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1. Introduction 

Let M denote a submanifold of ]R n+t of codimension I. Let ~ denote a restriction operator 

f e -i(x' ~)f(x)dx,  rl E M, f E S(~, n+t) . (1.1) ~ f ( o )  

We wish to find an optimal range of  exponents p such that 

II~fllL2(M,d~) < CpllfllLp(~t.+t), (1.2) 

where dry is a compactly supported measure on M. 

When M is a codimension one surface in ]R n+l with non-vanishing Gaussian curvature, the 

estimate (1.2) is well understood. A celebrated result due to Stein and Thomas says that if M 

has non-vanishing Gaussian curvature, then the estimate (1.2) holds with p = 2(n+2)n+4 �9 In higher 

dimensions, the situation is more complicated. When M is a codimension two surface in ]R n+2 

satisfying a non-degeneracy assumption, the estimate (1.2) holds with p = ~ .  (See [1] and 

Theorem 7 in Section 3 below). However, a sharp necessary and sufficient condition is not currently 

available. 

It should also be noted that even in codimension one, the more general (LP, L q) estimates 

for the restriction operator are not fully understood, except in the dimension two. (See [14] for a 

detailed discussion). We shall not address this issue here. 

The purpose of this article is to establish the estimate (1.2) in the case when 

M = {(x, Xk+l . . . . .  Xk+l) :Xk+l = t~I(X) . . . . .  Xk+l = t~/(X)} , 

where q~j E C ~176 (R n \0) is homogeneous of  degree mj > 1. 
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Let .T'[d~r] denote the Fourier transform of d~r. By a theorem of  Greenleaf  (see [3]), the 
2(/+~,) if inequality (1.2) holds for p = 2-Fg'7" 

[.Y'[dcr](R~)l < C(1 + R) - y ,  ~ ~ S n+l . (1.3) 

We shall see below that isotropic Fourier transform estimates do not yield the sharp restriction 

theorem in codimension two or higher (see, e.g., [I]). It should be noted that even in codimension 

one, it is not known whether the exponent given by Greenleaf 's theorem is sharp. 

The best possible isotropic rate of decay of .Y'[dcr] for the homogeneous manifold M defined 

above is n An application of Greenleaf 's  theorem yields the estimate (1.2) with maxj {mj }" 

2(n + lm) 
Po -- , (1.4) 

n + 21m 

where m = maxj {mj }. 

However, the following homogeneity argument due to Knapp suggests that the optimal expo- 

nent for the estimate (1.2) is 
2 ( m l  + . . . + m l  + n )  

Po = (1.5) 
n + 2 ( m l  + . . . + ml) 

Indeed, let 7~ denote the restriction operator defined above. Let fa = h, where h is the characteristic 

function of a rectangle in IR n+l with sides of lengths (1, 1, . . .  1, C . . . . .  C), C large. 

Then 
Ilfallp ~ ~(l--l/p)(n+ml+'"+ml) and l l~fa  112 ~ 6 n/2 �9 (1.6) 

2(n+m I +'"+ml) 
Hence, (1.2) can only hold if p < n+2(mt+...+mt)" 

We will establish the estimate (1.2) for a homogeneous manifold M, with the exponent  P0 given 

by Knapp's  homogeneity argument, under a variety of conditions on the level sets of the graphing 

functions 4'1, 4'2 . . . . .  • l .  

Our main results are the following. The first result gives us a good description of  L 2 restriction 

theorems for two-dimensional submanifolds in codimension 2 given as graphs o f  homogeneous 

polynomials. (Please see Definition 1 and 2 below for the precise description of  finite type. Please 

see Definition 3 below for the description of the order of  vanishing along a line.) 

T h e o r e m  1. 

(See Theorem 12 in Section 3). Let 

S m {(Xl, x2, x3, x4) " x3 = ~bl (Xl, x2) ,  x4 m ~2 (Xl, x2 ) ,  } (1.7) 

where ckl, ok2 E C~176 2) are homogeneous polynomials o f  degree ml and m2, respectively (ml > 

m2 >_ 2). Suppose that there exists a non-zero constant c such that Ckl(X)llx:4~(x)=l} = c. Let 

Zo = {(Xl, x2) : q~z(xl, x2) = 0}, Z1 = {(Xl, x2) : V~b2(Xl, x2) = (0, 0), and Z2 = {(Xl, x2) : 
Hq~z(xl, x2) = 0}, where Hdp2 denotes the determinant o f  the Hessian matrix o f  ckz. Suppose that 

the curve {x : ~bz(x) = 1} is offinite type m at each point of  Z2 A {x : q~z(x) = 1} and that ok2 

vanishes o f  order < M along the lines contained in Zo U Zb  Then (1.2) holds f o r  every p < Po, 

where Po is the sharp exponent 

ml + m2 + 2 (1.8) 

ml q.- m2 -I-- 1 ' 

i fm l  + m2 >_ max 2M 1 + m2 " 

{2(l+M(l+mm-'~2) 2(re+l)} i fm in{2M( l  + mm.~z),2m} < ml + m2 < 
(1) p < max l + 2 M ( l + ~ ) '  2m+l 

max{ZM(1 + mm-~2 ), 2m}, 
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{ 2(l+M(l+m~4) / i f 4  ml + m2 < min{2M(1 + 
/ 

2(m+l) < mm.~),. 2m}. (2) p < min l+2M(l+~-~: ~) ' 2m+l 

The following result answers a question posed by Fulvio Ricci about the restriction theorems 

for manifolds given as graphs of quadratic monomials. The proof relies on the precise asymptotics 

of the Fourier transforms of certain distributions obtained by Shintani (see [12], and Lemma 7 

below). It has been brought to our attention that this result is implied by a theorem announced in the 

Bulletin of  the AMS by Gerd Mockenhaupt. We enclose the proof for the reader's convenience, and 

to motivate the related results proved in this article. (See, e.g., Theorem 3 below). 

T h e o r e m  2. 

(See Theorem 13 below). Let S = {(x, Xn+l . . . . .  Xn+t) e •n+l : Xn+l = 4~l(X) . . . . .  Xn+l = 

qb/(x)}, where l = n(n+l) and the dpj denote the distinct monomials o f  degree 2. Then the esti- 2 ' 
2(n+2) 

mate (1.2) holds with the sharp exponent Po = -Yff"4~" 

The following result generalizes Theorem 2 to manifolds given as joint graphs of smooth 

functions of higher order of  homogeneity. The proof relies on the non-isotropic decay estimates 

for the associated Fourier transform of the surface carried measure. The observation that the non- 

isotropic decay estimates are useful to obtain sharp restriction theorems in codimension > 1 is not 

new. See, for example, the work of Christ [1] and Prestini [11]. 

T h e o r e m  3. 

(See Theorem 14 below). Let S denote a compact piece o f  the manifold {(x, Xn+ l . . . . .  Xn+l ) e 

R n+l :Xn+l = ~bl (x) . . . . .  Xn+t = (bl(X)},wheredpj e C~176 >_ 2n. 

Suppose that no linear combination of  the q~js vanishes on a subset o f  positive measure o r s  n-  I. Let 

qb(x) = (~bl(X), . . . .  ~l(X)). Suppose that ~(o9) r (0 . . . . .  0), co e S n-l.  Then the estimate (1.2) 

holds with the sharp exponent 
2(n + Ira) 

Po -- (1.9) 
n + 2 l m  

Many of our results are based on the non-isotropic decay estimates for the associated Fourier 

transform of the surface carried measure. A sample result is the following. 

T h e o r e m  4. 

(See Theorem 6 below) Let S = {(x, Xn+t . . . . .  Xn+l) e ~n+l : Xn+l = ~bl(X) . . . . .  Xn+l = 

qSl(X)}, whereeachqSj e C~176 ishomogeneousofdegreem >_ 2n. L e t ~ ( x )  = (~bl(X) . . . . .  dPl(X)). 

Let ~x(x )  = (~ (x ) ,  k). Let 

= f ei(X'~)+Xl(~ , (l.10) 

where 7z is a smooth cutoff function. Then 

is t f (~ ,  ~k)] <_ C [ ~ x ( w ) l - ~ d w .  (1.11) 
n ~ |  

This article is organized as follows. In Section 2 we will prove some estimates related to the 

decay of the Fourier transform of the surface carried measure. In particular, we will estimate the 

decay of the Fourier transform of the surface carried measure, in any codimension, in terms of the 

integrability of  the multiplicative inverses of  the graphing functions q~j restricted to the unit sphere. 

Using this technique we shall also obtain an accurate non-isotropic estimate for the Fourier transform 

of the surface carried measure in the case when every graphing function has the same homogeneity. 

In Section 3 we will apply the results of  Section 2 along with the results of  Christ [1], Pres- 

tini [11], and a variety of  scaling arguments to obtain a sharp estimate (1.2) with the exponent p0 

given by (1.5). 

In Section 4 we will use the non-isotropic estimates from Section 2 to study restriction theorems 

in the case when every graphing function is homogeneous of the same degree m >_ 2. 
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2. The Decay of the Fourier Transform of the Surface Carried 

Measure 

We will need the following definitions. (See, e.g., [1, 3]). 

Nonvanishing Gaussian curvature: Let E be a submanifold of R N+l of  codimension 1 

equipped with a smooth compactly supported measure d/z. Let J : ~ ---> S N be the usual Gauss 

map taking each point on E to the outward unit normal at that point. We say that E has everywhere 

nonvanishing Gaussian curvature if the differential of the Gauss map d J  is always nonsingular. 

Strong curvature condition: Let S be a submanifold of R n+l of codimension l equipped with a 

smooth compactly supported measure d/z. Suppose that S is a joint graph of smooth functions gt, 

g2 . . . . .  gl, where gj : R n ---> R.  Let .N'xo(S) denote the l-dimensional space of normals to S at a 

point x0. We say that S satisfies the strong curvature condition (SCC) if for all x0 ~ S in some 

neighborhood of the support of d/z, 

d e t D 2 ( V l g l ( x )  + v 2 g 2 ( x ) q - . . .  + vtgl(x)) ~ O ,  Vv EA/'xo , (2.1) 

where D 2 denotes the Hessian matrix. 

N-curvature condition: Let S ~ R n+t be defined as above. We say that S satisfies the N-curvature 

condition if the rank of the Hessian matrix in (2.1) is greater than or equal to N everywhere. 

Our main results are the following. 

T h e o r e m  5. 

Let S = {(X, Xn+! . . . . .  Xn+l) ~ ~n+l : xn+l = el(X) . . . . .  Xn+l = Cn+l(X)}, where Cj 

C~176  is homogeneous o f  degree mj  > 2. Suppose that no r is a constant multiple o f  any Cj 

for  i ~ j .  Suppose that ( r  E LPJ(Sn-1), 0 < pj < -~y. Let lz denote the number  o f  distinct 

n mjs. Suppose that -~ < for  each j .  Let ~ = (~.1 . . . . .  ~.l), and define 

L> = f ei((x'~)+Mr , (2.2) F(~, 

where ~k is a smooth cutoff function. 

Then 

IF( t ,  ~.)1 _< C(1 + I~1-+- I~1) - p  , (2.3) 

where p = mini {pj }. 

T h e o r e m  6. 

Let S = {(X,Xn+l . . . . .  Xnq-l) ~ R n+t : Xn+! = ~bl(X) . . . . .  xn+t = q~t(x)}, where each 

qbj ~ C~176 is homogeneous o f  degree m > 2. Let ~(x)  = (q~l(x) . . . . .  dpt(x)). Let c~x(x) = 

(~(x) ,  ~.). Let F(~,  L) be defined as in (2.2). Then 

[ f (~,  X)I < C [~x(o~)l-md~o. (2.4) 
n-I 

L e m m a  1. 

Let S ~ R n+t and F(~,  ~.) be defined as above. Let 

)0 = [ ei((x'~)+xl~l(x)+'"+xt~t(x))~o(x)dx , (2.5) F o ( L  
J 
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where 1/:o is a smooth cutoff function supported away from the origin, and each qSj ~ C ~ (Rn\0) is 

homogeneous of  degree m > 2. Suppose that 

IFo(~, 3-)1 ~ C(1 + I~1 + I~.t) -~', Y > 0 .  (2.6) 

Then n 

IF(~, 3-)1 _< C(1 + I~:1 + 13-1) - ~  , (2.7) 

i f  y maxj {my } >__ n. 

L e m m a  2. 

Let S ~ ]R n+t be defined as above. Suppose that Sl{x~+h=l.x~+j2=l,...,x~+A,.=l }, 1 < s < l, is 

an (n - s)-dimensional submanifold of  codimension l, o f  the hyperplane 

{(x, xn+l . . . . .  Xn+l) : Xn+jl = 1 . . . . .  xn+j, = 1} , 

satisfying the N-curvature condition. Let Fo(~, 3.) be defined as in (2.5). Then 

N 

lEo(t,  3-)1 ~ C(1 + 1~1 + t3-D - r  �9 (2.8) 

Lemma 3. 

Let S E ]~n+t be defined as above with I = 2. Suppose that there exists a constant c, such that 

q~l I{x:~(x)=l} = c. Suppose that ml ~ m2. Suppose that Hfbl, the Hessian matrix o f  ~pl, has rank 

> 2 away from the origin. Suppose that ~bl(W) 5/= O, co E S n-l .  Let FO(~, 3-) be defined as in (2.5). 

Then 1 
[F0(~, 3-)1 < C(1 + I~l + 13-1) -= . (2.9) 

L e m m a  4. 
Let S E ~n+t be defined as in Lemma 3, with n = l = 2. Then the assumptions o f  Theorem 8 

(see Section 3) are satisfied at every x r (0, 0) iff~b2(09) ~ O, co ~ S 1, and the level set {x : dp2 = 1 } 

has non-vanishing Gaussian curvature. 

Proof of T h e o r e m  5. We shall prove the theorem under the assumption that all the mjs are 

distinct. The general statement follows by combining the terms with the same homogeneity. Recall 

that 

3-) = f ei((x'~)+LlePl(x)+"'+xt~t(x))~(x)dx , (2.10) F(~, 

where without loss of generality ~ is radial, and each q~j ~ Coo(R n) is homogeneous of degree 

mj > 2 .  

Let f2 = o9 6 S n-I  : 14~1(09)1 > ~ . . . . .  I~t(~o)l > �9 

Let 

cs.- \a + = Fs"-t \~ + F~"  (2.11) 

Taking absolute values inside the integral we see that 

I F s . - ' \ a ( ~  , 3-)1 -< c s " - ~ \ a  , (2.12) 

which by Chebyshev's inequality is bounded by 

Cmax{13-Jl-PJfs j  ,-~ 14~J(09)l-P~dw} -< CI3-I-p , (2.13) 

for 13-1 large. 



110 Laura De Carli and Alex losevich 

Let ~00 ~ C~(]R) be supported in the interval [�89 4], such that ~o = 1 inside [1, 2], and 

oo 

E ~ 0 ( 2 k s ) ~ l .  
k=O 

(2.14) 

Let 

/~k , (2.15) 

A change of variables sending r ----> 2-kr shows that 

F~(~,~.)= 2-nkFO (2-k~,2-m~k*~ . . . . .  2-m'kAt) . (2.16) 

L e t . A =  {1,2 . . . . .  l}. 

We must estimate 

E 2-nk EO,2-nk~ 2-mlk~ ,. ,2-mtkxt) 

k=0 ~ c A  

(2.17) 

where 

IG -- z ~-~176 - . ' ~ ,  . . . . .  ~-"~,)  
{Aj~j(og)~2 rajk, jEI3. Aj~j(09)> 2 rajk, j~13} 

= z ~ -~  ~ o ( ~ - ~ , ~ - ~ , ~ l  . . . . .  ~-m,~,)l 
SIB,-<} N S{tL>} 

(2.18) 

To estimate each I~ we shall need the fact that the curve (r, r ml . . . . .  r rat) has non-vanishing 

curvature and torsion away from the origin, so long as all the m/s are distinct. An elementary van der 

Corput type estimate shows that the Fourier transform of the measure carried by this curve decays 

of order - t-~T" We shall also use the fact that F ~ is bounded. More precisely, 

II~l <_ f= c ~ 2 -nk + C E 2."k 2-mjk I~j(o~ml do, 

SIs.<_. } SIB,>} 

"fl~J I ~ - ~ d w  < maxlXjl '~ (w) , 
jE.A. 

(2.19) 

n l for each j e .,4. provided that ~-j < F~T, 

Moreover, 

= I~Jl -:, f~ [4~J(~176 :,-~d~ 

- IxJl-:J L.-, 14~J(~176 (2.20) 

since pj < "~7" 
Hence, the expression (2.19) is bounded by 

maxj~.zt Ix]l-*] ~._, [@J(~176 <- c(IXl)-P ' (2.21) 
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for IXl large. 

This completes the proof if Is~l < Cl~.l. However, if this is not the case, the gradient of the 
phase function (x, ~) + ,~bi(x)  + . . .  + )~lckt(x) is bounded away from zero, and an integration by 

parts argument (see [14, p.364]) shows that IF(~, 3.)1 < CN1 + I~1 + I~.l-tr for any N > 0. [ ]  

P r o o f  of  T h e o r e m  6. Let 3. = tu = t(vl . . . . .  yD. Let Ov(x) = (q~(x), v). We rewrite F(~, ~.) 
in the form 

f d((x'~)+t~ (2.22) 

where ~p is a smooth cutoff function. Let f2 = {w 6 S "-1 : IOv(w)l > ~}. Let 

F(~' )0 = fl~ ~s,-~\~ + fr~ el2 = Fs"-~\f2 + F~ " 
(2.23) 

Taking the absolute values inside the integral, we see that 

(2.24) 

which by Chebyshev's inequality is bounded by 

n /  n 
t - ~  IO~(oo)l-;do~. (2.25) 

Let q/0 6 C~~ be supported in the interval [�89 4], such that ~P0 -= I inside [1,2], and 

oo 

k=0 

(2.26) 

Let 

k f f  �9 - ~ t o ( 2 k r ) d w d r .  (2.27) F~(~, 3.) = e~(r(o~ ~)+trmOv(W))rn 1 

A change of variables sending r --+ 2-kr shows that F~(s e, ~.) = 2-nkFO(2-k~, 2-mkL). We 

must estimate 

oo 

k=0 {tOpv(eo)<2 mk } {t~v(w)>2 mk} 

= I + I I .  (2.28) 

To estimate 11 we shall use the fact that away from zero the Fourier transform of the measure 
supported on the curve (r, r m) decays of order - �89 To estimate I we shall just use the fact that F ~ 

is bounded. More precisely, 

lll <_ C ~ ~ 2-nkdoo <_ Ct--~ f I~,(w)l-~d~o,  

{tOu(to)<2 'n'~ } 

(2.29) 

and 

E n IIII < C 2 -nk 2-mk~pv(w ) < Ct--~ I~v(w)l-~dw , (2.30) 

{tdP u (o~) > 2 mk} 

as long as m > 2n. 
This completes the proof if I~1 ~ Cl~l. However, if this is not the case, the gradient of the 

phase function (x, ~) + ~14)] (x) + . . .  + Ztckt(x) is bounded away from the origin, and an integration 
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by parts argument (see [14, p.364]) shows that IF(~, ~-)t < CN(1 + I~1 + I~-t) -N,  for any N > 0. 
[]  

P r o o f  o f  L e m m a  1. Let 

= f ei((x'~)+;q4~l(x)+'"+Xt4~t(x))~o(2kx)dx (2.31) h 

A change of variables sending x ~ 2-kx shows that 

Fk(~, L) = 2 -nkF0 (2-k~,  2 - - m l k ) v l  . . . . .  2 -m'k~-l) �9 (2.32) 

Let .,4 = { 1, 2 . . . . .  l }. We must estimate 

~'-~- 2-nk FO( 2-k~'2-m~k~'l . . . . .  2-m'kj't) = Z II~, (2.33) 

k = 0  BC.,4 

where 

It~ = ~ 2 -nk F0(2-k~,2-mlk~-I  . . . . .  2-'mkLl) 

{I;t.jl<2mj ~. jEB, IXjI>2"J t:. jq~B} 

= ~ N -n' F0 (2-k~, 2-mlk~-I . . . . .  2-mtk)~l) . (2.34) 

Slta.<-I N S{B,>I 

Using the assumed decay of  Fo, and the fact that, in particular, F0 is bounded, we get 

II~l < Cl ~ 2 - " k + C 2  Y~. 2-nk (2.35) 

sIB._<I &n,>~ \Jr 
n n 

< CmaxlXj l  gJ <_ClXl ~ ,  (2.36) 
j~A  

as long as maxj{mj} < n~/. 
This completes the proof if I~l < C[LI. However, if this is not the case, the gradient of the 

phase function (x, ~) + ~.ldPl (x) + . . .  + LtePt(x) is bounded away from the origin. An integration 

by parts argument (see [14, p.364]) shows that IF(~, ~-)1 < CN(1 + I~1 + I;q) -N,  for any N > 0. 
[ ]  

P r o o f  o f  L e m m a  2. Assume that Xn+jl = X n + l ,  "" "Xn+js = Xn+s. In what follows we will 
2 (resp. denote x 6 R n by (x', x"),  with x' ~ R s, x" ~ •n-s and by Jx'(f) [resp. Jx"(f)] and Dx, g 

D2,,g) the Jacobian of a function f ( x ' ,  x") and the Hessian matrix of a function g(x' ,  x") computed 

with respect to the x ~ (resp. x") variables. Let q~ = (q~l . . . . .  ~bs). 
Take P on the support of &r such that q~(P) = (1, 1 . . . . .  1). Since Sl~x,+~=~...x,+.,= u is 

by assumption a submanifold of codimension l of the hyperplane {(x, xn+l, . . . ,  xn+t) : Xn+l = 
1 , - . .  xn+s = 1}, the Jacobian of the function qb, J(~b), has rank s at P. 

There is no loss of generality if we assume that Jx'q~(P) is the identity in the space of s • s 

matrices, and that Jx,dp(P) = 0 
By the implicit function theorem there exists a smooth function ~ (x" )  : R ~-s  --+ ]R s such that 

4~0P(x"), x")  = 1 in a neighborhood of  P" .  
An application of the chain rule yields: 

(1) Jdp(e/(x"), x") = Jx,4~(~(x"), x") x J~(x")  + Jx,,r x") ~ O, which implies that 

y ~ ( P " )  = o, 
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(2) 0 j r  + ~x.~+i -Sx,+jJx,,4'(P) = 0 for every j < n + s, and 

(3) D2(q~s+j)(~(x"), x")lx,,=p,, = ~k=lS ~xk4's+j(~(x,,), x//)lx,,=p,, 0 2(ff/k)(P')  

2 x tt x ' )  +Dx,,4's+j(~( ), for every j < n - s. 

From (2) we have that, for every k < s, the Hessian matrix of  Ck at P", D2~pk(P"), is --D2x,,dpk(P"), 
and from (3) that 2 Dx,4's+ j (P) c a n  be written as a linear combination of the Hessian matrices of the 

functions ~Pk and of the Hessian matrix of 4's+j(r x") at P" .  

Let  �9 = (x, ~) + )`14'1 + " "  )`t4't denote the phase function of F as in (2.2). By the above 
remark, D2x,,~P(P) can be written as a linear combination of the Hessian matrices of the functions 

~k(X') and the function dPs+j (~(x"), x ' )  at P ' .  Since SII~§ ...... +.:t~ satisfies the N-curvature 

condition, the rank of every linear combination of the above matrices is N for every ), # 0. This 

shows that the rank of the Hessian matrix of  �9 is > N and hence that (2.7) holds. [ ]  

P r o o f  o f  L e m m a  3. A theorem of Littman [9] says that if a surface in codimension one has at 

least k non-vanishing principal curvatures, then the Fourier transform of the surface carried measure 

decays of  order - ~. The proof of that theorem shows that F0 has the required decay if the rank of 

the Hessian matrix of  the phase function �9 (x) = (x, ~) + )`l~! (x) + )`24'2 (x) is > 1 for every x on 

the support of g and for every ()`l,)-2) # (0, 0). 

We observe now that 4'1 (x) -- c4~ 2 (x). Indeed, if 4~2(xo) ~ 0, then 4'2 = 1, and 
\~(~o)  ~2 / 

/ \ 

since ~ l l l ~ ( x ) = l } -  c, then 4'1 ( ~ ]  = ~ = c .  ThendPl(XO):C4'2(xo)m~ for every 
\~(xo)  m2 / ~(xo) m2 

x0 ~ ~n such that 4'2(xo) :~ 0. But the argument that we have just used shows that 4'2(xo) ~ 0 iff 

4'l(xo) # 0. Hence, 4'l(x) = c4'2(x) ~2 for every x ~ R n. 

By the chain rule, 

ml " t - I  
Di.jdPl(X) = c~Di,jr 

m2 
+cm,(m, ) 

mE ~ -- ~ D,. (~2) D~ (4'2) ~(x)  ~ - 2 ,  (2.37) 

for i, j ,  < n. Then 

DZ(~) (x )  
/ ml " 1 - 1 \  

+c)`lml ml _ I 4'2(x)'~2 
m2 

(D1 (q~) (x) V (~b2) (x) . . -  Dn (4'2) (x) V (4'2) (x)) . (2.38) 

m ~ - - l  
Let P be a point on the support of X. If  we set )`2 + c)`l ~-~-2 q~(P)  2 = 0, we observe that 

D 2 ( ~ ) ( P )  equals a matrix whose rank is 1 if and only if ~7(4'2)(P) # (0, . . . ,  0), q~z(P) m~-2 # 0, 

and zero elsewhere. Since we assumed that 4'2 does not vanish away from the origin, Euler 's homo- 

geneity relations guarantee that V(4'2)(P) does not vanish. Consequently, the rank of D 2 ( ~ ) ( P )  is 

at most 1. 
To show that D 2 ( ~ ) ( P )  cannot be zero, we observe that if this were the case we would have 

ml_ 1 
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= (DI (r (P )  V (r ( P )  . . .  Dn (r (P )  V (r (P ) )  �9 (2.39) 

The coefficient that multiplies D2r cannot be zero because the matrix on the right-hand 

side has rank one. On the other hand, the matrix on the left-hand side has rank > 2 by assumption, 

hence the equality in (2.39) can never hold. 

This concludes the proof of the theorem. [ ]  

P r o o f  of  L e m m a  4. After perhaps rotating and dilating the coordinates, we can work in a neigh- 

borhood of the point (0,1). 

There exists a constant c such that r I{x:~ =11 --- c, r l -- cr �9 (See proof of Lemma 3.) 

By the chain rule D i , j r  (Xl, x2) ----- 

ra 1 

m l D i , j r  (Xl, x2) r (Xl, x2) m2 l 
m2 

rnl(m-~22 ) Jr- - -  -- 1 Oi (r Dj (r r (Xl, X2) m~2-2 
m2 

(2.40) 

fori,  j ,  < 2. 

Observe that by Euler's homogeneity relations 

(1) D1(r 1) = m2r 1), 

(2) D2(r  1) ~--- m--~_l D12r l),  and 

(3) D11(r 1) = mE(m2 - 1)r 1). 
In order to show that the sufficient condition of Theorem 6 is verified, we must show that the de- 

x 2 2 
terminant of the matrix J(x, y), whose rows are V ( ~  DI 1r (0, l)+-~-D22r (0, 1)+XlXED12r (0, 1)) 

x 2 x 2 
and v ( ~ D I  1r l) + ~2-~ D22r 1) + XlX2DI2r  1)), is not a square. A direct computation 

shows that the discriminant of the determinant of J(xl, x2) is 

m2(mm--~2 - 1) 2 

(m2 -- 1) 2 
(r 1)) 2(~2-1) [det (H  (r (0, 1)] 2 , (2.41) 

which does not vanish by the assumptions on r Hence, J - "  is integrable for a < 1. This concludes 

the proof of the lemma. [ ]  

3. Restriction Theorems-Scaling 

We will need the following results. 

Theorem 7. [11 
Let 

f , I  

= { ( X , X n + l , X n + 2 )  E R n+2 :Xn+l = gl(X),  Xn+2 -~- g2(x)} , S (3.1) 

where gj E C~176 
n and every O, the expression 2(n+4) Then for every k < Suppose that (1.2) holds with Po = ~ .  

(ff--~)k (detD2(cos(O)gl(x)+sin(O)g2(x))) (3.2) 

does not vanish. 
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Theorem 8. [111 
Let 

S = {(x, x,+l  . . . . .  x2n) E ~,+n :X,+l  = gl(x)  . . . .  X2n = gn(X)} , (3.3) 

where gj e C ~ ( R n ) .  Let G j  denote the quadratic part o f  the Taylor expansion of  gj. Sup- 

pose that the v e c t o r s  {~7(a'~0x/Gj)(0)} i<_, span R n. Let J ( x )  denote the determinant of  the matrix 
j<n 

6 (~TxGt . . . . .  ~TxGn) .  Suppose that j - a  e L l (Sn- l ) ,  for  any a < 1. Then (1.2) holds with Po = ~. 

Note that when n ---- 2, the assumptions of Theorem 8 are equivalent to the necessary condi- 

tion (3.2) in Theorem 7. In particular, the conditions of Theorem 8 are necessary and sufficient in 

that case. 

Before stating our main results, we need to introduce the following definitions. 

Def in i t ion  1. 
Let F : I --~ IR 2, where I is a compact interval in R, and F is smooth. We say that F is finite 

type if  ( (F (x ) - F (xo) ), tz) does not vanish of  infinite order for  any xo 6 I, and any unit vector lZ. 

We will also need a more precise definition to specify the order of vanishing at each point. Let 

a0 denote a point in the compact interval I.  We can always find a smooth function F, such that in a 

small neighborhood ofao,  F(s) = (s, F(s)),  where s e I.  

Def in i t ion  2. 
Let F be defined as before. Let F(s) = (s, F(s)) in a small neighborhood of  ao. We say that 

F is finite type m at ao/fF(k)(a0) = O for  1 < k < m, and } '(m)(ao) 5~ O. 

Our main results are the following. 

Lemma 5. 

Let S = { ( X , X n + l , ' " , x , + l  e R n+t : xn+l = dPl(x) , . . . , xn+l  = tPn(X)}, where each 

~pj ~ C ~ ( R "  /{O}), homogeneous of  degree mj > 1. Let dcr denote a compactly supported smooth 

measure on S, and let d cr 0 = X ( x )d cr , where X ( x ) is a smooth cutoff function supported away from the 

origin. Let T f ( x )  = f .d 'a  andlet  To f ( x )  = f *dA~o. Suppose that To : Lq~ n+l) ~ Lq[~(~ n+l) 

is a bounded operator. Then T : LP~ n+l) " ~  LP~)(ml'"'ml) (~, n+l) is a bounded operator, 

where 
2 ( n + m l  + . . . + ml) 

Po ( m l , ' - ' , m l )  = , (3.4) 
n + 2 ( m l  + . . . + m l )  

as long as po(ml,  - " ,  ml) < qo. 

Theorem 9. 

Let 

S = { ( x ,  Xn+l . . . . .  Xn+l) : Xn+l = ~ b l ( X )  . . . . .  Xn+l = q~ / (x )}  , ( 3 . 5 )  

where dpj e CC~(Rn\O) is homogeneous o f  degree mj  >_ 2. Suppose that S satisfies the assumptions 

of  Theorem 5. Then the estimate (1.2) holds with 

2(l + p) 
Po = ~ (3.6) 

21 + p  

Theorem 10. 

Let 

S = {(x, x.+l  . . . . .  x .+l) :X.+l  = ~l (x)  . . . . .  x.+l = ~t(x)} , (3.7) 

where q)j 6 C ~ ( R " \ O )  is homogeneous o f  degree mj > 2. Suppose that S satisfies the assumptions 

of  Lemma 2. Then the estimate (1.2) holds with the sharp exponent 

2 (n  + m l  + . . . + r o t )  
Po = , (3.8) 

n W 2 ( m l W . . . + m l )  
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provided that (ml + . . .  + mr) > -~-. 

Theorem 11. 

Let 

S = {(x, Xn+l, Xn+2) :Xn+l = ~,bt(x), Xn+2 = ~b2(x)}, n > 2 ,  (3.9) 

where dpj E C ~ (JR n \0) is homogeneous of degree mj > 2. Suppose that there exists a nonzero 

constant c, such that 

q~l ]{x:~(x)=ll -- c .  

Suppose that ~l (w) ~ O, oJ ~ S n-t. I f  the rank of the Hessian matrix of ~l is >_ 2, then (1.2) 
2(ml+mI+n) provided that m I -t- m2 > 4n. holds with Po = n+2(mt+m2), 

In order to introduce Theorem 12, we need the following result which was stated and proved 

by the second author in [7]. 

L e m m a  6. 

Let Z0 = { ( X l , X 2 )  : P ( X l , X 2 )  = 0}.  Let ZI = { ( X l , X 2 )  : ~ T P ( x l , x 2 )  = ( 0 ,  0 )} .  Let 
Z2 = {(xt, x2) : HP(x l ,  x2) = 0}, where H P(x l ,  x2) denotes the determinant of the Hessian 

matrixofP. Then for each j 0, 1,2, Zj {(0, 0)} [._J Nj = = [.-Jk=l Lk, where each Lk is a line through 

the origin, and Nj < oo. Moreover, Z! = Zo N Z2. 

P r o o f  o f  L e m m a  6. Let Pj denote the partial derivative of P with respect to xj. Since P is 

homogeneous of degree m, Pj is homogeneous of degree m - 1, and HP(x l ,  x2) is homogeneous 

of degree 2(m - 2). By homogeneity, if Zj contains a point (xl, x2), it also contains a line through 

the origin containing that point. Since P is a polynomial, there can be at most a finite number of 

such lines. This proves the first assertion of the lemma. 

By the Euler homogeneity relations, 

m P ( x l , x 2 )  = x l P l ( X l , X 2 ) + x 2 P 2 ( X l , X 2 )  , 

( m - 1 ) P l ( x l , x 2 )  -- xIPII(XL,X2)+x2PI2(Xl,X2) , (3.10) 

and 

(m -- 1)P2 (Xl, x2) = Xl P21 (Xl, x2) q-  x2P22 (xl, x2) , 

where the {Pjk} denote the second partial derivatives. Hence, Zo C ZI .  If we write the equations 

for PI and P2 in matrix form, we see that (m - 1) A P(xl,  x2) is obtained by applying the Hessian 

matrix of P to the vector (xl,  x2). Hence, Z2 C ZI.  Putting these observations together we see that 

Z o A Z 2  C Zl .  
Suppose that both P and H P  vanish along a line through the origin, which without loss of  

generality we take to be the x t-axis- Then m P (x 1,0) = x I Pl (x 1,0). This implies that  P1 (x 1,0) = 0. 

Also, (m - I) PI (x 1,0) = x I PI 1 (x 1,0). This implies that PI 1 (Xl, 0) = 0. P2 (x 1,0) = x I PI2 (x 1,0). 

By assumption, 

H P  (Xl,0) = PII (xl, 0) P22 (xl, 0) - P22 (Xl,0) = 0 .  (3.11) 

Since Pll(Xt,  0) = 0, we must conclude that P12(Xl, 0) = 0, which implies that  P2(xl, 0) = 0. 

This proves that v P ( X l ,  0) = (0, 0) and hence that ZI C Zo N Z2. This completes the proof of  the 

lemma. [ ]  

We shall need the following definition: 

Definition 3. 
Let f ~ C~ We say that f vanishes of order M along the line L = {(xt, x2) : xl = 

sit, x2 = s2t, t ~ ]R} if M is the largest positive integer so that f ( s l t ,  s2t) -~ tMg(t), where 
g ~ C~176 2) is allowed to vanish only at the origin. 
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Theorem 12. 

Let S = {(Xl, X2, X3, X4) : X3 = t#l(Xl, X2), X4 = ~b2(Xl, X2), } where ~bl, tP2 ~ C~176 2) are 
homogeneous polynomials of degree m! and m2, respectively, (m! > m2 > 2). Suppose that there 

exists a non-zero constant c such that tpl(x)ltx:,2cx}=u = c. Let Zo, ZI, Z2 be defined as in Lemma 6 
with respect to dp2. Suppose that the curve {x : tP2(x) = 1} is of finite type m at each point of 
Z2 fq {x : ~b2(x) = 1} and that c~2 vanishes of order < M along the lines contained in Zo U ZI. 
Then (1.2) holds every p < Po, where Po is the sharp exponent 

ml + m 2  + 2  
ml + m 2 +  1 ' (3.12) 

m--l- , i fml  + m 2  > m a x { 2 M ( 1  +m2 ) 2m}.Furthermore( l .2)holdswi th  

(1) p < max l+2MO+.~i ~) ' "am-r -- 

m--x , 2m}, max{2M(1 + m2) 

{2( l+m(l+~,  2 ( m + l l } i f 4 < m  ! + m 2 <  min{2M(1 + mm--}),2m}. (2) p < min l+2M(l+m~.2 ~) ' 2 m + l  

Proof of Lemma 5. Let 

d-'~(~, )~) = fw ei((x'~)+Xl4q(x)+'"+~'t(at(x))ff/(x)dx (3.13) , t  

where 7t(x) is a cutoff function. Let p be a cutoff function supported in the interval (1,2) such that 
)--~+=~ p(2Jt) = 1 for every t, and let 

d-~j(~, ;~) = s ei((x'r p(2J t)dx (3.14) I 

If we make the change of variables sending x -+ 2-Jx  we can write: 

Let rj denote the nonisotropic dilation 

r j f  (~, L 1 , . . . ,  Xt) = f (2J~,2m'J~-l, " ' ' ,  2mtJ~'l) �9 (3.16) 

Then 

d~j * f = 2 -nj ( r - j ~ o  * f )  (~, L) = 2 -nj (r_jd~ao * ( r _ j r j f ) )  (~, L) .  (3.17) 

A change of variables shows that r-jda~o * (r_j rj f )  = 2 j (n+m l+.-.mt)r_j (d'~0 * rj f ) .  
It follows that 

I1 * fling, = 2--nj+ j(n+ml+'"m') [I r--j ( ~ 0  * "cj f ) [Iq:) 

. . . .  dr(n+ml+...ml) 
= 2Jtmlt"'mtJ2qo 113~0 * (*Jf)Ilqh 

. . . .  J-r(n+ml+...mt) 
< C2"ttml+'"'nt'2't" II Jfll ,, 

�9 j ( l - t ~ ( n + m l + . . . m t )  
= C2s(mt+'"m02 k% q): Ilfllqo. (3.18) 



118 Laura De Carli and Ale.x losevich 

A 

The series ~--~-~--1 IId~xj * fllq~ converges, provided that 

ml + . . . m t  + ( n + m l + . . . m l )  < 0 ,  

which yields 

This concludes the proof of the lemma. 

P r o o f  of  T h e o r e m  9. 
[] 

P r o o f  o f  T h e o r e m  10. 

(3.19) 

2(n +ml  +. . .ml)  
q0 < (3.20) 

n + 2 ( m l  + . . . m l )  

[] 

The application of Greenleaf's theorem (see (1.3) above) yields the result. 

Let Fo be defined as in (2.5). By Lemma 2 

N 

IF0(~, ~.)l < C(1 + I~1 + I~.1) -zv �9 (3.21) 

2(2/+N) An 
4l+N " By a theorem of Greenleaf (see (1.3) above) the inequality (1.2) holds with q0 = - -  

application of Lemma 5 completes the proof. [ ]  

P r o o f  o f  T h e o r e m  11. Let F0 be defined as in (2.5). By Lemma 3 

1 

IF0(~, ~-)1 -< C(1 + I~1 + IXl)-~. (3.22) 

Applying Greenleaf's theorem as above we get qo = !~. An application ofLemma 5 completes 

the proof. [ ]  

P r o o f  of  T h e o r e m  12. Let ~ be the level set {x : q~2(x) = 1}, and let 

L ei((x'~)+xd~l(x)+X2@(x))x (x)dx , (3.23) dcr (~:, L1, ~-2) = 2 

where X is a smooth cutoff function. Let Z0, ZI, and Z2 be defined as in Lemma 6 with respect to 

q~2- Recall that Zo U Zl U Z2 is the union of a finite number of lines through the origin. 
Let {l")(x)}j_<Ul and {Tj(x)}j_<N2 be two finite families of cones in R 2 with the following 

properties: 

i) Each Fj(x) contains exactly one line of Z0 U Zl, and each 7)(x) contains exactly one line 

of Z2 

ii) I'j N Fi = {0, 0} if i # j ,  Tj 7t T/ = {0, 0} if i :~ j ,  and Fj 71 T/ = {0, 0}. 

Let ~j be the characteristic function of l"j and let 3j be the characteristic function of 7). Then 

(~, ~.1, ~.2) = ~_jR 2 ei((x'~)+)~14~l(X)+~'2@(x))x(x ) o t j (x)  dx 

(3.24) 

+ fdR2 ei((x'~)+xlqh(x)+X2~(x))x(x) 1 -- Z o q ( x )  -- ~](x) dx 
j=l 

d~!  + d ~ 2  + d u 3 .  
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We first consider 

' fR ei((x'~)+x~t(x)+X2~(x))~l(x)x(x)dx' (3.25) dcr3 (~, ~-1 L2) = 2 

where we have set ~l(x) = 1 - Y-]~j~I otj(x) - ~--,j~l 3j(x). On the support of ~ the curvature of 

= {x : ~b2(x) = 1} never vanishes and q~2 vanishes only at zero. 

We recall that by the Stein-Thomas observation, (1.2) is equivalent to the inequality 

�9 filLp'(R4) <-- CjlIflILp(R4)" (3.26) 

Let p be a smooth cutoff function supported in the interval (1,2), such that y]4+~ p(2J t )  =_ 1. 

Let 

dcr3,-"'j (~, ,kl, ~.2)fR 2 ei((x'~)+M~l(X)+~'2C2(x))# ( 2 i x ) ~ l ( x ) d x .  (3.27) 

The assumptions of  Lemma 4 are satisfied on the support of p(2Jx)lT(x), hence the inequal- 

ity (3.26) holds for the measure d~r3, j with p = 6. Since the sharp exponent P0 cannot exceed 6, 

the estimate (3.26) holds for p < P0, provided that m I + m2 > 4. 
If  we make the change of variables sending x ~ 2 - i x ,  and if we observe that ~ is invariant 

with respect to dilations, we see that 

do'3~j(~, ~.) = 2-2J .~2 ei((2-Jx'~)+~'12-m|jq~l(X)+L22-m2jdP2(x))'O(X)~(x)dx 

= 2-2Jd~3,0(2-J~,2-m"~.l ,2-m2')~2).  (3.28) 

Without loss of generality we can replace ~ by a function 0 6 C ~ (I~ n/{0}), homogeneous of degree 

zero, whose support coincides with the support of ~. 

Let zj denote the nonisotropic dilation 

r j f  (~, ~1, ~.2) = f (2J~, 2mULl, 2m2j~-2) �9 (3.29) 

Then 

dcr3~.j * f = 2 -2j  (r-jd~3,o �9 f )  (~, Xl, x2) = 2 -2s (r_jd-~3.o �9 ( r_ j r j f ) )  (~, ~.l, ~-2) �9 (3.30) 

A change of variables shows that r_jd~3"-'~o * ( r_ j z j f )  = 2J(2+mt+m2)r-j(d~3.0 * r j f ) .  It 

follows that 

Ild 3.J * flip, = 2-2j+j(2+ml+m2)11~-; (d o �9 

= 2s(m,+m2)z~(2+"'+mz)lld'~3,o.(.rjf)lll ,, (3.31) 

< c2J(m'+mz)2~(2+m'+m2)II~JfU,, 

= C2 j(ml+m2) 2J(~-l)(2+ml+m2) Ilfll/, �9 

The series ]5].~~ IId~3,j * fll:,, converges, provided that 

ml + m2 + - (n + ml + m2) < 0 ,  (3.32) 

which yields p < Po. Hence, the measure dcr3 satisfies the inequality (3.26) with p < po. 
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We consider now d"~2(s e, ~-1, L2) = f l2  ei((x'f)+xie;l(x)+X2e~2(X))x(x)(~-~j^'2=l ~ j ( x ) )  dx. 
x 

Let 
# 

d"~ ~.2) = ] ei((x'f)+~'lckl(x)+X2ckz(X)) x ( x ) ~ j ( x ) d x  , (3.33) (~, ~-1, 
JR 2 

where j < N2 is fixed. 
y.J. 

In the proof of  Lemma 3 we observed that ~bi (x)lz = c implies that ~bl (x) = c02(x),.2 for 

every x 6 R 2. Observe that ~ is star-shaped with respect to the origin, because i fxo  6 Y~, then for 

every t < 1, ~bl(tXo) = t mi < I. In the polar coordinates associated to )-'~, 

d/z (s ~, ~-1, &2) = e i(r(w'~)+cxlrmt +~'2rrn2)r X (rw)~j(w)drdco.  (3.34) 

Without loss generality X is radial. Consider the (unique) point of  Z2 rl ~ NT~, which can be taken 

to be (0,0). Suppose that ~ NTj is supported in a sufficiently small neighborhood o f  (0,0). Since 

is finite type m, it can be written as the graph of a smooth function ~ ( t )  = tmg(t), where g(0) # 0, 

and 

- 
d/z (~, LI, ~-2) = e i(rt~l+rtmg(t)~2+c)'trmt +~'2r~Z)r x (r)~j(t ,  tmg( t ) )drd t  . (3.35) 

Let p 6 C ~ ( R  2) be supported in (�88 4), such that p -= 1 in (1,2), and )-'~+=~ p (2J t )  = 1. Let 

- /Rio 
dlzj (~, ~- 1, ~.2) = e i (rt~l +rtrng(t)~2+CLl rm I +~.2rrn2 ) p (2 j t) X ( r ) rdrd t  . (3.36) 

The integral with respect to t is supported over a dyadic piece of  ~ where the Gaussian curvature 

does not vanish. By Lemma 4 and the Stein-Thomas observation, the estimate (3.26) holds for the 

measure dlzj, for p < Po, with a constant Cj. 
In order to estimate Cj we make a change of variables in the expression for d/z"~ setting s = 2it .  

We have 

L f0 
dt.zj (~, LI, L2) -~- 2 - j  e i(r2-js~l+r2-~js~g(2-)t)~2+c)':mt +~'2r~2) 

X (r)p ( s ) rdrds .  (3.37) 

Let rj be the nonisotropic dilation 

r j ( f ) ( x l ,  x2, x3, x4) = f ( 2 - J x i ,  2-mix2, x3, x4) and let 

f f0 ~ j  = e i(rs~l+rsmg(2-jt)~2+cXlrml +X2rm2) X ( r )p(s ) rdrds  . (3.38) 

Then 

d/z~' * : = 2 - j  (rj (d/z~') * : )  = 2 - j  ('c/(dlz'~-) * rj ( r _ j / ) )  . (3.39) 

A change of variables shows that rj (d '~ j ) , r j  r_ j  f = 2J (" +1) r) ( ~ . / ,  r _ / f ) ,  and that I I rj ~O II Lq (~4) = 
�9 ( r e + l )  

2J-T-[I~IILq(R4) for every ~ 6 Lq(R 4) and q > 1. The we can write the following string of 

= 2Jm ll J * 

= 2 IIE* Jfll.,< ,) 
jm+j(~_ 1) 

inequalities: 

= 2Jm+J(m+l)(~-~)Cjllf t lLe(R,).  

l i e  * SIIL.,<R,> 

(3.40) 
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We must prove that the constants Cj in the above expression are uniformly bounded. In fact the 
1 2(re+l) Since sum ~+__~ II~"j~j * f l I J ( R %  converges i f m  + (m + 1)(~, - ~) < 0, hence i f p  < 2m+l ' 

2(m+1) > P0 when m 1 +m2 > 2m, the estimate (3.26) holds for the measure d/z, and consequently for 2m+l -- 
2(m+l) i fml  + m 2  < 2m. the measure dOtE, for p <_ Po, provided that m I + m2 _> 2rn, and with p = 2m+l 

From the proof of the theorem of Greenleaf it follows that the bounds for the constants 

Cj depend on a finite number of  derivatives of  the phase function of d~ j ,  ~j(r, s) = rs~l + 
rsmg(2-Jt)~2 + C).l rml q-- ).2r m2. Since ~ j  is a smooth function, then, for j large, D#~j(r, s) 
DE (rs~l + r s m g (0) ~2 + c). I rmt -F ).2 rm2 ). This shows that the constant Cj s are uniformly bounded. 

now consider d"~l (~,).1, ) - 2 ) =  fR2 ei((x'~)+~'lgPl(x)+'k2gb2(x))X(X)- (zjN=II ffj(X)) We dx. 

Fix j _< Nl. After perhaps a rotation of coordinates we may assume that 4~21r j vanishes along 

the x2 axis. Then ~2(Xl, X2) can be written as xMg(xl, X2), where g does not vanish on the x2 axis 

(except perhaps at the origin) if Pj f'l S l is small enough. 

Let 

d-~ (~,).1).2) = fR2 ei((x'~)+~215 (x)otj(x)dx , (3.41) 

where we have set ), = m~.m2 Let p ~ C ~ ( R  2) be a cutoff supported in (�88 such that p = 1 in 

(1,2) and ~--~+__~ p(t) = 1. Let 

_ f= (Xl )  dlzj(~' ).) = 2 ei((x'~)+O'tx[Mgr(x)+~2x~g(X))p 2J g X(x)dx . (3.42) 

The above integral is defined over a cone of ~2  where the curvature of ~ never vanishes, and ~b 2 

vanishes only at the origin. 
Let Po E C ~ ( N  2) be supported in (1, 4), such that p ~- I in (1,2), and Y~+~k=0 P 0(2~t) -=- 1. 

Let 

= ei'(x'~)+~"X'xrMg~"x'+Xzx~g(X)'P \(2J x2/Xl ~ PO (2kx)  dx . (3.43) 

The assumptions of Lemma 4 are satisfied on the support of po(2~x)p(2 j xx-}2), and hence the esti- 

mate (3.26) holds for the measure dlZj,k with p < po. 
If we make the change of variables sending x --+ 2-kx, 

= s e'('2-'x'~>+xt2-'"C~l(X'+X22-"2~M(x))P \(2jXl~x2, po(x)dx 

~ ,  2-2kd'-~'~j,o (g-k~,g-mlk).l,g-m2k).2) . (3.44) 

Let r~ denote the nonisotropic dilation 

Then 

rk f  ( ~ , ) . l , ) . Z ) =  f (2k~, 2'n'k).l, 2m2k).2) �9 (3.45) 

A 

dlZj.k * f = 2 -2k (r-~d~o.k * f )  (~,).l,).2) 

= 2 -2k (r-kd"~.o.k * (r-kZkf)) (~,).1, X2) . (3.46) 

A change of variables shows that r_kdlZj'"~k * ( r - k r k f )  = 2kC2+ml+mE)r-k(d'~j.k * r~f ) .  It 

follows that 
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= 2k(m'+m2)2~r(2+m'+m2)IId~.~ * (3.47) 

< c2k(rnt+rn2)2 ~r(2+ml+m2) Ilrkfllp 

1 I 

= C2k(ml+m2)2k(-7--$)(2+m1+m2)[[f[lp. 

The series ~--~~ ][d~j,k * flip,, converges provided that 

1) 
ml + m 2 +  - ( n + m l + m 2 )  < 0 ,  (3.48) 

which yields p < P0. The above argument shows that we can assume that the measure dlzj is 

supported away from zero. Hence, by Lemma 4 and the above observation, the inequality (3.26) 

holds for the measure dlzj, for p < P0, with a constant Cj. In order to estimate Cj we perform the 

change of  variables in (3.42) sending xl ~ 2 - J x l ,  x2 --+ x2. We obtain 

dlZ"-'~ (~I,~2,)~I,~.2) = 2-J~j~j (2-J~I,~2,2-M'J~.I,2-MJ)~2) , ( 3 . 4 9 )  

where we have set 

= f~2 ei((x'~)+ck'lx[ggv(2-Jxl'x2)+~'2xlMg(2-Jxt'x2)) 

P ~2 Z 

Let zj be the nonisotropic dilation vj f (xl , x2, x3, x4) = f (2-J xl , x2, 2-MeJ x3, 2--MJ x4). Then 

dlz'-'~ , f = z-J  (rj(d~j~j), f )  = z-J  (r j (d-~j~j) ,r j (r_j f ) )  . (3.51) 

A change of  variables shows that 

rj (a/z~) �9 rj (r_jf) = 2J(t+M(l+• (~j~j * r_jf) , (3.52) 

and that [lrjgllLq(R4) = 2" q I[gllLq(R4) for every q > 1. Then we can write the following 

string of  inequalities: 

Ila'~UJ * f I IL, ' (~ ' )  = 2J ( ' ( '+ ' ) ) I1~ ;  (a"~j �9 ~-Jf)IILp'(~4) 

2 J M ( I + y ) + j ~  
= , '  IId j �9 r j f ] IL . , (R ,  ) (3.53) 

.M(I+ )+1 
< 2 J ( M ( I + Y ) ) + ' ~ c J  

= 2JM(l+v)+J(M(l+V)+I)(~-~)CjllfllzPca4). 

If  we show that the constants Cj in the above expression are uniformly bounded, then we are done. 

In fact the sum Y'~+=~ IId'~j * f[It.p'(~') converges if 

1 1 1 M ( l + y ) + ( M ( l + y ) +  ) ( ~ - - ~ )  < 0 h e n c e i f  

2(1 + M ( y  + 1)) 
p < (3.54) 

1 + 2M(y  + 1) 

2(l+M(y+l)) > when 1 - Since t+2M(y+l)" -- P0 m + m2 > 2M(1 + y),  the estimate (3.26) holds for the measure 

d/z, and consequently for the measure dtrl, with p < P0, provided that m I + m2 > 2M(1 + g), and 

2(l+M(y+l)) i f4  < m 1 + m 2 < 2M(1 + y). with p < I+2M(y+I) 
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By a theorem of Greenleaf, the bounds for the constants Cj in (3.53) depend only on a 

finite number of derivatives of the phase function of d-~j, ~ j ( x )  = ( c M x ~ M g •  + 

X2xMg(2 -Jx l , x2 ) ) .  Since the above function is smooth, then, for j large, D ~ j ( x )  

D#(cZ lx~ggY(O,  x2) + Z2xMg(0, x2)). This shows that the constants Cj are uniformly bounded, 
thus concluding the proof of the theorem. [ ]  

4.  R e s t r i c t i o n  T h e o r e m s  - N o n - I s o t r o p i c  Es t imates  

T h e o r e m  13. 
n(n+l) Let S = {(x, Xn+l . . . . .  Xn+l) E ~n+l :Xn+l = ~bl (x) . . . . .  Xn+l = q~/(x)}, where l = ~ ,  

and the q~j denote the distinct monomials o f  degree 2. Then the estimate (1.2) holds with the sharp 
2(n+2) 

exponent Po = -~g-43-" 

T h e o r e m  14. 

Let S denote a compactpiece of  the manifold { (x, Xn+l . . . . .  Xn+l) E ~n +l : Xn+ 1 = qbl (X) . . . . .  

Xn+l = ~/(X)}, where q~j E C~176 is homogeneous of  degree m > 2n. Suppose that no 

linear combination o f  the qbjs vanishes on a subset o f  positive measure of  S n-1. Let ~ ( x )  = 

(~b 1 (x ) . . . . .  qbl (x ) ). Suppose that ~ (09) ~ (0 . . . . .  0), 09 E S n-l .  Then the estimate (1.2) holds with 

the sharp exponent Po given by (1.4). 

R e m a r k  1. 

The restriction m > 2n in Theorem 14 is not necessary. In fact, using the techniques in [8], 

one can prove Theorem 14 under the weaker restriction m > n. 

R e m a r k  2. 
Theorem 14 implies the natural generalization of  Theorem 13 to the case where l = --re(Tin+n-- 1 , ( C~ = 

a ! 
~ ) ,  and the q~j are the distinct monomials of  degree m. 

Proof of  T h e o r e m  13. Let L = ( M , ' " ,  Xl), and let 

d"~(~, X) = fR" ei((x'~>+M~+'"xlCt(X))dx I 

Let Ax be the matrix associated to the quadratic form ;Vl q)t (x) + . . .  Lt~bl (x), and 

d"~(~, X) = / R "  ei((x'~)+(x'A:))dx " (4.1) 

Thus, d"~ (~, L) is the Fourier transform of e i(x'axx), and an easy generalization of the well-known 

formula for the Fourier transform of the Gaussian functions, (see, e.g., [ 10, p. 186]), yields 

A (2zr) e_~(~,A-~l~)+~sign(Ax) 

d~(~, ;~) = idet--&l~: 
(4.2) 

Let 

Kz(~ ,Z)  = qz(z) det (Ax) z d'~(~, X) 

= ~r(z) (2zr)~ IdetA~.l z-l~2 e -~(~'A~'l~)+~sign(&) , (4.3) 

with 

O(z) = (23r)nz+-'T--Hn--IP -1 Z-b 1 + e - 'rr~(z+-T') 
y ~ u  (4.4) 
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where F is the standard Gamma  function. Let Tz(f)(  G L) = ( f  �9 Kz)(G )~). 
We will prove that Tz is a continuous family of  operators when Re(z) 6 [ -  ~--[, �89 is analytic 

( n+l �89 and that when Re(z) E , 2 ' 

i) IlZz(f)llz~(R") < Cl(z)llfllzt(R,) when Re(z) = 1 
- ' 2 '  

ii) [ITz(f)lltz(R, ) < C2(z)llfllcz(R,~, when Re(z) = n+l - -  2 ' 
iii) C1 (z) and C2(z) have at most exponential growth with respect to Im(z). 

Stein's analytic interpolation theorem (see, e.g., [13]) will then imply that Tz : LP~ n+t) --+ 
LP~e (R ~+t) is a bounded operator when z = 0. Since T z ( f )  = f , d ' ~ ,  the Stein-Thomas observation 

(see the proof of Theorem 12) implies the conclusion of our theorem. 

To prove (i), we observe that when z = I + iy, with y 6 R, then Kz(~, L) = d'~(~, )~) 

det(Ax) �89 ~t (�89 + iy) is bounded by Cl (y) = Jr ~ 1~ (�89 + iy)l. By the Haussdorff-Young inequality 

we have that flY * Kl+iy  I1~ _< Cl (y)llfll  i. (i) is then satisfied, and one can check, using Stirling's 
formula, that C1 (y) has at most exponential growth. 

To prove (ii), it is enough to show that I,~zl is a bounded function when Re(z) = n+t 
2 " 

To compute the Fourier transform of Kz(~, )~) with respect to s e, .~(Kz)(X, L), we use again the 

formula (4.3) obtaining 

~ (Kz) (x, X) = ~(z )  Idet Axl z e i(x'A:~x) . (4.5) 

Hence 

fR ei((x''~)+(x'axx)) det (Az) z dL (4.6) xS  (x, x') = , 

where we have set x ~ = (Xn+l, �9 �9 �9 xn+D. We recall that the above identities hold in the distribution 

sense. 

Since the phase of  the above integral is a linear function of X, we reduce to computing the 

Fourier transform of det(Ax) z. We need the following lemma (see [ 12, p.48]). 

Lemma 7. 
Let V~ be the space of the real and symmetric matrices and let Vi C VR be the subset of the 

matrices with i positive and n - i negative eigenvalues. Let Gi (Z) be the distribution 

Gi(z ) ( f )  = fvi f (Y) l  det(Y)l 2dY (4.7) 

where d Y is the standard Euclidean measure on VR. Then the distribution G i ( Z ), viewed as a function 
of z, has analytic continuation to a meromorphic function in the whole complex plane satisfying 

" (n+l) 
a " ~ )  = 1 / f - l ( z )  ~ c i , j ( z ) a j  - z  ~ , 

j=O 

(4.8) 

where ~ is as in (4.4) and the Ci,j  (Z) are bounded coefficients. 

From the above formula we deduce that up to bounded constants, 

. n+l 
(det (A~) z) (r/) = ~ - I  (z)det  ( a , )  - ~ - ' T -  (4.9) 

where the above formula holds in the distribution sense. Since Re(z) = -~-[, the above is a bounded 

function of 0. This shows that K"~ is a bounded function of (x, x ' ) ,  and completes the proof of  the 

theorem. [ ]  
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Proof  o f  T h e o r e m  14. Let 

where IB(s e, X)I < fs.-i 

Let 

d'~(~, ).) = fR" ei(lx'~)+M4)l(x)+~'t4)t(x))x (x)dx , 

where X is a smooth cutoff function. By Theorem 6 we can write 

d~'~(~, L) = B(~, X) 

do) 

(4.10) 

(4.11) 

B(L) = f s  do) . ,  
n-I Z}=I ~)j(O))~.j ~ 

Kz(~, X) = dcf(~,X)BZ(L)~/(z), 

(4.12) 

with 
( ~)  ( n z )  

~P(z) = r _  l -~mm + z n  r - I  - - ~ -  + l  , 

where F is the standard Gamma function. Let Tz(f)(G L) = ( f  �9 gz)(~, ~). 
We will prove that Tz is a continuous family of operators when Re(z) ~ [ - 1 , / ~ ] ,  is analytic 

when Re(z) ~ ( -  1, ~ ) ,  and that 

i) Ilrz(f)llL~O(R.) < CI(Z)IIfIILI(R%, when Re(z) = - 1 ,  

ii) IlZz(f)llL2(rt.) < C2(Z)IIflIL2(R.), when Re(z) = ~ ,  
iii) CI (z) and C2(z) have at most exponential growth with respect to Im(z). 

Stein's analytic interpolation theorem (see, e.g., [13]) will then imply that Tz " LP~(R n+l) --+ 
L po' (R n+/) is a bounded operator when z = 0. Since Tz ( f )  = f *  d'~, the Stein-Thomas observation 

(see the proof of  Theorem 12) implies the conclusion of our theorem. 

To prove the estimate (i) we observe that when z = - 1  + iy, with y E R, then Kz(~, )~) = 
d"~(~, X)Biy-I(x)~(-1 + iy) is bounded by CI(y)  = C l ~ l ( - 1  + iy)l. By the Haussdorf-Young 

inequality we have that I l f  * Kl+iyl]oo < Cl (y)l lf l l l -  The estimate (i) is then satisfied, and one can 
check using Stirling's formula that CI (y) has at most exp..onential growth. 

To prove the estimate (ii), it is enough to show that K z is a bounded function when Re(z) = mt 
r /  

Since dcr is a finite measure, it is enough to prove that ~/(z)BZ(L) is bounded. 

Let X(o)) be the vector defined by the equation Y~}=l )~jc~j (co) = (X, X(o))). Then 

A s ( f s  do) )Zei(XV)d) ~ (4.13) 
Bz(y) ---- ~ ( z )  t "-t I(X, X(o)))l -'77 

Since Bz(y) is homogeneous of degree zero with respect to y, we can assume lYl = 1. 

In polar coordinates with respect to X, with L = rr/, we have 

( / s  z B"z(y) = ~(z) fo +~176 r-~z+l-l fs e~r(~176 ~ t-t . - ,  1(7/Z X(o)))[---~.: drldr. (4.14) 

Let x(r) ~ Ce~(N) be such that x ( r )  --- 1, when r E (0, 1), and x ( r )  - 0 when r ~ (2, +o~) .  Let 

BzM(y)=$(Z)Jo r -~Z+l- lX(M)  - - - - ' ~  dodr.  (4.15) 
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A A A 

We will prove that Bz. M is bounded by a constant C independent of M and that Bz, M ~ B z in 

distribution sense as M --+ e~. From the above it follows that Bz is bounded�9 Indeed, since 

the balls are sequentially compact  in the weak �9 topology in Lm(Rt), there exists a sequence 

{Bz.gj }j~N C {Bz.M} which converges to a bounded function in the weak �9 topology of L ~176 and 

hence converges also in a distribution sense. Consequently, B z = l imj~+oo Bz, M j, which is a 

bounded function. 

Recalling that by assumption the vector X(o)) is never zero on S n-l, we can construct an 

x(w) IX(o~)l orthogonal matrix Ao) with the property that A~o Ix(o))l = (1,0,  � 9149  0)�9 The first row of  Ao, is _x(~o) 

and the other rows are a set of  l - 1 vectors which, together with ~ ,  determine an orthonormal 

basis o f R  t for every m E S n-1. 
We make the change of  variables rl --+ Atwo in the expression for B'~M.z. Since Ao) is orthogonal, 

the change of  variables maps S t-l  into itself and the determinant of the Jacobian matrix of the 

transformation is 1. We obtain 

- -  fo 
Bz.M(y ) = lp(Z) r--~z+l-I X 

l - I  

i r IX(w)lm , e~ (~ drldr 
"- '  I(r/, A~oX(co))lm 

+oo 1 

= ~(Z)fo r--~z+l-Ix ( M )  fs,_l irlll~ 

(fS._l  IX(o))l~eir(rl'a~ z dodr. (4.16) 

The integral with respect to ~o is a continuous function of  r, 0, Y, say F(r, rl, y). In particular 

F(O, 17, y) = fs,-~ IX(~176 < ~ "  
Since Re(z) > l by assumption, we can check that we can compute at least l - 1 derivatives 

of  F(r, O, y)Z with respect to r and rl. Then 

- -  fo +~176 ~ ( - ~ )  f s  1 FZ(r,o,y)drdrl (4�9 Bz.M(y ) = gt(Z) r-~z+t-I X 

fifo . f_l f FZ(r,o~Y)drdrlldrf = ~(Z) r--~z+l-lx l �9 
1 1o'l=(l-lrlll2)g} 10~1" 

Here we set 7 /=  (rh, rl'), and we let do' be the measure on the (l - 2)-dimensional sphere {lrl'l = 
2 (1 - I rll )~ }. If we make a change of  variables in the above integral letting 0' -+  (1 - 10112) �89 r/ ,  

we get 

2 t-2 

__ f + ~  " J -  f l  (1 -- ' thl )"~- l irll, -'-~'m~ nz.M(y) = ~(Z) Jn r--~z+l-lx ( -~)  

Xfs t_2FZ(r ,  r l l ,~ ' (1 - - l r l l [2 ) �89  (4.18) 

r - ~ z + l - I  
We recall that the distribution ~ is an entire function of  z which coincides with the Dirac 

distribution 8o when z = -~,  and that the distribution Iml-~-~ is an entire function of  z which 

coincides with the (k - 1)th derivative of  the Dirac distribution 80 when I = 2k + 1 and z = m/ 
n 

With that in mind we consider a smooth function p(t) which is - 1 when t E (0,  1 )  and is -= 0 when 
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t 6 (3, 1), and we write 

Bz,M (Y) 
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= r M, y) -t- ~(z)h(z, M, y). (4.19) 

Since 

(1 - p (r/12)) (1 - 712)/'~ fst_2FZ(r, 71,7'(1-17112)~,y)drfdrIt=F2(r, 71) (4.20) 

is bounded and continuous with respect to r and 71, we can write 

~ ( z ) 1 2 ( z , M , y ) = p _ l ( z n  I ) ( - ~ ) F  dT1 r=0 - 2---ram + X F2 (r, 71) . (4.21) 
1 

Thus I~t(z)12(z, M, Y)I is bounded by a constant which does not depend on M and has at most 
exponential growth with respect to Im(z). 

We shall now estimate ~P(z)I1 (z, M, y). By our previous observations, the function 

p (712) ( 1 -  712)/-~ fS,_ 2 F z (r, 71, 7' ( 1 - [ r / l [2 )  ~ , y)dT'dT, = FI (r, 71) (4.22) 

can be differentiated l - 1 times with respect to rh and its derivatives are continuous functions of r. 
Then, if 1 = 2k + 1, 

dk-I (X ( ~ ) F 1  (r, 71)) r/l=r=0 (4.23) ~(Z)II(z, M, y) = ~ 

If / : / :  2k + 1, and ifh = [ Re-~2t) ] we use the formula (3) in [4, pg.51], obtaining: 

( r " __r+~176 _~ ( 
Ii(z, M, y) -= X \ ~ )  Jo r/l '~ F1 (r, r/l) + Fl ( r , -71)  (4.24) 

( -232 7 h02  ))dT,,=,, 
--  2 F ,  (r, 0)  + 'tl 7"--" F! (r, 0)  + . . .  + - -  - -  F ,  (r, 0)  

2! o71 (2h)! 371 

Thus, I~P(z)It(z, M, Y)[ is bounded by a constant which does not depend on M. This showsAthat 
Kz,M is bounded by a uniform constant. An easy adaptation of the above argument shows that Kz.M 
converges to Kz in the distribution sense as M -+ ~ .  

This completes the proof of the theorem. [ ]  
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