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1. Introduction. In the theory of linear regression of y on z where y is nor-
mally distributed about a linear function of z, say » + Bz, where z is a “fixed”
variate, the i-test for the hypothesis that g is zero (that y is distributed
about »; independent of x) is well known. In this paper we apply some general
statistical theory to the similar problem where x and y are jointly normally
distributed. This case is commonly known as the case of “error in both vari-
ates.” We derive a criterion for testing the hypothesis that the population
means are the coordinates of a specified point when the ratio of the variances
and the population correlation coefficient are known. When the ratio of vari-
ances is known, a criterion is derived to test whether the correlation coefficient
is zero.

2. The means. Let us consider a sample of n pairs of observations (z;, 1 ;
Zo, Y2 ; Tn, Yn) from a normal bivariate population. Let the variances of
x and of y be o2 and o , respectively; and the correlation coefficient, say p, be
zero Suppose the ratio of the weight of y to the weight of z, say v = w,/w, =
o2/ol , is known although the variances are not known. It is clear then, that
Vvy has variance oz . Since the observatlons yi (¢ =1,2, -+, n) can be trans-
formed into revised observations \/y y: = y: , we lose no generahty by assuming
that z and y are both distributed with variance o

Under the assumption of equality of variances and independence of variates
we shall derive a criterion for testing the null hypothesis that each observation
z; is of a variate distributed about the same population mean u and each observa-
tion y; is of a variate distributed about the same population mean ». The
hypothesis may be stated symbolically as:

Hy:E@) =4, E@y) =
given o2 = o; = o’ and p = 0. We can write

> = W= nle - W+ 5,

2 =) =@ -+,

where
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Then n(E — p)’/o* and n(y — 1{)“/«12 are each distributed independently as x*
with one degree of freedom and each of S./¢” and S?,/a2 follow the x’-law with
n — 1 degrees of freedom. If we define

§) r=NVE-w+ @G-, S =85+8,

then nr’/¢® and 8,/o* have independent x’-distributions with 2 and 2n — 2 de-
grees of freedom, respectively.
It follows from this that

ot S, _ ” @ =W+

(‘_
S ’

<

has the F-distribution with 2 and 2n — 2 degrees of freedom.
Let us define F. so

3) N heons (F)dF = a,

where hg 2,2 (F) is the F-distribution with 2 and 2n — 2 degrees of freedom and
0 < a < 1. Then the probability is « that the sample statistic R is greater than
or equal to F,, ie.,

“) P(R > F.} = a.

In considering a sample value of R, at significance level «, one rejects the hy-
pothesis of the means being u and », respectively, if R is larger than F,, i.e.,
larger than 1 and larger than the « significance point in Snedecor’s tables [1].

This F-test is a straightforward generalization to the bivariate case of the
usual i-test as applied to the univariate case. In each case the sum of squares
of distances of the observations from the population mean is broken up into the
sum of squares of distances from the sample mean plus n times the square of the
distance from the sample mean to the population mean. The ¢-test for the uni-
variate case depends on the ratio of the distance of the sample mean from the
population mean to the square root of the sum of squares of distances from the
observations to the sample mean. The proposed F-test depends upon the ratio
of the square of the distance of the sample mean from the population mean to
the sum of squares of distances from the observations to the sample mean.

It can easily be shown that the likelihood ratio criterion for this hypothesis is

5) A 0 n ’i_1+n_.1
2 (i —w) + Z_‘; (i — ")2J

foml

JEe-+fe-wl T

The hypothesis consideied here is one of a class of hypotheses treated by Kolod-
ziejezyk [2] in a paper in which he considers the likelihood ratio criterion for a
set of general linear hypotheses.

Equation (4) may be written
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(6) P{@—w'+ @ —»' 21 =aq

where 15 = F, (S: + 8,)/[n(n — 1)]. The probability is a that the distance
from the sample means &, § to the population means y, v is greater than or equal
to 7. We may call r, the fiducial radius [3], and the equation (z — u)* +
(7 — »)* = r defines the confidence region for the population means.

Suppose we have two samples of n; and n, pairs of observations, respectively,
from normal bivariate distributions. If the population mean of each x variate
is u and the population mean of each y variate is », the population variance of
each variate is ¢°, and the correlation coefficient is zero, then the sample means
Z; and #: of the first sample and Z; and 7, of the second sample follow normal
distributions. Also & — &, and §; — 7. are normally distributed. Then
= mng/(m + m)[(@ — #)° + (G — §.)')/0" has the x’-distribution with
2 degrees of freedom. Let

n n1 ng ng
S = ; (2 — 1) + ; (i — 3 + ; (T2 — B)* + ; (y2s — 3)°,

where zy;, y1: 0 = 1, 2, - - - , 1) are the pairs of observations in the first sample
and 2, y2: (¢ = 1,2, - - - , np) are the pairs of observations in the second sample.
S;./a* is distributed according to the x’-distribution with (2n, + 2n, — 4) de-
grees of freedom because it is the sum of quantities independently distributed
as x*. Then

R o= mmr” / S, _ mm( + my — 2)r”
2(m + no)o?/ (2m + 2n, — 4)0? (n1 + n2)S5.
has the F-distribution with 2 and (2n; 4 2n, — 4) degrees of freedom. This
fact yields us a significance test for the hypothesis that both the means of the
z variates and the means of the y variates for the two populations are the same.
We can also set up confidence regions for u; — wz and v; — v, .
Now let us consider a sample from a normal bivariate population with means
u and v, variances o2 and o. and correlation coefficient p. Suppose y = oi/al
and p are known. The transformation

_VIFe +VI=oy
V2 ’
_Vi+pd —V1I—py
y= = ]
%P
gives us the variates 2’ and y’ which are distributed independently and with
variance o3 . Applying the results above we see that
=/ _ N2 = __ N2
R=nn—1) = (ai w? + ("y ,.,)
> -2+ 3 -
= nln—1) & — u)' = 20Vy @ — )G —») + G — )
2 (m— 2 = VY L @ — D~ )+ 2 - 9

g1

(8) z

9)
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has the F-distribution with 2 and 2n — 2 degrees of freedom. From this we
derive significance tests, fiducial radii, and confidence regions as before.

The above distributions, significance tests, and confidence regions are easily
generalized to multivariate normal distributions. Suppose we have a sample of
n k-tuples of observations {z.,} ¢ =1,2,---,k;a=1,2,---, n) from a k-
variate normal distribution. Let the -expected value of each variate x; be zero
(¢ = 1,2, ---, k), the variance of each variate be ¢* and each correlation co-
efficient be zero. Then

n(n — 1) i i

Z i: (xt'a - a-:i)z

tm=] a=l

(10) R”

has the F-distribution with k and k(n — 1) degrees of freedom. Significance
tests, confidence regions, and fiducial radii follow from this fact.

3. Linear Regression. If one has a sample of n pairs of observations (z1, ¥ ;
Tz, Y2} } Tn, Ys) from a normal bivariate population and wishes to fit a
straight line to the scatter of sample points, one fits the line in such a way that
the sum of squares of distances from the sample points to the line is a minimum
(“error in both variates’”).

It is easily shown that this line goes through the point whose coordinates are
the sample means (%, §7.) If the slope of a line through (Z, %) is tan 6, the dis-
tance from a sample point (z;, ¥;) to the line is (z; — %) sin § — (y; — §) cos
6. The sum of squares of distances from sample points to the line is

sin’ 6 S, — 2 sin 6 cos 6 S + cos’ 6 S, ,

where
Se = 2 (s — )y — 7).
If we minimize the above expression with respect to 6 we find

(11) b=tang="S— 8= VS —8)+48,
28,

Using the plus sign gives us S, , the minimum sum of squared distances; using
the minus sign gives us S, , the maximum sum of squared distances. (The latter
value of tan 6 is the negative reciprocal of the former.)

S, is the sum of squared distances perpendicular to the regression line and
S, is the sum of squared distances along the regression line. The sum S, + S,
is equal to S; 4+ S, which is the sum of squares of distances from the sample
points to the point Z, 5. We have thus decomposed S. + S, into two compon-
ents, one perpendicular to the regression line and the other along the regression
line.
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The joint distribution of S, and S, may be derived from the Wishart distribu-
tion of the sums of squares and cross products,’

1 Sz Szy
(12) 4qro?n—2 P(n - 2) Szy Sy

Let us make the transformation

S: =cos’ 08, +sin’6S,,
sin® 6 S, + cos® @ Ss,
Sz; = sin 6 cos 0 (S. — S,).

4(n—4)
e—l(s,+s,,) la?

&
I

The value of 8 corresponds to the plus sign in (11). We find
S:+Su= Sp+S¢y

Sz Szy
Sz S,y

The Jacobian of the transformation is (S, — S;). Using these relations in (12)
and integrating out 8 we derive the distribution of S, and S,

- 1 SaSp oo ~$(Sq+8p) /o2 _
(13) 40%T'(n — 2)( at ) ¢ (Sa — S).

It can be shown that S, and S, are the characteristic roots of the sample vari-
ance-covariance matrix. The distribution (13) of the characteristic roots of a
variance-covariance matrix when the population correlation coefficient is zero
and the variances are equal has been demonstrated by P. L. Hsu [4].

As a test of correlation (i.e., test of significance of the regression coefficient)
we propose using the ratio

= 8,8, .

F' = 8./8,.

This ratio is the maximum ratio of the sum of squared deviations in one direction
to the sum of squared deviations in the perpendicular direction. It is intuitively
evident that this ratio is probably near unity if the null hypothesis is true, that
is, if the variances are equal and the correlation is zero. If the correlation
is not zero then the ratio is likely to be large.

From (13) we can deduce the distribution of F’ by transforming variables
and integrating out the extraneous one.‘ This procedure yields us as the dis-
tribution of F’

(n _ 2)2n-—3F/i(n—4)(F/ + 1)—(n—l)(1,v/ _ 1).
If we make the transformation

2'
F' = ¢*,

1 This distribution is equivalent to Fisher’s distribution of the sample variances and
correlation coefficient when the population correlation coefficient is zero.
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we find the probability element of 2’ to be
(n — 2)(cosh 2/)""™ d(cosh 2’)

After integrating we see the cumulative distribution of 2’ is
1 — (cosh 2/)~"™®,

Critical values of 2’ for various levels of significance may be determined from a

table of hyperbolic cosines. Table I gives some values of 2’ and the corre-

sponding .values of F’.

TABLE 1
Percentage points for the 2’ (or F') distribution
3’ F
”

P2 P P Po P.on Px Pao Pos Po P o1
312.292 |2.993 | 3.688 | 5.298 | 7.401 | 98.0 (398 1600 40,000 [4,000,000
401.444 | 1.818 | 2.178 | 2.993 | 4.144 | 17.9. | 38.0 78.0 398 4,000
5]1.130 | 1.402 | 1.656 | 2.216 | 2.993 | 9.59 | 16.5 27.4 84.2 398
6| .958 |1.178 ( 1.381 | 1.818 | 2.412 | 6.79 | 10.6 15.8 38.0 124
7| .846|1.035|1.207 | 1.572 | 2.059 | 5.43 | 7.92 | 11.2 23.2 61.4
8| .766 | .933 | 1.084 | 1.402 | 1.818 | 4.63 | 6.47 8.74 16.5 38.0
9| .704 | .856| .992|1.276 | 1.643 | 4.09 | 5.55 7.28 12.7 26.8
10| .656 | .796 | .920 ) 1.178 | 1.509 | 3.71 | 4.91 6.30 10.6 20.5
11 .616 .746 .862 | 1.100 | 1.402 | 3.43 | 4.45 5.61 9.02 16.5
12| .583| .705| .813 (1.035|1.314 | 3.21 | 4.10 5.09 7.92 13.9
13| .554 | .670 | .772 | .980 | 1.241 | 3.03 | 3.82 4.68 7.10 12.0
14| .530 | .639 | .736 | .933 | 1.178 | 2.89 | 3.59 4.36 6.47 10.6
15| .508 | .613 | .705 | .892 |1.124 | 2.76 | 3.41 4.10 6.00 9.47

20| .429 | .517 | .593 | .746 | .993 | 2.36 | 2.81 3.27 4.45 6.47
25| .378 | .455 | .522 | .654 | .814 | 2.13 | 2.48 2.84 3.70 5.10
30| .342 | .411 | .471| .589 | .732 | 1.98 | 2.28 2.57 3.25 4.32
40 | .293 | .352( .402 | .502 | .621 | 1.80 | 2.02 2.23 2.73 3.47
60 | .237 | .284 | .324 | .404| .498 | 1.61 | 1.76 1.91 2.24 2.71
120 | .165 | .198 | .226 | .281 | .345| 1.39 | 1.49 1.57 1.75 2.00

The use of F’ has been suggested here to test the hypothesis that the popula-
tion correlation coefficient is zero when it is known that the variances of the two
‘variates are the same, or, more generally, when the ratio of the two variances is
known. This gives a test of significance of the regression coefficient when there
is error in both variates if the ratio of the variances is known. The test arises
from intuitive considerations. F’ can also be used to test the hypothesis that
p = 0 and o = o (H,in Hsu’s paper). C.T. Hsu [5] and J. W. Mauchly [6]
have shown that the likelihood ratio criterion for this hypothesis is

_ [2(8.8, — S2) ”'_[ oFr
*‘[ @. F 5, ] = (F'+1>2] '



SIGNIFICANCE TESTS 147

If we set the normal distribution function equal to a constant, we determine
a contour ellipse in the x, y — plane. Since these ellipses of constant probability
density are circles when p = 0 and o5 = o} , Mauchly calls the test a test of circu-
larity. The same procedure as used to test whether these ellipses are circles can
be used to test whether the ellipses have major axes in a certain direction and
with a specified ratio of lengths of axes. Suppose we wish to test the hypothesis
that the major axis is inclined to the x axis at an angle 8 and that the ratio of
lengths of the major axis to the minor axis is k. This is equivalent to the hy-
pothesis that p = ppand o2 = yo05 . To do this we rotate coordinate axes of the:
variables of the distribution (hence changing coordinates of all sample points)
through 6 and change the scale of one of the new variables by the factor of k.
The transformation is

z = kx’ cos 6 — y’ sin 0,
y = kx’ sin 6 + y’ cos 6.
In terms of 2/, ¥’ the null hypothesis is p’ = 0, o2/ = o3 , and one proceeds as:

above. Of course, if v is known then this method can be used to test the null
hypothesis that p = po .

4. Illustrative Example. . An application of the formulae given above may be
illustrated from the data in Table II, which gives two sets of electrical conductiv-
ity measurements at different field strengths. The assumption that the two
variances are equal is thus reasonable.

Table of Pairs of Observations of Electrical Conductivity

kS Ys kA Y
5.0 5.1 5.5 5.1
7.4 7.0 53 5.0
7.0 7.7 4.9 4.4
8.8 7.9 8.6 7.1
7.8 6.8 7.5 7.3
5.1 5.5 5.6 6.3
6.6 7.4 74 6.5
8.8 7.7

Is it reasonable to regard x and y as being independently distributed in the
population on the basis of these data? )

The sums of squares and cross products of deviations from the means and the
calculated slope are:

S, = 29.40, Sz = 19.99,
S, = 18.04, b= 0.7554.



148 D. S. VILLARS AND T. W. ANDERSON

The maximized variance ratio is:

8: + 2bS., + b*S, _ 69.89
b*S, — 2b8,, + 8, 4.615

= }InF’ = 1.36.

Comparing with Table I for n = 15 we find this value of 2z’ very highly sig-
nificant (probability less than 0.001), and at this probability level and on basis
of our data, z and y cannot be considered to be independent in the population.

Since the regression is significant, it becomes of interest to compute the calcu-
lated points X; and Y; which fall on the regression line

Y = 135 + 0.7554 X,

corresponding to each observed point z;, y;. They are obtained from these
equations

F' = = 15.15.

Yim 9+ o (= D)+ o e = 9)
= 481z; + .3631/; -+ .86,

= .637x; + .4811/.‘ — .65.

The minimized sum of squared deviations from the regression line (i.e., squared
distances between observed and calculated points) is the denominator of the
expression for F’ divided by the factor (1 + b°),

4.615/.5706 = 2.64.

It should perhaps be pointed out that the tests of the means described in the first
part of this paper are no longer applicable since we do not know the population
correlation coefficient.
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