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SOME SEQUENTIAL ANALOGS OF STEIN'S TWO-STAGE TEST

by

William Jackson Halll

University of North Carolins

This paper presents several sequential ana-
logs of Stein's two-stage test procedure for
testing hypotheses about the mean of & normal
population with unknown variance and with specl-
fied error probabilities. When sequential ex-
rerimentation is feasible, they provide alter-
natives to the sequential normal test (variance
known) or the sequential t-test. If the
varlance is assumed known, the procedures may
5t11]1 be recommended since the added cost may
be only a very few additional observations on
the average, and the performance of the tests
does not depend on the validity of any assump-
tion about the variance. Moreover, unlike the
t-test, these procedures do not require that
the alternative hypothesis be specified in
standard deviation units.

1. INTRODUCTION
When sampling from & normal population with unknown mean U and

unknown variance 02, one may wish to test the composite hypotheses

H .

bt BZ0,0>0 vs. Hi: p>48 (30), o>0

1

with pre-assigned strength (¢, B) (bounds on the error probabilities).
It is a well-known fact that, unless at least bounds are placed on o,
no such non-sequential test exists. A common solution is to restate

Hy in (unknowm) standard deviation units and use the t-test (non-sequen-

lThis research was supported by the Office of Naval Research under
contract No. Nonr-855(09) for research in probebility and statistics
at the University of North Carolina, Chapel Hill, N. C. Reproduc~
tion in whole or in part is rernitted for any purpose of the
United States Government.



2
tial or sequential), or, equivelently, allow B to be a function of
the unktnom o. Neither of these reformulations ey be copletely
satisfactory. The only known solution to the problen as stated is
Stein's two-staﬁe procedure (Stein, 1945, Moshuan, 1958): a pre-
lininary sample of fixed size m (> 1) is telen in order to esti-
nate 02 and a second stage sauple, of size depending on this first-
stage estimate si, 1s then taken if necessary; since the first-stage

sample nean and variance are statistically independent, the informa-
tion from the first sarple about the nean K can be utilized, to-
gether with that from the second sample, in making the terminal de-
cision. The size of the second sawple depends only on sﬁ » 50 that
its distribution depends only on 02, and not on .

A sequential enalog of Stein's procedure is presented here.
Agedn e first stage sample is used to estirate 02, but sampling is
then continued, if at all, one obaservation at a time rather than in
& non-sequential fashion. It is otherwise analogous to Stein's pro-
cedure, but, as one would expect, the distribution of the sasple size
now depends on u as well as on 02.

This procedure, test T, nay be described as a gequential proba-

bility ratio test (SPRT) which is not permitted to terminate before

m observations and in which 02 is replaced in the probability

ratio by the estimate sﬁ 5 the usual termination bounds A and B
are nodified by a method due to Paulson (1961) in order to achieve

the required strength. 4n equivalent interpretation of the test T,
useful for studying its properties, is that it 1s a conditional

SPRT, pgiven Bm and o, with ternination boundaries depending on

8. and o. Its behavior can be studied by averaging (takinc expec-
tation) with respect to Sm' Thus approximations to its oc (operating

characteristic) function and ASH (average sauple number) functlon are

obtained by averaging the corresponding approxirmtions of Wald for the
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conditional SPRT; these approxirstions are valid if the test is not
likely to terminate with the first stage. Stein's test can also be
considered in this light. Some numerical conparisons of the power
(or 0C) and ASN functions, based on these approximations, for the
test T, for Stein's two-stage test, and for the SPRT end fixed semple
size test (FSST) assuuing o known, are presented. The approxima-
tion obtained for the ASN of T suggests that substantial savings,
compared with Stein's procedure, are possible.

For the case B = ¢, an alternative sequential test procedure T!

tio
is described, using/minirmum probability ratio test (Hall, 1961) in-

stead of the SPRT. Two-Sided test procedures, analogous to T and
T', are also briefly discussed.

If an estimate of 02 1s available from previous experiments,
the need for the first stage is eliminated; minor modificetions of
these procedures would make then applicable. In fact, this is the
context in which Paulson's method was introduced.

In none of these procedures is any of the information about o,
other than from the first-stage sample, utilized, so that the tests
do not depend on a sufficient sequence of statistics. Alternative
sequential procedures, Tn and TA, using all available information
about o but without theoretical Justification, are proposed. Some
empirical evaluation of these procedures is planned.

Illustrative diagrams for carrying out these sequential tests are

presented.



2. THE SEQUEITIAL TEST T.

Let X;s X5 ... be independent N(p, crg) randon variables,
~o <p<w, 0<0 <w, Let n be a specified integer exceeding one.
Consider a SPRT of p =0 vs. p =4 (o known) based on T{m, X 41
X D’ C 2 with ternination boundaries Am and Bm and with o re-

placed by 8. where

-— ol )
X,o= Iiq xi/m s v=n-1l
2 n = 42

s Zi 1 (x:L - xm) /(n-1)

&, = {n A = v(a’e/v- 1)/2=(-fna) [1+ («fna)lv+ O(vz)_7

(1)

BB 1) /2 = o(fn B) [1+ (< )/v + 0(4). 7,

b = {n B,

We refer to this test as test T. Note that A >A=1l/oand B<B=8,
with approxirate equalities instead of inequalities if mn is larpge, and
A, B ere the conservative termination bounds of Wald (1947, p. L42)
appropriate 1f o were knowm.

Denoting

(2) rn(sn) = A Z;._I.___l (xi -.A/2)/s§1 : (n > u),

T 1is found to be: observe (Jl, ceey Xm) and then X ., Xopp? o
successively and, for each n 2> n, after observing Xn’
stop sampling and make decision dy (accept HO) if rn(sm) <b;
stop sampling and reke decision dl (accept Hl) it rn(sm) 2 am;

continue sampling if b_<r (s ) <a
n - n'n o)



3. THE STRENGTH OF TEST T.
For piven (Sm’ o), consider the conditional SPRT, T(Sm’ o),

of u=0 vs. u= A based on '}'cm, X 41’ ++r With termination

bounds Au and ]3m where
- - 2,2 = = 2,2
(3) a, = {n A =a, sn/c » b = {n B, ="b, sm/cr .

Computing the relevant probability ratios, noting that T{m, X SRTIRLE
are statistically independent of Sm’ one finds that decisions are
rade according as rn(c) < b rn(c) > ay or 51;1 < rn(a) <a_ .
Using Wald's conservative bounds on the error probabilities of a

SPRT, we have

Pr {51 using T(sm,cr)]sm: o, u=} Q/Km = exp ("amss/gr‘))

(4) .
Pr {do using T(sm,a)]sm, o, u=A}<'§m = B8xp (bmsm/o' ) .

2,2
But rn(c) = rn(sm) sm/cr 5 80 that T(sm, o) is seen to have
breclsely the same decision rule at each stage as does the test T,

with 8 computed from the observed values of Xl, reey Xm. Thus

8 Pr {di using T(sm,c)lsm,c,u} = 6 Pr {di using T ] Sm, 0, u}

= Pr {di using T| o,u} 3

and therefore, using (k&) ,

§
—
[
+
o
EQ’
~
<
g
1
N
hv)

(5) er {d-_,_ using T| o, 0} < Eexp (-a, Sﬁ/Ge) =

I
N
=
n
33
N

2,2 2 2
for all o since vsm/cr = X, and gexp (t Xv) =

Similarly,

(6) pr {do using 7| o, A} < Eewm (b5/°% = (1 -_2bm/v)""/2
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' for all o. Since the conditional test T(Sm’ o) is a normal-nean
SPRT, its OC function 1s monotone in p (Wald, 1947), i.e.,
Pr {di using T(sm, U)] Sm,G,p} is nonotone in u for every fixed

s, end o. This, together with (5), (6) and (1), irplies

1
(7) Pr{d1 using T, Hé} <aq, Pr-{éo using TlHi )i < B,
and (7) states that T has strength (o, B).

Note also that since the SPRT T(sm,c)’ terminates with certainty

for every fixed Sm’ the test T also terminates with certainty.

Y. THE OC FUNCTION OF T.
For the conditional test T(sm,cr) » Vald's approxipation to the

0C function may be used, nanely:

(8) pr {dol sm,o,u} e (& - 1)/X - B};) (2 # 0)

vhere h(u) = 1 - 2u/A and where the "e" implies neglect of excess
over the boundaries; this excess should be srell if the test is likely
to have a sample number substantially larger then mn. Taking expec-
tatlons with respect to S_ in (8), using (3) and dropping the sub-

n
scripts on a0 bm and Sm’ we have

Pr {do lo, p.}

1 - exp (-ahSQ/cre)
1 - exp (-a-bhse/o'e)

no

g { [1 - exp (-eh SE /0_2 )_7z°;=oexp(-1gﬂh82/o*2 )}

(h > 0)

. vwhich does not depend on o. The integrand on the RHS rmay be expressed
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as an alternating series with temis of decreasing racnitude so that
successive partial sums give upper and lower bounds on it. Té.king
expectations term-by-term, the RHS thus yields successive upper and
lower bounds on the approximaticn to Pr{doi cr,p} » Wwhich rmay be

expressed as

1-(1+ eah/y)"’/2 + (1 + 2a=b h/v)"’/2

-v/2

VR e wEmapyRL L

- (L+2 2a-b nly)

or, using (1), as

(9) 1-(1-n+n a—2/v)-v/2 + (1-2n+na? %y 6-2/v)-v/2

~(L-3heen Ve n g By VR (g, oo 2/ Vi ong=2/vy-v/2

These are valld for h >0, l.e., for u <A/2. For p >a/2 (h <0),

we obtain analogously

- (10) Pr {donlo,u}

1- exp ( -b1182/0'2)

1
1- exp (-b-a 1182/02)

no

(1 + ebh/v)“’/e- (L+ 2 %-a h/v)"'/e

+ (1+ 2 2b-a h/v)'e/v - (1 + 4 %= h/v)-v/2+
= (L+nha- 1:5'2/")"’/2 - (1+2h - hs"‘?/”
N d-2/v)-v/2 +(1+ 30 - 2n ﬁ-Q/V_ ha-?/v)-v/e

- (1+ M- 2hf3-2/v - 2ha'2/")"'/2 toves

For B = ¢, we have
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(11) Pr {FO}G,Q} e = (DY 141 )@ TR (uinre)

vhere agaln, as in (9) and (10), the partial sums provide successive

upper and lower bounds.
At =4/2 (h=0), ve obtain by taking limits in (8) as

h «==>0 and using 1'Hospital's rule:
Pr {dO | 85 o, A/Q} e af(a-b)

irrespective of s, so that

(12) pr {ao [ o, A/e} e a/(ab) = (a2 1)/(a7R/V g7R/V. gy
which equals 1/2 if B = q.

The series (9)-(11) converge reasonably fast except near h = 0
(4 = &/2). For example, with o =8 = .05 and m = 16 and 31, we

find the following values for the successive approxirations in (11)

to the power function Pr {dl ]p.} =1-Pr {dol p.} :

w/A h n

1/4 1/2 16 .19, .14, .16, .15, ‘.16, 15, .15
0 1 16 .050, .ok, .045, .045

-1/} 3/2 16 .016, .015, .015

-1/2 2 16 .0059, .0056, ,0057, .0057

1/h ‘ 1/2 31 .21, .16, .17, .17
0 1 31 ;050, 0k6, 046

-1/4 3/2 31 .01k, .013, .013

-1/2 2 31 .00k1, .00%0, .004O
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The saue speed of convergence was found for o =8 = .01, Calcula-
tion beyond two significant fisures is actually unwarranted since

these formulas ignore the excess.

5. THE ASN FUNCTION OF T.

For p# a/2 (b #£0) and for all o, we have, using (2):
(13) Erlo) = a ¢ zll (x, - N
5 n a2
= A(M-A/E) gH/O' = = 3 ;—2- En.

Also, dropping the subscript u,
(k) Erylo) = ECL s = €5, &L rl0)]s,a, 7

Pr {di[S } ) .

Now, still dropping the n's, and ignoring excess,
ES°ZE£(U)l 8, d1;7 = 3=a 82/0'2 ;

e =T 2,2
€ [ ()]s, 4,/ & B =b s /",
The excess should not be significant if I +tends to be large re-

lative to m. (14) thus leads to
(15) g’rN(a) E o % pr {dols} +a 8 Pr {dlls _7/02
8 - (a-b) é—:"[sa Pr {dols }_7/02 .

Using (8) and proceeding as in the previous section, we obtain for

no

h>0

. ,
£:rN(c) E a - (a-b) Ef){EE‘[_l-exp(-ahse/b?j7 Z:=O exp(~1 a-b hse/ce) };
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2 “l =
Noting that £ [ % exp(~t X2)/v__7 = (1 +2t) 1-v/ 2, ve find after
taking expectations term-by-ternm, and equating with (15) » that for

h>0

no

(16) (A/U)E g ) - %;? - ?ig:ﬁ[(l+2ah/V)-l-v/2-(l+2 -é-:.s h/v)-l-'v/Q
+ (1 + 2 75 b/v) V2 (1h 575 b)) VR

+ e ]

%{5-2/1;_1 ) (a-E/v+ a-e/v -2) /[ (1-h+

" o[-2/1/)-1-»;/2” (1-2h+n a—2/v+ b 6-2/1/)-1-11/2

+ (1~ 3h+ 2n 2oy B-Q/V)-l-v/e
- (- a7 e By lv2 }

For h <0, the same formula holds with h replaced by -h and with

¢ and B interchanged. For B = Q,

(17) (A/c)gg’n s X (a"a/" . 1)1+ 22 (-1)i [ 1+
[n] =t

1 h (a’e/” -1) 7t "’/2} (n # 0).
At p =0 and p =4, WYald's conservative bounds (h) on the
error probabilities of the conditional test ey be used instead of
(8); thus (15) leads to

(A/O')e g[l\I Ju = 07 i »- b --(a-ilo)(_‘f’Saexp(-a.s2/cr2)/cr2

= v [B'E/V- 1- o1+ B'a/v ae/v)_]
and similarly for (A/cr)acf'Q /W |p=Aa7 with @ and B interchenged.
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It B = ¢, these two relations reduce to
e
(18) (a/0)? € /uu=0ora7 > v (o v 1. 2a).

For h =0 (p =A/2), we have, analogous to (13)-(15),

(19) & [ry(0) 7% = (/)2 E [ u=0/27

and
(20) S/ul0) 7P ¢ 2E St - (2 - B [ b {ao st /0% .

Equating (19) and (20) and using (12),

no

(21) (8/0)° &[] 1 = 8/27 & [a% a(erd) TEXEAP = -ab(1 + 2)

-ﬁ (1+2)(a72/" 1) (573/Y . 0,

Some successive approximations from (17) appear below (¢ =B = .05);

evaluations fron (18) and (21) also appear:

w/A h n

1/2 0 16 15.4  from (21)

/4 /2 16 10.2, 11.2, 10.9, 11;0, 10;9, 11.0, 11.0
0 1 16 . 6.9, 6.9; lower bound from (18) is 5.9
-1/k 3/2 16 4.8, 4.8
-1/2 2 16 3.7, 3.7

1/2 0 31 11.7 from (21)
/4 1/2 31 8.3, 9.4, 9.1, 9.2, 9,2
0 1 31 6.1, 6.1; lower bound from (18) is 3.6
-1/4 3/2 31 u,s, uf3
-1/2 2 31 3.3, 3.3
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Convergence was slightly faster for o= B = .01, and the lower

bound from (18) was much closer to the approximation (17).

6. COMPARISON VWITH THE OC AIlD ASN FUNCTIONS OF
STEIN'S TVO0-STAGE TEST
Let tv, o be that number which is exceeded by a t-statistic
with probebility « (v degrees of freedorn). The total sample size
N in Stein's (one-sided) procedure with initial sample size n = v+l

and error bounds (o, B) is given by

N = max ([slf1 (tv,a+ tv,B)E/ A2_7 + 1, n) ,

vhere "/ 7" means M"largest integer in", and

(22) (A/cr)egN 2ot + tv,s)a ,

the epproximation being valild if it inplies ? N 1s sonewhat larger
than n (Stein, 1945).
The terminal decision rule for Stein's test may be written

> decide cll

N 2 2 2
A 2 o (x, - af2) s (t - toQ))/2 .
=1 1 o« v,Q v,B decide do

Approximeting N by S (o + tg )/a2, the OC function is found

t0 be

(23)  Pr {dol u} RSt mult, ot ) AT

we
where Fv is the distribution function of a (central) t-statistic
with v degrees of freedori. The true OC bfunction 1s presuably
slightly steeper since the true sanple size tends to be larger than

the epproxirating value.
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Tables 1 and 2 at the end of this paper present some compari-
sons of the approximate power and ASH functions of the sequential
test T and Stein's two-stage test (¢ =B = .05 and .01). Also
included in the tables are the corresponding approxirate values for
the SPRT (with A = I-0/a = 1/B) and the fixed sauple size test
(FsST) if o were known (correctly). Of course, if the assunption
about ¢ were lncorrect, the power functions of the SPRT and F3ST
ray be drastically altered.

It 18 of interest to note that the bower functions of these tests
becone steeper as one moves from left to right in Table 1; thus, the
test T discriminates best for interrediate H~-velues and the FSST
discrininates best for extrene pu-values.

These calculations suggest that substantial savings nay be
possible using the sequential test T -~ at least if one of the
hypotheses is correct. The comparison between T and Stein's test
is analogous to the corparison between the SPRT and the FSST of the
sane strength.

Actually, the couparison would be in closer analogy if the SPRT
with conservative boundaries (A = 1/a = 1/B) were considered, since
the test T wuses conservative boundaries. If the boundaries of T
were nodified, by increasing o and B in (1), to achieve error
Probabilities equal to q, the ASH of T would be further reduced.
(Celeulations indicate that substitution of o/I-B for « and
B/I-a for B in (1) still gives conservative bounds on the error
probabilities.) The lack of knowledge about o costs only a very

few observations (perheps two or three) on the average, and thus the
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test T or Stein's test may be recamended even if o is thought

to be known (if a one-stage test is not essential).

T« Al ALTERNATIVE SEQUENTIAL TEST T'

For the symmetric (oz = B) one-sided case, a ninirmum probebllity

ratio test (IPRT), which has converging straight-line boundaries

(Hal1, 1961), can be adapted in the same manner as was the SPRT above.
The MPRT 1s equivalent to one of Anderson's (1960) tests. Ve thus
obtain the following test T' with decision rule:

n 2
stop sampling as soon as A]Zi___l(xi - A/2)]/sm >
2 2
c - nA /h.;m (n >n)

and choose d, or d, according es Z(xi - af2) 18 >or <0

where
(24%) ¢, = v[(2a)"2/" - =-2fn2x/1+ (-2 fn2x)/v+ O(ve)__7 .

After m observations have been taeken and G computed, an upper
bound on the total sample size is l&cmsfl/Ae .

Ho approximations to the OC or ASN functions have been ob-
tained. Preswuably T' compared with T would have a cmaller ASN
in the neighborhood of p = A/2 et the cost of a sglightly larger
ASN at (and beyond) p = 0 and A. The conparison would be analogous
to the comparisons of the SPRT and MPRT (cr known) given by Anderson
(1960).

If a#p , the test can still be used with 20 in (24) re-
placed by o + B, but then one can only assert that the sui of the two

error probabilitles is less than o + p (Hall, 1961).
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8. THE TWO-SIDED CASE

The two-sided normal test, variance knowm, based on the weipht

function method (Wald, 1947) or the invariance nethod (Ha11, 1959),

cannot be adapted to the case of unknown variance as was the one-
sided test, since 02 does not factor out of the relevant probabili-
ty ratios. However, the Sobel-Vald test procedure (Sobel and ald,
l9h9), in which one in effect runs two one-éided tests simltaneously,
1s easily adapted. To test p = O against u] > &, one can run

two T (or T') tests == of u =0 agalnst p =4 end p =0
agalnst |y = -A -- sirultaneously and continue saupling until both

tests have terminated.

9. HEURISTIC TESTS Tn and TA

In discussing the sequential estiration of p (o unknown), Ansconbe
(1953) noted that, if the procedure were not allowed to terminate early,
o would essentially be knowm. Thus, if one uses a procedure requiring
knowledge of o but replaces it by an estirate, the broperties of
the procedure shoﬁld not be greatly affected. The tests T and T
are like this; in fact, the test boundaries suitable if o were known
are widened to account for the fact that o is estimated on mn-1 de-
grees of freedom. However, o is not re-estinated at each successive
stage, and the choice of n seems arbitrery; in fact, if o were
much spmaller than expected, a conpletely sequentlal procedure ray

terninate before the first stage of T 1is coupleted,
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The following modification of T 1is proposed purely on in-
tuitive grounds: re-estirate 02 by si at each stage n and
base the test on rn(sn) (n > 1) with boundaries (an, bn) given
by (1) with v replaced by n-l, This test, T,» 18 like a SPRT
(o0 known) with o replaced by a new estimate at each stage, and
vith the boundaries widened in an attempt to account for the lack
of knowledge about o, The boundaries of Tn converge to Wald's
conservative boundaries (-fn o, {n B) which are appropriate (though
s8lightly conservative) if 02 is known. A diagran for carrying out
this test is 1llustrated in Figure 1, together with diagrems for other
sequential tests. (The SPRT iB the dlegram uses Vald's approxirate
boundaries, a =fn (I~ pB/xd) eand b={fn (B/I~-a) .)

The alternative test T' can be nodified analorously, obtaining
Té with the roles of c, and 8, replaced by cn and She Its
boundaries depend on Si and thus cannot be graphed in advance (in

the dlagram, the expected values of the boundaries are graphed).

No theoretical evaluation of these procedures has been possible.
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Figure 1. Diagrans for six sequential tests of <O acainst

ro p>48 (n=16, a=p = .05).
la.fL ! |
1 i = upper boundary: choose d; (u24)
n
\"/ / T lower boundary: choose d0 (u<0)
5 1 N
o “~
:in_"' \'\—--—--——-——.—_————_u__-—._.—....—..-.—_*u
i \ SrrT
T > n
0 . U6 ms 16 '716
o
PR SR T T T
bn‘: 4 e v
-5 - yd
' o, A 2
/ rn_bz(xi-z)/v
ﬁ
_104 | o® for SPRT & WPRT (o known)--
r
v ={s? ror 7 & T
/ m
10 'r l T '
\ Sk for n & Tn
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APPENDIX

Explanation of Tables

Teble 1: For the sequential test T, the power function
Pr {él' u}'was calculated from (11) and (12). : For the SPRT, it
was caleulated from Wald's approxivation (1 - e'ha)/(eha- e-ha)
vhere a = fn (T - o/a). For the other tests, it was calculated
fron (23) which reduces to Fv(-htv,a) vhere Fv(tv,a) =1~ q; for
the fixe@ sauple size test (FSST), v = » , i.e., ’Fv is the standard

normal d.f. The Pearson and Hartley (1954) tables of Fv were used.

Table 2¢ For the test T, the ASHN function was calculated from
(17) and (21). For the SPRT, Wald's approxirations were used, nemely
(A/0)2 EN=2 [1- 21'1(61_)7/11 if h#£0 and = a® 1f h = 0.
For the other tests, it was calculated from (22), and is the same for
all p-values.

The terrinal decision rule in every instance is the same, nanely

choose d {u<o0) 1z X < A/2 and choose a (n >0) if %, > YR

The approximations to the power function and ASN function ignore

a) excess over the boundaries in the sequential tests,
b) the restriction that N must be integral,

¢) the restriction that N >n for test T and Stein's test,

and are thus valid 1f N is large relative to m with high probability.

The author wishes to acknowledge the assistance of Mr. K.
Fukushine in preparing these tables and those presented in sections

L and 5.



APPROXTMATE POWER FUNCTIONS, P!{dlh"‘}’ OF PROCEDURES

TABIE 1

FOR TESTING p <O AGAINST u >4 (o =p)
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SEQUENTTAL TESTS OUE- OR TWO-STAGE TESTS
@ {pAal n Test T SPRT Stein's Test FSST
n=1% |n=3L |(c known) n=16 | = 31 |(c knowm)
.5 0 | .5 .5 5 o5 5 -5
;25 0.5 ;154 .168 ;187 197 -;201 ;205
;1 0.8 ;0727 ;0777 ;0866 .0906 | .0923 ;09h1
.05 |0 1;0 .0l50 ;oh63 .05 ;05 ;05 .05
-1 1;2 .0285 ;0278 .0284 . 0264 ;0253 0242
-.25 1;5 ;0149 ;0132 .0119 .0095 ;0081 ;0068
-5 | 2.0 | .00565 ;oohd§ .00276 .00159 ;00097 . 00050
.5 o | .5 5 5 5 .5 .5
.25 | 0.5 || .062 .075 .091 .106 14 | L1220
.1 | 0.8 || .o192 .0216 .02k47 .0275 .0293 | .0313
o 0 1.0 } .0095 | .0097 | .01 .01 .01 .01
-.1 | 1.2 || .00%96 | .00453 | .00397 00349 .00307 | .00262
-.25 | 1.5 || .00206 { .00154 | .0010L .00071 | .0OOY5 | .00019




TABLE 2

2l

APPROXTMATE ASN FUNCTIONS, (a/c)® c {Nlu}, OF PROCEDURES

FOR TESTING p < O AGATINST u >4 (o =B)

SEQUENTIAL TESTS

ONE- OR TVO-STAGE TESTS]

Stein's Test FSST ,

@ | g/ | n Test T SPRT
n=16 | n=3L|(c known) n=16 { u=31|c knowm)

5 |0 15.4 11.7 8.7
.25 0.5 |l 11.0 9.2 Tl
.1 0.8 8.2 7.2 6.1

.05 10 1.0 || 6.9 6.1 5.3 12.3 11.5 | 10.8
-1 |12 || 5.9 5'.5 L.6
-.25 |1.5 || 4.8 L.3 3.8
| =5 12,0 || 3.7 3.3 2.9
5 10 45.8 31.0 |21.1
.25 0.5 || 23.1 18.8 15.0
bWl 0.8 [l 15.5 13.0 |10.9

.01 27.1 2kh,1  |21.6
0 1.0 || 12.6 10.6 9.0
-1 1.2 |10.5 8.9 7.6
-.25 11,5 || 8.5 7.2 6.1




