
Thus

COROLLARY. If JSR(R) then R|J is m, (wy,) if and only if R is 7, (7).

PROPOSITION 5. Let the rings R, form a direct system and let R be their injective
limit. If the R, are =,, or m, then so is R(%).

Proof. The process of forming matrix rings commutes with the injective limit
operation, so we can restrict our attention to the case n=1. If x, y € R there exists
an R; and x’, ¥’ € R; such that x'o,=x, y'0,=y, where o;: R, — R is the canonical
homomorphism. Since R, is =, there exist r' e R, ' € R¥ such that u'=x"+
(1—x'y"r'. Applying o, gives the result.

The following corollary is useful for getting examples. Note that a subring always
contains the unit element of the over-ring.

(®) This well-known formula is a corollary of Proposition A in the Appendix.

(*) The analogous statement for projective limits is true in particular cases, e.g., in the case
of direct products, as we have seen. As another example, take any ring R and consider the
factor rings R/I which are artinian (in exceptional cases this collection is vacuous). These rings
canonically form an inverse system and by Theorem 1 below and an argument using linear
compactness (cf. [8]) their projective limit R is =.,. Of course in the equationally defined category
of =, (or =) rings there is no problem; the point of this proposition is that the homomorphisms
defining the direct system need not respect the additional operations as described in the footnote
to Corollary 3, Proposition 2.
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COROLLARY. If each finitely generated subring of R is contained in some m, (m)
subring S of R, then R is m, (7).

For R is the injective limit of the various S.
We omit the straightforward proofs of the next two results.

PROPOSITION 6. Let A; form a direct system of R-modules and let A=Lim_ A,.
If the A; are P, or P, then so is A.

PROPOSITION 7. If the R-module A is P, then for an arbitrary cardinal I, A" is P,
as Rg-module, where R ;, denotes the ring of row-finite I by I matrices.

3. =, rings.

THEOREM 1. Let R be a ring and A an R-module of finite length. Then the com-
mutator Endy A is 7.

Proof. Let S=End; 4. By Proposition 4 it is sufficient to prove that 7= S/R(S)
is m,. By Proposition B in the Appendix, T is a product of matrix rings E,, over
skew-fields £ and by Corollary 3 to Proposition 2 it is sufficient to prove that
E, is 7. (In effect we have reduced the theorem to the case where R is a skew-
field.) By Proposition 2 and the formula E ., = Eqm, it is sufficient to prove that
E., is m,.

Referring to Proposition 1, we thus assume that xy+z=1, x, y, z € E,,. This
equation implies that the (right) column space C(x) of x together with the column
space C(z) of z include a basis for n-dimensional space ¥ over E. Numbering the
columns x; of x and the columns z; of z appropriately, let x,, . . ., x, be a basis for
C(x)and x,, ..., Xi, Zx+1, - - ., Z, 4 basis for V. We define the matrix u by number-
ing its columns the same way as was done for x and putting #;=x; for 1 i<k and
u;=x;+z; for k <i<n. Thus u=x+zr for some r. Finally u is invertible since C(u)
includes the above basis for V.

As a special case we have the following solution to a problem posed by B. Brown.

COROLLARY 1. If a and b are elements of the finite abelian group A and « and B
are endomorphisms such that ae=>b, bf=a, then there exists an automorphism u such
that au=>h.

In §5 we consider other classes of abelian groups for which this result holds.
The results of the preceding section immediately yield

COROLLARY 2. If R/R(R) is a direct product | | E,,, of (arbitrarily many) matrix
rings over skew-fields, then R is 7.

This class of rings includes all semiperfect rings, the latter class including all
artinian and all local rings (cf. {5]). Zelinsky [8] has characterized the rings [ | Ejq,
in terms of linear compactness.
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Call A4 finite dimensional (after Goldie) if it does not contain an infinite family of
submodules whose sum is direct. Secondly, we call 4 selfinjective(®) if every partial
endomorphism of 4 can be extended to a full endomorphism; that is, if B is a
submodule and « € Homy (B, A) then there exists 8 € Endy A which agrees with
« on B. Clearly every injective module is selfinjective.

COROLLARY 3. If A is finite dimensional selfinjective then Endg A is 7.

For Endy A is semiperfect. (See [S] where a proof is given when A is finite
dimensional injective; as indicated there, the same proof works in the more
general case.)

The next proposition is useful in getting further classes of =, rings.

PROPOSITION 8. Let A and B be R-modules such that Homg (4, B)=0 and
R;=Endy 4 and R,=End, B are n,,. Then R;=End (4 @ B) is 7.

Putting R;= R,/R(R;), by Proposition A in the Appendix we have R;=R, x R,,
and therefore R; is 7.

We conclude this section with some examples.

1. Every boolean ring is 7,,. For every finitely generated subring is finite, hence
7, and the Corollary to Proposition 5 applies(®). (This does not generalize to
regular =absolutely flat rings; see example 3 below.) More generally, R is =, if for
every x € R there exists n=n(x) > 1 such that x*=x; for such an R is commutative
[2, p. 217], of finite characteristic, and the same argument applies.

2. If Ris semilocal, i.e., has only finitely many maximal right ideals M, ..., M,
then Ris =,,. For each R/M; is an artinian R-module, hence so is R/R(R)= R/M; @
---@ R/M,, and therefore R/R(R) is an artinian ring. (It can be shown that R has
only finitely many maximal left ideals so there is no need to specify ‘right’ semi-
focal.)

3. Call R symmetric if xy=1 implies yx=1. (Since R can be regarded as a sub-
ring of R, if R, is symmetric so is R; P. M. Cohn informs me that the converse,
a question raised in [4, p. 466], is false.) If R is P, then R is symmetric; for xy=1
entails xR= 1R so there is a unit # such that x=1u, whence y=x"!. Now if I is an
infinite cardinal then the ring R, of row-finite 7 by I matrices is not symmetric, thus
certainly not =, (and therefore not =, for any n).

For example if F is a field and 4= F' is the vector space of dimension 7, then
F4,=End; A4 is not 7,. Note however, that F, is a regular ring. Also it is obvious
that the ring of integers Z=End; Z is not =, (cf. §6). These examples show that the
assumption of finite length cannot be dropped from Theorem 1 and that neither
assumption on A can be dropped from Corollary 3.

(®) Johnson and Wong [3] call such a module quasi-injective. We feel that our terminology
is more suggestive; it also has the advantage that when applied to the R-module R it coincides
with the usual notion of a (right) selfinjective ring.

(®) The fact that a boolean ring is ; is immediate from the identity x+(1+x»)(1+x)=1.
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In both these cases it happens that the module is P, with respect to the endo-
morphism ring (by Proposition 7 or 11, and Theorem 2); but even this is not a
general rule. To see this it suffices to take 4 =R a commutative(?) ring which is not
P,. An example is the ring of real continuous functions (see Kaplansky [4, p. 466]).
It follows that the noetherian ring Z[x, y, z, t]/J, where J is the ideal generated by
xz—y and yt-—x, is not P;; for if this ring were P, it would follow easily that all
commutative rings are P,. Kaplansky [ibid.] gives another noetherian ring which is
not P,.

4. We now give two examples of subrings of R, which are =, when R is 7. For
integers n and k we have the ring embedding R, — R, given by x—
diag (x,...,x), and R, Ry, R, ... thus forms a direct system of rings, the
directed set being the natural numbers N ordered by divisibility. By Proposition 5,
Lim_, R, thesubringof ‘periodic’ matrices of Ry, is 7. Secondly, the subring T of
R, consisting of those matrices which, apart from finitely many entries, are zero
off the diagonal and have constant diagonal entry is =,. For by taking k a suffi-
ciently large integer we see that a finitely generated subring of T is contained in
a subring isomorphic to Ry, x R which is =, and the corollary to Proposition
5 applies. When 7 is countable the elements of T are matrices of the form
diag (X,d, d,...) where X is an arbitrary finite square matrix and d € R. Taking
R a field we thus obtain examples of nonnoetherian primitive rings which are
™ [2, p. 36].

5. If S'is a commutative ring and R=S[x] is the polynomial ring over .S then R
is not m. For 1=(1—x)(1+x)+x? and the criterion of Proposition 1 cannot be
satisfied. Similarly, the primitive ring of [2, p. 22, Example 3(a)] and the noetherian
simple ring of [1, p. 60, Exercise 13] are not .

6. In §6 we will prove that the ring of algebraic integers in a finite extension of the
rational field is not =, but the integral domain of all algebraic integers is ;.

4. Dedekind domains. If R is any ring we say the R-module A is torsion-free
if every finitely generated submodule is embeddable in a free module. (Of course
these free modules can be taken to be finitely generated). Thus every projective
module is torsion-free. When R is an integral domain this coincides with the usual
notion of torsion-free.

The following nontrivial result is due to Steinitz [6, II, p. 340].

THEOREM 2. Let R be a dedekind domain and n=1. Then every torsion-free
R-module is P,.

Actually Steinitz proves the following.

THEOREM 2'. If a and b are m by n matrices over the dedekind domain R for which
there exist x, y € R,y such that ax=>b, by = a then there exists u € R, such that au=b.

(") Endz R=R°, the opposite ring of R, rather than R since we insist that all module
action occur on the right. We take R commutative to avoid this trifling complication.
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We do not reproduce Steinitz’s argument but prove the equivalence of the two
theorems(8). Assuming the first theorem, let ax=5, by=a in the notation of the
second. Adjoining an appropriate number of zero rows to the bottom of @ and b
we obtain m’ by n matrices a’ and &’ such that @’x=»4’, b’y =a’ where m' is a multiple
of n, say m'=kn. Now a’ and b’ can be regarded as column vectors with entries
from R, that is, elements of the free R,,-module R%,,. But since this module is P,
there exists # € R%, such that a'u=54". Removing the superfluous zero rows we
have au=>, as required.

Conversely let ay, . . ., a, by, . . ., b, be elements of the torsion-free R,,-module 4
such that a; R+ - - - +@,Ry=b, Ry + - - - + bR, =B, say. We embed B in a free
Ry-module, say of rank m. In terms of a basis each g, gives rise to a column vector
of length m with entries from R,,, and in this way a, . . ., a, give rise to an m by ¢
matrix a over R, or, what is the same thing, an mn by tn matrix over R. Similarly
the b, give rise to an mn by tn matrix b and the assumption clearly amounts to
ax=>b, by=a for some x, y € R;;,,,. By the second theorem there exists u € R,, such
that au=5, and this is just the statement that A is P, as R,,-module.

A particular case of this theorem is worth singling out: Theorem 53 of Hilbert’s
Zahlbericht, due to Hurwitz, which is the statement that R is P,. As is well known,
every ideal of R can be generated by a pair of elements and Theorem 53 says that
any two pairs generating the same ideal are related by an invertible two by two
matrix of R, As Hilbert points out, this allows one to give a purely arithmetical
definition of the class number.

We now quote some related results of Kaplansky [4]. A right bézout ring is a ring
R in which every finitely generated right ideal is principal, and a right hermite ring
is one with the property that for every a, b € R there exist d € R, u€ R¥, such
that (a, bu=(d, 0) (i.e., 1 by 2 matrices can be diagonalized). Now a right hermite
ring is precisely a P, right bézout ring; the only nonobvious fact is that a right
hermite ring must be P,, and this is contained in the following.

PROPOSITION 9. If R is a right hermite ring and F is a free R-module of rank m
then F is P, for every n22m; in particular R is P, for all n= 2.

Proof. Leta,,...,a,, by,...,b, e FwithqR+---+a,R=bR+---+b,R=A.
As above, in terms of a basis the elements a,, . . ., a, give rise to an m by n matrix a
and by Theorem 3.5 of [4] there exists u € R¥, such that au is triangular, say
au=(d, 0) where d € R, (with zeros above the diagonal) and 0 denotes the m by
n—m O-matrix. Similarly for the b, we have bv=(d’, 0). Now the columns of d,
regarded as elements of F, generate 4, as do the columns of d’. Hence there exist
X, ¥ € Ry such that dx=d’, d’y=d, and by Kaplansky’s device [4, §4] there exists

(%) Incidentally, by ‘Grundmodul’ Steinitz means a pure submodule of a finitely generated
free module; surely this must constitute one of the earliest uses of the concept of purity. (Of
course in the dedekind case a Grundmodul is the same thing as a direct summand of the free
module.)
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w € R, such that (d, O)w=(d’, 0), where 0 now denotes the m by m 0-matrix.
Finally, if z=diag (w, I) where I denotes the n—2m rowed identity matrix we have
(@, .. Juzv=*=(by,...) with uzo~' € R%,, as required.

This result can be substantially improved when 0-divisors are disallowed:

ProrosITION 10. Let R be a right hermite ring without 0-divisors and let n= 1.
Then every torsion-free R ,-module is P, ; in particular R is P..

It is shown exactly as in the case of Theorem 2 that this is equivalent to what
Kaplansky actually proves: if @ and b are m by n matrices over R such that ax=b5,
by=a for some x, y € R, then there exists u € R, such that au=5.

In the commutative case it is easily seen that the P, property is automatic; that is,
a bézout domain is the same thing as an hermite domain. In this case the following
well-known result is an easy consequence.

COROLLARY. If R is a bézout domain (in particular, a principal ideal domain) and
the elements a,, . . ., a,, n=2, generate the ideal dR then (ay, ..., a,) occurs as the
first row of an n by n matrix with determinant d.

5. Commutation. Here we take up the question of when the R-module 4 is P,,
as a module over its commutator Q=Q(4)=End; 4. (We use the abbreviated
notation Q and Q(A4) when it is not ambiguous.) We have already seen that the
answer is affirmative when A has finite R-length, or when A is finite dimensional
selfinjective; indeed in these cases Q is 7., which is much more than is needed.

LemMA 1. If Cis a class of R-modules closed under finite direct sums, then to show
that each A € C is P,, as Q-module it is sufficient to prove the P, property; and when
this is the case, an arbitrary sum of members of C is P, as Q-module.

The first statement is clear since 4™ € C and Q(A™) = Q(A),; the second state-
ment follows from the first statement and the next lemma.

LemMMA 2. If every pair of elements of A is contained in an R-direct summand B
of A which is P, as Q(B)-module, then A is P, as S A)-module.

Proof. If ae=>0, bf=a where a,be A, and «, B Q(A4), let A=B @ C be an
R-direct decomposition with i: B— A, n: A — B the canonical maps such that
am, br e B. Then (an)ier=>bn, (bm)ifmr=ar where iom and iBm e Q(B), so there
exists y € Q(B)* such that amy=>bn. v @ 1 is the required automorphism of A.

LemMa 3. Let A be an R-module and I its R-injective hull. Then A is R-selfinjective
if and only if A is an Q(I)-submodule of I.

For the proof see [3].

PROPOSITION 1. Let R be noetherian and A R-selfinjective. Then A is P, as
Q(A)-module.

Proof. First let A be injective. By Lemma 1 we must show that 4 is P,. If
a,be A let B=aR+bR and let B€I< A where [ is an injective hull of B. ['is a
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direct summand of 4 and by Lemma 2 we wish to prove that I is P; as Q(I)-
module. But B, being a noetherian module, is finite dimensional, hence so is I
since [ is an essential extension of B (i.e., if X is a nonzero submodule of 7 then
B n X+#0). The result in this case now follows from Corollary 3 of Theorem 1.

Now let 4 be selfinjective, I its injective hull and (ay, . . ., a)e=(by, ..., b,),
b, ..., b)8=(ay,...,a,) where a, b; € A, a=(c;;), B=(B:;) € Q(A)n- Each «;,
B;; can be extended to an R-endomorphism of / and by the injective case there
exists a y € Q(I)E, such that (a;, .. .)y=(by, .. .). The result follows from Lemma 3
by restricting the y;; to A.

The condition that R be noetherian cannot be dropped. For example take
A = R=the ring of (say) countable row-finite matrices over a field. This ring is self-
injective [7, Theorem 5], i.e., 4 is R-selfinjective. But A is not P, as Q(A4)-module
(cf. example 3 of §3).

If R is an integral domain and 4 is a torsion-free divisible (=torsion-free in-
jective) R-module then A is P,, hence (by Lemma 1) P, as Q-module. For 4 is a
vector space over the quotient field K of R, Qz(A4)=Qg(A4), and there is an auto-
morphism of A4 taking any nonzero element a onto any other nonzero element b.
This remark obviously has generalizations, for example to the case where R is a
commutative ring whose classical ring of quotients is noetherian.

We omit the trivial proofs of the next two lemmas.

LemMA 4. If each A; is Py as an Ri-module then (P A; as a ] Ri-module with
component-wise action is P;.

LEMMA 5. Let R be commutative (so R can be identified with its opposite ring R°).
If the free module A=R™" is P, as R-module then A is P, as Q-module.

The next result is a variant of Proposition 8.

LemMA 6. If A=B @ C is an R-direct sum such that Q(B) is =, C is P, as Q(C)-
module, and Homy, (B, C)=0, then A is P, as Q(A)-module.

Proof. The elements of €(A) are of the form

a1 x = (; 2) weQ(B), BeHomy(C,B), yeXC),

the units being those x with « € Q(B)*, vy € Q(C)* (B arbitrary). Suppose ax=a’,
a'x'=a where a=(b, ¢), a’'=(b’, ¢’) in terms of the direct decomposition, and
x, x" € Q(A) where x' has entries ', 8, ¥" as in (1). Thus cy=¢’, ¢'y’=c and, since
C is P;, we may assume that ye Q(C)* and y'=y 1. Now ay=a’ where
y=x+(1—xx")t and we wish to choose ¢ so that y € Q(4)*. Letting ¢ have entries
A, pu, v as in (1) we have

(oc+(l —aa')A 0)
B— (B’ +¥B)A y

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 JAN G. CONNELL [July

and we wish to find A so that o+ (l—aa)A e Q(B)*. This is immediate from
Proposition 1.

We state the next lemma in more generality than needed. Recall that

(1) R is noetherian if and only if direct sums of injective modules are injective;

(2) Ris hereditary if and only if factors of injective modules are injective.

Now let A be a module over the noetherian hereditary ring R and {4;} the
collection of injective submodules. Since d4 =73 A, is a factor of (P 4, it is injective
and is the unique largest injective submodule. Putting A =dA4 @ rA, we see that r4
is reduced (has no nonzero injective submodules) and is determined up to iso-
morphism by A.

LeMMA 7. Let R be a noetherian hereditary ring and C a collection of R-modules
closed under direct sums. To show that each A € C is P, as Q(A)-module it is sufficient
to show that each rA is P, as Q(rA)-module.

Proof. If a,, a, € A, where a,=(b,, c;) in terms of a decomposition A=dA @ rA,
let B be a submodule of d4 which is the injective hull of b,R+5b,R. Thend' =
B @ rAd is a direct summand of 4. By Lemma 2 we wish to prove that 4’ is P, as
Q-module. As in the proof of Proposition 11, B is finite dimensional; hence Q(B) is
7, by Theorem 1, Corollary 3. If « € Homy (B, rA4) then the image of «, being a
factor of B, is injective, and since r4 is reduced, «=0. An application of Lemma 6
completes the argument.

Our principal motivation in this section was to extend Corollary 1 of Theorem 1.
For this reason and also to avoid undue complication, we state our main result
(Theorem 3) for abelian groups, though a considerable portion of it carries over,
with appropriate changes in terminology, to modules over dedekind domains.
(Recall that a hereditary domain R is the same thing as a dedekind domain, so a
hereditary domain is automatically noetherian. These domains are characterized
by the fact that a divisible module is the same thing as an injective module. In-
cluded is the case R=Z, so the previous lemma applies to abelian groups.)

First we discuss the classes of groups which occur in the theorem. (We sometimes
say ‘group’ when it is clear that we mean ‘abelian group’.) A selfinjective group is
easily seen to be one with the following property: if the order of a divides the order
of b (where the order of 0 is 1, the order of a torsion-free element is co, all integers
and oo divide o0) then every integer dividing b also divides a, i.e., nx=>»b solvable
implies nx=a solvable. In fact we have the following (where a primary group is
called homogeneous if it is the direct sum of arbitrarily many cyclic groups of the
same order):

STRUCTURE THEOREM. Let A be an abelian group, B its torsion subgroup and B,
the primary components of B. Then A is selfinjective if and only if either
(1) B#A and A is divisible, or
(ii) B=A and each B, is either divisible or homogeneous.
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We do not stop to prove this here but only mention the following useful facts,
valid for arbitrary R:

LeMMA 8. If A is selfinjective and I=7" X, a direct decomposition of the injective
hull of A, then A=3" (4 N X)).

This follows easily from Lemma 3.
LEMMA 9. A direct summand of a selfinjective module is selfinjective.

Note however that a direct sum of selfinjective modules need not be selfinjective;
examples are immediately obtained from the above theorem.

The structure theorem also shows that selfinjective groups are included in the
following much wider class:

We say that the abelian group A4 is of zype T if every pair of elements in r4 is
contained in a finitely generated direct summand of r4. This class is closed under
arbitrary direct sums (because d(P A4;)=@ d4,;, hence r(P A)=P r4;) and
includes

(1) sums of cyclic groups, for example finitely generated groups and free groups;

(2) selfinjective groups, for example divisible groups;

(3) periodic groups no primary component of which has elements of infinite
height(®); and

(4) sundry other groups, for example complete products of copies of the infinite
cyclic group.

THEOREM 3. The abelian group A is P, as an End; A-module provided that A is
either

(i) of type T, or

(i) periodic with every pair of elements contained in a countable direct summand.

Proof. (i) By Lemma 1 we wish to show that 4 is P,. By Lemmas 7 and 2 we
may assume that A is finitely generated, say 4=B @ C where B is finite and C is
free. By Theorem 1 Q(B) is 7, and by Lemma 5 and Theorem 2, C is P; as Q(C)-
module. Lemma 6 completes the argument. (The case when A is selfinjective is also
covered by Proposition 11.)

(i) By Lemmas 1 and 2 we wish to show that a countable periodic group A4 is P;.
By Lemma 4 we may assume that A4 is primary and by Lemma 7 that 4 is reduced.
If a and b are elements sent onto each other by endomorphisms then a —> b defines
a height preserving isomorphism 5 from the subgroup aZ to the subgroup bZ.
From the proof of Ulm’s theorem as given in Kaplansky’s book, Infinite Abelian
groups, one knows that 7 is extendible to an automorphism of 4, as required.

(®) L. Fuchs pointed out to me in conversation that such a group is of type 7. When
countable, such a group is a sum of cyclic groups, but not in general.
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6. Further examples. Given a ring R and an integer » in general it seems to be a
very difficult problem to obtain a catalogue of all P,-modules. Let us consider what
is perhaps the simplest nontrivial case: R=Z, n=1.

PRrOPOSITION 12. The abelian group A is Py as a Z-module if and only if its torsion
subgroup tA has exponent 1,2, 3, 4 or 6.

Proof. Suppose first that 14 has one of the exponents listed. (Exponent 1 means
that A is torsion-free and we already know by Theorem 2 that in this case A4 is P,.)
Thus supppose that ax=»b, by=a where a, b € A, x, y € Z, and neither x nor y is
+ 1. Then the cyclic subgroup aZ=»5Z, being annihilated by 1—xy#0 has order
1,2, 3,4 or 6, and since a and b are both generators we have indeed a= + 5.

For the converse we prove a more general statement (C(m) denotes the cyclic
group of order m): if A contains C(m)" as a subgroup where m=5 or m=7, then
A is not P,.

Proof. We represent the elements of C(m)* as n-tuples of integers mod m. Take
k# +1mod m with k relatively prime to m. Let a,=(0,...,1,... 0)e C(m)"
(with a single 1 in the ith position) and let b=(k, 0,..., 0). Then the two
n-tuples (a,, . . ., a,), (b, a,, . . ., a,) both generate the subgroup C(m)" but are not
invertibly related; for if (ay,...,a,)x=(b, a,, ..., a,) then det x=k mod m so
that x ¢ ZX,.

It seems likely that the converse of the above statement is true (so that the ab-
sence of subgroups of type C(m)*, m=5 or m=7, is a necessary and sufficient
condition for 4 to be P,); however a general proof appears to be complicated and
uninviting. Let us merely observe the special case promised in the comment after
Proposition 3: every cyclic group is P, as Z-module for all n=2.

Proof. The infinite cyclic group is covered by Theorem 2, so we are concerned
with C(m), the integers mod m, m > 0. Since a subgroup of a cyclic group is cyclic
it is sufficient to show that any n-tuple (a,, . . ., a,) of elements which generate the
whole group C(m) is invertibly related to the n-tuple (1,0,...,0). If {x,..., y}
denotes the greatest common divisor of the integers x, . . ., y, we have{ay, . . ., a,, m}
=1. It is well known, and easily proved, that since n=2 there exist a; =a; mod m
such that {aj, . .., a,}=1. By the Corollary to Proposition 10, (ay,. . ., a,) occurs as
the first row of some X e Z¥,. Thus (1,0,...,00X=(ay,.. ., a,), as required.

If R is an integral domain a prime of R is an element p#0 such that pR is a
prime ideal, that is, if p divides a product then it divides one of the factors (which is
more than saying that p does not factor). We write a|b for b € aR, and afb for
bé¢aR.

ProrosiTiON 13. If R is a P, integral domain, and p, a, b, ¢ elements of R such

that p is prime, pta, a|pb and c|(1—b), then there exist s,t € R such that c+as
+pt € R*,
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Proof. Let ar=pb, cd=1—b. Then aR+pR=aR+pcR since p=ar+pcd. Thus
there exists
(a '8) € R%, such that (a,p) (a ﬁ) = (a, pc).
y 8 y 9

Now ac+py=a, whence e=1mod p; and af+pd=pc, whence =0 mod p, say
B= —ps, so §=c+as. Thus the unit

« B |1 0O

u = =
y o y c+as

= c+as mod p,

and the result follows.

For example, R=Z[x] is not P,: take p=x, a=b=35, c=2. (The pairs (5, x) and
(5, 2x) generate the same ideal but are not invertibly related.) R being an integral
domain is trivially P;; (but R is not 7, by example 5 of §3).

Thus R is an example showing that

(1) a P, module need not be P,;

(2) the assumption that R is dedekind cannot be dropped from Theorem 2;

(3) if aring R is P; the same is not necessarily true of R,,. (For if R, is P, then
the submodule R" is also P; as R.,-module, hence R is P,.) This problem was
raised in [4, p. 466).

In general =, integral domains, say with R(R)=0 to avoid semilocal domains,
appear to be quite scarce, although it seems difficult to obtain criteria of wide
applicability. We shall derive one rather weak result in this connection.

First we give another formulation of the =, property, valid for arbitrary R.
If a € R let a# denote the set of right ideals maximal with respect to being disjoint
from {1 —au: u € R*} (note a#= @ if and only if a € R*).

PROPOSITION 14. R is =, if and only if for each a and for each J € a# we have
a €J; and when this is so, each such J is a maximal right ideal.

Proof. Suppose Jea¥,a¢J. Then ax+j=1-—au for some xe R,jeJ, uec R*,
Thus a(x+u)=1modJ but av#1 modJ for all ve R*; hence R/J is not P,.
Conversely if R is not =, we have ax=1 mod 7 for some right ideal 7 which does
not meet the set {I—au:u e R*}; we may choose a Je a# containing I. Since
ax=1lmodJ,aé¢lJ.

Finally suppose that R is =, and J € a#. If b ¢ J we have, with a selfexplanatory
notation, 1 —au=j+bx. Since aeJ, 1 € J+bR whence J is a maximal right ideal.

ProPOSITION 15. If R is an integral domain, not a field, with R(R)=0 and R*
finite, then R is not =,.

Proof. We suppose that R is =, and derive a contradiction. Let R*={u,, ..., u,}
and choose a#0, a ¢ R*. The elements of a# are the maximal ideals M, which do
not contain any of the elements 1—au;; the latter elements are all nonzero and
a is contained in each M;. The contradiction arises from the following fact.
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LEMMA. Let rq, ..., r, be nonzero divisors in the commutative ring R and suppose
R(R)=0. Then the intersection of the maximal ideals which do not contain any of the
ris 0.

Proof. Denote the maximal ideals not containing any of the r; by M, and denote
the remaining by N. If x e (" M then xr,---r, e (\ M; also xry---r, € ("} N since
each N contains some r,. Hence xr, - - -r, € R(R)=0, and since the r, do not divide 0,
x=0.

We now prove the results promised in example 6, §3.

PropOSITION 16. If K is an extension field of the rational field Q, K : Q=n <o,
and R is the integral closure of Z in K, then R is not m;.

Proof. Let p be a prime >2n+ 1, x a primitive root mod p, and 1=xy+pt, y,
t € Z. If R were 7, there would exist r € R, u € R* such that u=x+ pitr. Taking the
norm Ny, gives + 1=x"+pb for some b € Z. But this is impossible since x is a
primitive root mod p and n<(p—1)/2.

If R is a commutative ring and x € R, let £: R — R/xR denote the canonical
map. Thus £R* is a subgroup of (R/xR)* and we put H,=(R/xR)*/£R*. We call R
residually periodic if it satisfies either of the following equivalent conditions:

1. for each x € R the group H, is periodic;

2. for each pair x, y € R there exists r € Rand n= 1 such that x*+(1 —xy)r € R*.

We omit the simple proof of the equivalence of these two statements. Clearly this
notion is a weakening of the =; property; in fact R is =, if and only if each H,.=1.

If R and S are integral domains, S is a finite integral extension of R if it is of the
form R[s,, ..., s,] where each s, is integrally dependent on R.

PROPOSITION 17. Let R be an integral domain. If R is residually periodic then for
every pair x, y € R there exist a finite integral extension S of R and s € S such that
x+(1—xp)s € S*. The converse holds if R is integrally closed.

Proof. First let R be residually periodic and put z=1—xy. Now

zR = zZRR""! = zR(xR+zR)*™?
= x""1zZR+x""2z2R+ - - - +z"R.

Since v—x"=zr for some v € R*, r € R we have
v—x" = x""'za,_,+ - +2"aq

for some a; € R. Let s be a root of the equation 6"—8*~a,_,+--- +(—1)*a,=0

and put u=x+zs. Then u is a root of (0—x)"—z(0—x)*"ta,_,+---=60"+---
+(=D"=0, so u~! is also integral over R. S=R[s, u~1] is the required integral
extension.

Conversely, to prove that R is residually periodic let x, ye R, z=1-xy,s€ S
and u=x+2zse S* If K and L are the quotient fields of R and S and L : K=n,
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applying the norm Ny gives v=x"+zr € R* for some r € R. (We need R integrally
closed to be sure that v e R.)

COROLLARY 1. The ring of all algebraic integers is .

Proof. If g, b are algebraic integers apply the proposition to R=Z[a, b] which is
residually periodic (indeed each H., is finite).
Similarly,

COROLLARY 2. If F is a finite field, and x an indeterminate, then the integral
closure of F[x] in the algebraic closure of F(x) is m,.

There seems to be no reason to doubt that the rings of the two corollaries are
7, ; but the calculations necessary for a proof appear to be quite complicated.

In view of these results one might be tempted to conjecture that the integral
domain R is m, if R is integrally closed and its quotient field is algebraically closed.
However this is refuted by the following example. Let F be a field of characteristic 0
and let R be the integral closure of F[x] in an algebraic closure of F(x). If R were
m, there would exist r € R such that (1 —x)+x®=ue R*. Applying the norm
Nren 5o to this equation gives (1 —x)*+x%y € F[x]*=F*, where n=F(x, r): F(x)
and y € F[x]. But this is impossible since the term —nx cannot be cancelled.

We should mention that when R is integrally closed every finite integral extension
S in which one has x+ (1 — xy)s € S* is obtained by the method given in the proof.
For let Kand L be the quotient fields of R and S and let s have the field polynomial
"—0"1g,_,+---+(—1)'a, with respect to L|K. Then the constant term of the
field polynomial for u=x+zs is x"+x""'za,_,+ - - - +z"a,=v which must be a
unit since u is a unit and R is integrally closed. The procedure of the proof obviously
gives back u=x+ zs.

As an example let us take R=Z, x=2, y=3 and determine all quadratic fields
with the desired property. If s satisfies 62— 6a,+a,=0 then u=x+zs=2—15s
satisfies 602+ (5a, —4)0+(25a,— 10a, +4)=0. Since u is a unit we have 25g,— 10a;
+4=—1 (41 is impossible), the general solution of which is a,=142¢, a; =3+ 5¢,
te Z. Hence s=(3+ 5t +(5+22¢+25¢%)1/?)/2. The quadratic is positive definite and
the fields are Q(+1/2), Q(v/5), Q(1/13),.... Similarly one can parameterize the
quartic, sextic, . . . fields which ‘split’ the pair (x, y)=(2, 3) (there are no cubic,
quintic, . . . fields with this property).

APPENDIX. In this appendix we prove two results about the endomorphism ring
of a module which are needed in the main part of the paper. We have put them in
an appendix since they are of a general nature and not solely concerned with the
Schroder-Bernstein problem.

If 4 and B are R-modules we define the radical R(Homjg (A4, B)) of the group
Homy, (A4, B) to be the subgroup consisting of those « € Homy, (4, B) such that for
all 8 Hom, (B, A) we have «f € R(Endy 4), where in the latter case R denotes

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



350 IAN G. CONNELL [July

the Jacobson radical of the ring. Clearly R(Homj (4, 4))=R(End; 4), so the
notation is consistent(?).

Now let A4;,..., 4, be R-modules, A=4, @---P A4, and S=End; 4, so the
elements of S are n by n matrices («;;) where «;; € Homg, (4;, 4,)=H,;.

PROPOSITION A. With the above notation,
R(S) = {(wy): for all i, j, oy € R(H,y)}.

Proof. Let J denote the right hand side of the equation. Since R(H,;) is a sub-
group of Hy;, J is closed under addition. If («;;) € J and (B,,) is arbitrary let (y;;)=
(i, )(Bi;) 80 yi;=2 oyuBr;. Now if 3;;, € H,; then oy, By;8,; = eyymy; Where ny; € Hy,;, and
since oy, € R(H,y,), aBr;8, € R(Hy), so J is a right ideal. It follows that J;, the set of
o € J whose rows other than the ith are 0, is a right ideal. If « €J; then 1+« is
the identity matrix except that its first row is (14, 09, .., &,). Since
oy, € R(Hyy), B=14a;, is a unit and therefore 1+« has as inverse the matrix
whose first row is (87!, —B layg, ..., —B lay,) and which otherwise coincides
with the identity matrix. It follows that J; = R(S) and similarly J,< R(S). Hence
JSR(S).

Conversely let («;) € R(S) and let 8 be the matrix all of whose entries are 0
except for B,,=1, and y similarly all O except for y,,. Then 8=y has O entries
except for 8,, = ap,,p. Since 1+ 8 is invertible so is 1+ 8,,, and since y,, is an arbi-
trary element of H,, it follows that 8,, € 3(H,,), whence a,, € R(Hy,).

COROLLARY 1. If e € R(Homy (A, B)) and 8 € Homy, (B, A) then Bo € R(Endy B)
(hence R(Hompy (A, B)) can be given a symmetrical definition).

The radical of a ring is an ideal and the corollary follows by applying the prop-
osition to the module 4 @ B.

COROLLARY 2. R(R)) =R(R)n)-

This is the case A= R™. (Strictly speaking A =(R°)* where R°® is the opposite ring
of R, since we are writing the endomorphisms on the right.)

PROPOSITION B. Let R be a ring, A an R-module of finite length, S=End; A and
J=R(S). Then J is nilpotent and S|J is artinian semisimple.

Proof. We write A=4;, @ - - @ A4, where the 4, are indecomposable and apply
Proposition A. Thus the elements of S/J are » by n matrices & with entries &, € H;,
= H,;/R(H,;). If I, denotes the right ideal of those & whose rows other than the ith
are 0, then S/J=I,+ .- +1I,. If @ac I, and &,,#0, and B denotes the matrix with
B.,=1 and O’s elsewhere, then aB has the single nonzero entry &, ,. By definition of
R(H,,), there exists §,, € H,, such that ,,5,,#0. Taking § to have the entry §,,

(%) If R is commutative, Homj (A4, B) is an R-module and therefore has a radical in the
conventional sense, which is not to be confused with our %®.
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and 0’s elsewhere, we see that @B has a single nonzero entry in H,,. But H,, is a
skew-field [1, p. 23]; hence &BS, and therefore @, generates the right ideal ;. Thus
I, and similarly Z; is a minimal right ideal, and S/J is artinian semisimple.

To show that J is nilpotent (a fact not used in the paper) it suffices by [1, p. 26,
exercise 3] to prove that each element « € J is nilpotent. (Then J2=0 where d is the
length of A.) The sequence Au> 4?2 --- becomes stationary, say Ae’=Ac’+!
=..., Put B=c", B=AB, C=Ker 8. The standard argument [1, p. 23] shows that
A=B @ C and y=p|Bis an automorphism. We have §=8(y~* & 1) € J where 8 is
idempotent (being the canonical projection 4 — B). The radical contains no non-
trivial idempotents, so §=0, and since y~! @ 1 is a unit, 8=0, which completes
the proof.
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