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SOME SIMILARITY SOLUTIONS OF THE NAVIER-STOKES
EQUATIONS AND RELATED TOPICS

Hisashi Okamoto∗ and Jinghui Zhu†

Dedicated to Professor Fon-Che Liu on his sixtieth birthday

Abstract. We consider a semilinear equation arising from the Navier-
Stokes equations – the governing equations of viscous fluid motion –
and related model equations. The solutions of the semilinear equation
represent a certain class of exact solutions of the Navier-Stokes equations.
Both the equation and our models have nonlocal terms. We will show
that the nonlocality will play an intriguing role for the blow-up and/or
global existence of the solutions and that the convection term, which
is often neglected in the study of the blow-up problems, plays a very
decisive role. In addition to our new contributions, open problems and
known facts are surveyed.

1. Introduction

The main purpose of the present paper is to mathematically analyze the
following equation:

ftxx + ffxxx − fxfxx = νfxxxx,(1)
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where ν is a constant called the viscosity, t > 0 is the time variable, and x is
a real variable running in an interval [α, β]. Here and hereafter the subscripts
imply the differentiation, unless otherwise stated. The following generalized
equation is also considered:

ftxx + ffxxx − afxfxx = νfxxxx,(2)

where a ∈ R is a new parameter. The equation (1) derives, as we will explain
in the next section, from the Navier-Stokes equations of incompressible viscous
fluid motion. We are not sure who the first to discover (1) was but it seems
to us that it first appeared in Riabouchinsky [27]. However, the main theme
of the paper is not to analyze (1) but to consider its stationary solutions.
Proudman and Johnson [26] consider the genuinely nonstationary solutions;
hence the equation (1) may be called the Proudman-Johnson equation. It
should, however, be noted that the stationary equation of (1) has a much
longer history. In fact, it is Hiemenz [18] who first derived the equation (1)
with ftxx omitted.

The equation (2) is an artificial one at this stage. However, we will show
in the next section that it too has some physical meaning. The purpose of
the generalization is as follows. The equation (1) has two nonlinear terms.
We will show that both of them play a very important role and the balance
between the two nonlinear terms is decisive. In order to study the balance,
we come up with the generalized equation (2), where unbalance of the two
nonlinear terms is measured by a. We show that some solutions blow up for
some values of a and all the solutions decay to zero for other values.

Two boundary conditions are considered for (1) and (2). One is the fol-
lowing Dirichlet boundary condition:

f(t, α) = fx(t, α) = f(t, β) = fx(t, β) = 0.(3)

The other is the periodic boundary condition.
It is also interesting to study the case where a →∞. This limiting process

can be achieved by rescaling f = a−1F to obtain

Ftxx + bFFxxx − FxFxx = νFxxxx,(4)

where b = 1/a. This equation is the same one which was studied in Budd et
al. [4]. Setting b = 0, integrating once, and defining u = 1

2fx, we obtain the
following equation:





ut = νuxx + u2 − c(t) ( 0 < t, α < x < β ),
∫ β
α u(t, x)dx = 0 ( 0 < t ),

(5)
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where c(t) is an unknown quantity depending only on t. The second equation in
(5) is a consequence of the boundary condition (3). If the term c(t) is absent,
the differential equation is a well-known and well-studied one, especially in
the context of the blow-up problems. Addition of the unknown c(t) requires
one more condition, which is supplied as the second requirement in (5), i.e.,∫ β
α u(t, x)dx = 0.

The rest of the present paper is organized as follows. Section 2 is devoted
to the derivation of the equations. Local existence of the solutions are demon-
strated in Section 3. In Section 4, a blow-up theorem for (5) is proved when
ν > 0. Blow-up of solutions of (5) when ν = 0 is treated in Section 5. We also
consider (5) for the piecewise constant initial data. We then derive a blow-up
result, which is sharper than the one in Section 4. We will also show how the
result is different from those for the equation without c(t). Section 6 is devoted
to comparisons among the dynamics of three equations: the equation (1), our
model (5), and the well-known equation without c(t). Global existence results
for (2) are established in Section 7. Blow-up of solutions of (2) when ν = 0
is considered in Section 8. Steady-states of (2) are considered in Section 9.
Section 10 is a remark about von Kármán’s swirling flows.

2. Derivation of the Equations

We first explain how (1) derives from the two-dimensional Navier-Stokes
equations, which are written as follows:

ut + (u · ∇)u = ν4u− 1
ρ
∇p,

divu = 0.

Here the velocity vector u is given by u = (u, v) = (ψy,−ψx), where ψ is a
scalar-valued function called the stream function. ν ≥ 0 is the viscosity and
ρ > 0 is the mass density. We consider the Navier-Stokes equations in α <
x < β,−∞ < y < +∞. We then employ the ansatz that ψ(t, x, y) = yf(t, x)
to obtain the equation (1). (Since the calculation necessary to derive (1)
is elementary, we omit it here.) Accordingly, the solutions of (1) represent a
certain class of exact solutions of the two-dimensional Navier-Stokes equations.
If we assume the non-slip boundary condition on the boundary x = α, x = β,
then we may assume the boundary condition (3). We also consider (1) with
the periodic boundary condition.

It is interesting to see that the equation (2) in the case where a = 0
is also derived from the Navier-Stokes equations. In fact, let us consider
the Navier-Stokes equations in cylindrical coordinates in R3 and assume that
(ur, uθ, uz) = (− r

2fz(t, z), 0, f(t, z)). (Here the subscripts in the left-hand side
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denote the direction, not the differentiation. On the other hand, fz means
the derivative of f with respect to z.) Then the Navier-Stokes equations are
satisfied if f satisfies

ftzz + ffzzz = νfzzzz.(6)

If we consider the Navier-Stokes equations in m-dimensions with cylindrical
coordinates and if we assume that ur = − r

m−1f(t, z), uz = f(t, z), where
z = xm and r2 = x2

1 + · · · + x2
m−1, then the Navier-Stokes equations are

reduced to

ftzz + ffzzz +
m− 3
m− 1

fzfzz = νfzzzz.(7)

See, for instance, Weyl [32]. Thus, the artificial parameter a in (2) is physically
substantiated for these discrete values. If m = 2, (7) is nothing but (1). If
−1 ≤ a < 3, then the stationary equation of (2) is derived, without any
approximation, from the two-dimensional Navier-Stokes equations; see Weyl
[32].

Remark. Extensions in higher dimensions are possible in many ways.
In fact, [17] and (independently) [35] consider the three-dimensional version,
which consists of a coupled system of one-dimensional equations.

The equation (1) is equivalently written as follows, which is more conve-
nient for the numerical computation: If we put ω = −fxx, then

ωt + fωx − fxω = νωxx,(8)

f = G(ω),(9)

fx(t, α) = fx(t, β) = 0.(10)

Here G is the Green operator for −d2/dx2 in α < x < β with the Dirichlet
boundary condition f |x=α = f |β = 0. Note that f = G(ω) is explicitly given
as

f(x) =
1

β − α

∫ x

α
(β − x)(ξ − α)ω(t, ξ)dξ

+
1

β − α

∫ β

x
(β − ξ)(x− α)ω(t, ξ)dξ.

(11)

Since it gives us

fx(x) =
−1

β − α

∫ x

α
(ξ − α)ω(t, ξ)dξ +

1
β − α

∫ β

x
(β − ξ)ω(t, ξ)dξ,

the boundary condition (10) can be replaced equivalently by
∫ β

α
ω(t, ξ)dξ =

∫ β

α
ξω(t, ξ)dξ = 0.(12)
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Thus we have reached the two, mutually equivalent sets of nonlinear and
nonlocal equations: (8, 9, 10) and (8, 9, 12).

The equation (8) has three important terms. Namely, the dissipation term
νωxx, the convection term fωx, and the stretching term fxω. Strictly speak-
ing, the stretching term helps stretching only if fx > 0. However, we call fxω
the stretching term, whatever the sign of fx might be. This is an abuse of
the terminology. By that abuse, we have thus arrived at an analogue of three-
dimensional vortex dynamics of incompressible viscous fluid motion. Note
however that this analogy comes from two-dimensional Navier-Stokes equa-
tions with infinite energy, and the results for (1) may well have little relevance
with real vortex dynamics. (Notice that the physical dimension of ω in (1)
is the same as that of vorticity gradient.) But we do not consider this issue
of analogy any further and consider the equation (1) as a model equation of
blow-up. In other words, (1) or (2) per se is interesting to us.

It is sometimes claimed that the convection term does not play an impor-
tant role in the increase of the vorticity. We do not know to what extent this
statement may be true. So we would like to study the role of the convec-
tion term in (1). To this end, we will consider what happens if we drop the
convection term in (1). This amounts to considering the following equation

ωt − fxω = νωxx,(13)

which is the same as the equation (4) with b = 0, whence is rewritten as
(5). We would like to compare the results for (8) with those for (13) (or (5)).
Roughly speaking, the results are: some solutions of (13) (hence of (5)) blow up
in finite time, while all the solutions of (8) exist globally in time. Consequently
we may say that the nonlinear convection term arrests the blow-up.

If the constant term c(t) in (5) is absent, then the equation is rather famous.
Notably Fujita [12] considers the Cauchy problem in which the nonlinear term
u2 is generalized to u1+α, and his results lead to further intensive studies of
blow-up problems. See, for instance, Deng and Levine [10] or Levine [21].

Many blow-up models have been considered in relation to fluid mechan-
ics. In particular, those with a nonlocal stretching are well-known [6, 7, 8, 28].
Models with nonlocal convection are proposed in [1]. We will show in this
paper that the blow-up behavior arising in equation (5) is different from those
in [1, 8, 28].

Notation is now defined. L2(α, β) denotes the Hilbert space of all the
square summable functions in (α, β) and L2(α, β)/R denotes the orthogo-
nal complement to the one-dimensional space of all the constant functions.
L∞(α, β) denotes the Banach space of all the essentially bounded functions.
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L∞(α, β)/R denotes
{

f ∈ L∞(α, β);
∫ β

α
f(x)dx = 0

}
.

L∞(0, T ; L∞(α, β)) and similar notations are defined straightforwardly. Sobolev
spaces of L2-type are used and denoted by Hm or Hm(α, β). All functions in
this paper are real-valued.

3. Existence Local-in-time

We first prove the existence local-in-time of solutions of (2). Such a theo-
rem would be an easy exercise if ν > 0. As a matter of fact, we can prove the
following theorem, whose proof is omitted.

Theorem 1. Let ν > 0 and assume that ω(0, ·) ∈ L2 satisfies (12). Then
there exists T > 0 and a unique solution ω ∈ C0([0, T ]; L2)∩C1((0, T ]; L2) of
(8), (9), and (12).

The existence theorem is less easy if ν = 0. What we consider is

ftxx + ffxxx − afxfxx = 0 (0 < t, α < x < β),(14)

fxx(0, x) ∈ L2 is given,(15)

f(t, α) = f(t, β) = 0.(16)

The boundary condition (16) may be replaced by the periodic boundary con-
dition.

In order to prove a local existence for (14)–(16), we use a theorem by
Kato and Lai [19]. We prove the existence in the case of periodic boundary
condition, since the proof is almost the same in both cases. Accordingly, we
assume that α = 0 and β = 2π. We use the following theorem, which is a
special case of a theorem by Kato and Lai [19] (here S1 denotes the circle):

Theorem 2. Let V = H1(S1)/R, H = L2(S1)/R, and X = H−1(S1)/R.
Let A be a sequentially weakly continuous mapping from H into X such that

〈v, A(v)〉 ≥ −β(‖v‖2) for v ∈ V,

where β ≥ 0 is an increasing function. Then for any u(0) ∈ H, there exists
T > 0 and a solution of ut + A(u) = 0 in the class

Cw([0, T ]; H) ∩ C1
w([0, T ]; X),
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where Cw and C1
w indicate the weak continuity.

Proof of existence of (14). We define A as follows

A(v) = G(v)
∂v

∂x
− aG(v)xv,

where G(v) is the Green operator. Namely, it is defined by (11) for the Dirich-
let boundary condition and by the following formula for the periodic boundary
condition:

G(v) =
∑

n6=0

an

n2
einx for v =

∑

n 6=0

aneinx.

For v ∈ H, G(v) belongs to C1; hence it is easy to see that A maps H
continuously into X. Since

〈A(v), v〉 =
∫ 2π

0
G(v)vxvdx− a

∫ 2π

0
G(v)xv2dx = −1 + 2a

2

∫ 2π

0
G(v)xv2dx,

and since
‖G(v)x‖L∞ ≤

√
2π‖v‖,

where ‖ ‖ is the L2-norm, it holds that

〈A(v), v〉 ≥ −β(‖v‖2)

with

β(s) = |1 + 2a|
√

π

2
s3/2.

As a consequence, we are given a solution v ∈ Cw([0, T ]; L2/R) ∩ C1
w([0, T ];

H−1/R).

The Kato-Lai theorem is not concerned with the uniqueness of the solution,
which must be proved separately. We now prove that the solution is unique.
To this end, let v and w be solutions and v(0, ·) = w(0, ·). Set f = G(v)
and g = G(w). Then, formally, they satisfy ftxx + ffxxx − afxfxx = and
gtxx + ggxxx − agxgxx = 0, respectively. Then we obtain

(fxx−gxx)t +f(fxxx−gxxx)+(f −g)gxxx−afx(fxx−gxx)−a(fx−gx)gxx = 0.

This gives us, by the integration by parts, the following equation:

1
2

d

dt

∫ 2π

0
(fx − gx)2dx =

∫ 2π

0
[(1 + a)fxx − (a + 2)gxx](f − g)(fx − gx)dx

+
3 + 2a

2

∫ 2π

0
fx(fx − gx)2dx.
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Note that fxx and gxx are uniformly bounded in 0 ≤ t ≤ T in L2-norm.
Therefore, with the aid of the Sobolev inequality, we have

1
2

d

dt
‖fx − gx‖2 ≤ M‖fx − gx‖2 (0 ≤ t ≤ T ′).

It is now easy to get the uniqueness.
Finally we remark that the solution actually belongs to C([0, T ]; L2(S1)/R).

Namely, the continuity holds for strong topology. This is proved in Kato and
Lai [19, page 23], by using the uniqueness of the solution.

Thus we have a unique, local, generalized solution for the case where ν = 0.

4. Blow-up Theorems

The purpose of the present section is to show sufficient conditions for the
blow-up of solutions to (5). Budd et al. [3] proved a theorem which guaranteed
blow-ups of some solutions when ν > 0. We prove a blow-up theorem which
is different from theirs.

We begin with the case where ν > 0. We consider

(17) ut − uxx − u2 + c(t) = 0 (0 < t, 0 < x < 1),

(18)
∫ 1

0
u(t, x)dx = 0 (0 < t),

(19) u(t, 0) = u(t, 1) = 0.

Both the coefficients of uxx and u2 are normalized to unity, since the normal-
ization is enabled by the transformation u(t, x) → ηu(τt, x) and c(t) → γc(τt)
with positive constants η, γ, and τ and a suitable linear transformation for x.
When we consider the periodic boundary condition, we deal with

(20) ut − uxx − u2 +
∫ π

−π
u(t, x)2dx = 0 (0 < t, − π < x < π),

(21)
∫ π

−π
u(t, x)dx = 0 (0 < t).

The point x = π and x = −π are identified and we regard u as a function
defined for 0 < t and x on the circle.

We now prove the following

Theorem 3. If u0 satisfies the following three conditions

• u0(0) = u0(1) = 0 or the periodic boundary condition,
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• ∫ 1
0 u0(x)dx = 0,

• 1
3

∫ 1
0 u0(x)3dx− 1

2

∫ 1
0 u0,x(x)2dx > 0,

then the solution blows up in finite time.

Proof. Since u is of mixed sign, we cannot use Jensen’s inequality, which is
a powerful tool in the case of convex nonlinearity. Also, neither the comparison
theorem nor an everywhere-positive eigenfunction, which play a crucial role in
some nonlinear parabolic equations, can be used for our equation. Fortunately
we can prove that the theorem above is a special case of the theorem obtained
by Levine [20]. He considers an abstract evolution equation

ut = −Au + F (u), u(0) = u0,(22)

in a Hilbert space H. Here A is a self-adjoint positive definite operator in
H with the domain D, and F denotes a nonlinear term which is assumed to
satisfy F (0) = 0. He actually considers in a more general setting but (22) is
enough for our purpose. He assumes the following conditions:

1. The Fréchet derivative of F : D → H exists and is continuous. The
Fréchet derivative is assumed to be a symmetric operator.

2. u0 is assumed to belong to D.
3. There exists an α > 0 such that

2(α + 1)g(x) ≤ (F (x), x) (∀x ∈ D),

where g is defined as

g(v) =
∫ 1

0
(F (tv), v)dt.

4. The initial function u0 satisfies

g(u0) >
1
2
(u0, Au0).

Then he proves that the solution cannot exist globally in time. In particular,
he proves the existence of t0 < ∞ such that

lim
t→t0

∫ t

0
‖u(s)‖2ds = +∞,

where ‖ ‖ denotes the norm of H.
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In application to the present theorem, it is sufficient to note that H =
L2(0, 1)/R, A = −Pd2/dx2, F (w) = P (w2), and g(v) = (1/3)

∫ 1
0 v(x)3dx,

where P denotes the orthogonal projection from L2(0, 1) onto L2(0, 1)/R.
One small question about the smoothness of u0 remains here. Levine’s

theorem requires u0 ∈ D ⊂ H2(0, 1). However, it is not difficult to see that a
solution exists for u0 ∈ L2(0, 1)/R and u(t, ·) ∈ D for any t > 0. Keeping this
fact in mind, we get to our conclusion.

4.1. The inviscid case

Let us now consider the equation when the viscosity is zero, which was not
considered in [3]. The boundary condition u = 0 on x = 0, 1 is discarded since
it stems from the non-slip condition, which is not assumed in the inviscid fluid
motion. Accordingly, let u be a real-valued function of t > 0 and x ∈ [0, 1]
satisfying

ut = u2 −
∫ 1

0
u(t, x)2dx(23)

and
∫ 1

0
u(t, x)dx = 0.(24)

We assume that the initial function u(0, x) = u0(x) satisfies
∫ 1

0
u0(x)dx = 0.

The existence of solutions which is local in time is guaranteed by the
following theorem:

Theorem 4. If u0 belongs to L∞(0, 1)/R, then there exists a T > 0 such
that a solution u of (23) and (24) with u(0, x) = u0(x) exists and is unique in
L∞(0, T ; L∞(0, 1)/R).

Since the right-hand side of (23) defines a smooth mapping from L∞(0, 1)
into itself, the proof is elementary.

We now prove the following theorem:

Theorem 5. If u0 ∈ L∞(0, 1)/R satisfies
∫ 1

0
u0(x)3dx > 0,

then the solution of (23) and (24) blows up in finite time.
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Proof. It is easy to derive the following two equations:

d

dt

1
2

∫ 1

0
u(t, x)2dx =

∫ 1

0
u(t, x)3dx,(25)

d

dt

1
3

∫ 1

0
u(t, x)3dx =

∫ 1

0
u(t, x)4dx−

(∫ 1

0
u(t, x)2dx

)2

.(26)

The equation (25) is obtained by multiplying (23) by u and integrating it on
(0, 1). The equation (26) is obtained similarly by (23)× u2.

We now derive the following inequality. Suppose that v is not identically
zero and that

∫ 1
0 v(x)dx = 0. Then

(∫ 1

0
v(x)2dx

)2

≤
∫ 1

0
v(x)4dx−

(∫ 1
0 v(x)3dx

)2

∫ 1
0 v(x)2dx

.(27)

In order to derive this inequality, we take an arbitrary ξ ∈ R. Then,

∫ 1

0
v2dx =

∫ 1

0
(v2 − ξv)dx ≤

(∫ 1

0
(v2 − ξv)2dx

)1/2

.

Namely, we obtain

(∫ 1

0
v2dx

)2

≤
∫ 1

0
(v2 − ξv)2dx =

∫ 1

0
v4 − 2ξ

∫ 1

0
v3 + ξ2

∫ 1

0
v2

for any ξ ∈ R. If we choose a ξ such that the right-hand side becomes the
smallest, then we obtain the inequality (27).

By (26) and (27), we have

d

dt

1
3

∫ 1

0
u(t, x)3dx ≥

(∫ 1
0 u(t, x)3dx

)2

∫ 1
0 u(t, x)2dx

.

Let us define φ(t) =
∫ 1
0 u(t, x)2dx. Then the inequality is rewritten as

1
6
φ
′′
(t) ≥

1
4(φ′(t))2

φ(t)
, or

φ
′′

φ′
≥ 3

2
φ
′

φ
,(28)

where the prime implies the differentiation. On the other hand, we have
φ(0) > 0 and φ′(0) > 0. Thus we may integrate the inequality (28) so that

2
3

log φ′(t) ≥ log φ(t) + c0,
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where c0 is the integration constant. This inequality holds true as far as both
φ and φ

′
are positive. The inequality, however, leads us to

φ
′
(t) ≥ A0φ(t)3/2,

where A0 = exp(3c0/2) is a positive constant. The conclusion of the theorem
follows easily now.

Remark. In view of this theorem, one may well wonder if the opposite
condition

∫ 1
0 u0(x)3dx < 0 forces the solution to exist globally in time. How-

ever this is not true. There exist those solutions which satisfy
∫ 1
0 u0(x)3dx < 0

but blow up in finite time. Examples are given at the end of the next section.

Remark. The proof above seems to be included in Levine’s theorem,
which we have used for the case of ν > 0. It seems to the authors that Levine’s
theorem holds true even if the dissipation term, uxx or −Au, is deleted. If so,
Theorem 5 too is a special case of Levine’s theorem. The local existence would
be difficult if the term Au is missing. However, if local existence is guaranteed
by other methods and if only the blow-up is concerned, Levine’s argument is
equally applicable and seems to prove the blow-up for (23) and (24). Since
we are not completely sure about this and since the proof above, though it
is essentially the same as the one in [20], is short enough, we put it in the
present section. Another reason why we give a proof here is the question on
the smoothness of u0. In the case where Au is dropped, the equation is no
longer a parabolic one and it is not so clear to what a function space the initial
data supposed to belong.

5. Influence of the Projection in Inviscid Case

We now briefly compare (23, 24), which is equivalently written as ut =
P (u2), with the following one:

ut = u2.(29)

We will show that the existence of the projection makes a subtle change con-
cerning the blow-up of the solutions. We first note that (29) is essentially a
family of ordinary differential equations. The blow-up occurs for (29) if and
only if there exists an x0 such that u0(x0) > 0. On the other hand, the be-
havior of the solutions to (23, 24) is somewhat more complex. We will show
this by piecewise constant initial data.

Suppose that the initial function is of the following form:

u0(x) = w0χA + z0χB,
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where w0 and z0 are constants, χA is the characteristic function of a measurable
set A ⊂ [0, 1], and B is its complement: B = [0, 1] \ A. In order to ensure∫ 1
0 u0 = 0, we assume that w0α+ z0(1−α) = 0, where α denotes the Lebesgue

measure of A. Then it is easily seen that the solution u of (23) remains to be
piecewise constant for t > 0 and that

u(t, x) = w(t)χA + z(t)χB,

where w(t) and z(t) satisfy

ẇ(t) = (1− α)
(
w2 − z2

)
,

ż(t) = α
(
z2 − w2

)
.

Here and hereafter, the dot denotes the differentiation. Since αw(t) + (1 −
α)z(t) ≡ 0 is easily seen, the set of the ordinary differential equations above
is reduced to the following single equation:

ẇ(t) =
1− 2α

1− α
w2.

Therefore we get to the following

Theorem 6. If (α−1/2)w0 < 0, then the solutions blow up in finite time.
If α = 1/2, then the solution represents a stationary solution. If (α−1/2)w0 >
0, then the solution exists for all the time and decays to zero.

Corollary 1. The evolution equation (23), (24) has a continuum of steady-
states. Every neighborhood (in the L∞-norm) of the steady-states obtained in
the above way contains those functions such that u blows up in finite time if
u starts from them. Also every neighborhood has those functions such that u
decays to zero if u starts from them.

It is easy to see that if the initial function is piecewise constant, then u
remains to be so for t > 0. More specifically, if

u0(x) =
N∑

k=1

wk(0)χAk
,

where Ak (k = 1, 2, · · · , N) are mutually disjoint measurable sets in [0, 1] such
that ∪N

k=1Ak = [0, 1], then u is of the following form:

u(t, x) =
N∑

k=1

wk(t)χAk
.
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{wk(t)} satisfies the following ordinary differential equations:

ẇn(t) = w2
n −

N∑

k=1

αkw
2
k (n = 1, 2, · · · , N),(30)

where αk denotes the Lebesgue measure of Ak, and hence satisfies
∑N

k=1 αk =
1. We easily see that

N∑

k=1

αkwk(t) ≡ 0 (0 ≤ t).(31)

It is possible to classify the asymptotic behavior of all the solutions of
(30). First of all, we note that {wj(0)} is a stationary solution of (30) if and
only if |wj(0)| is independent of j. Next, we assume that N ≥ 3, that all
αj are positive, and that wj(0) is different from each other. This is allowed
since otherwise the system is reduced to the case where N is smaller. In
particular, this assumption implies that {wj(0)} is not a stationary solution.
The remaining part of the present section is devoted to proving the following
two theorems.

Theorem 7. Let J be an index such that wJ(0) = max1≤j≤N{wj(0)} and
assume that αJ < 1/2. Then wJ(t) blows up in finite time.

Theorem 8. Let J be chosen as above. Suppose that αJ > 1/2. Then the
solution exists globally and we have

lim
t→∞wi(t) = 0

for all i. If αJ = 1/2, then

wJ(t) → U∞, wi(t) → −U∞ (i 6= J),

where U∞ is a positive constant.

The proof is completed with the aid of some propositions. We begin with
the following

Lemma 1. wi(t) 6= wj(t) for any i 6= j and any t. If wj(t0) ≤ 0 for some
t0, then wj(t) < 0, for all t > t0.

Proof. If wi(t0) = wj(t0) for some t0, then wi(t) = wj(t) for all t. Thus,
by the assumption we have made, we see that wi(t) 6= wj(t) for any i 6= j and
any t. The second statement is proved similarly.
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Note that wJ(t) remains to be the largest among {wk(t)} for all t. Note
also a trivial relation wJ(t) > 0 for all t.

Lemma 2. Suppose that J is taken as above. If there exists an index
I 6= J such that wI(t) is positive for all t, then the solution blows up in finite
time.

Proof. Note that wJ(0)− wI(0) > 0. By equation (30) and the positivity
of wI , we have

d(wJ − wI)
dt

= w2
J − w2

I ≥ (wJ − wI)2.(32)

It is obvious that wJ −wI blows up in finite time because wJ(0)−wI(0) > 0.
Thus wJ too blows up in finite time.

Proposition 1. Suppose that
∑N

j=1 αjwj(0)3 > 0. Let J be the index as
above. Then wJ(t) blows up in finite time.

This is a special case of Theorem 5.

Proposition 2. Let J be as above and assume that αJ < 1/2. If ẇJ(0) =
wJ(0)2 −∑N

j=1 αjwj(0)2 > 0, then wJ(t) blows up in finite time.

Proof. We first define

I2(t) =
N∑

j=1

αjw
2
j (t), I3(t) =

N∑

j=1

αjw
3
j (t).

Equation (30) gives us the following relation:

dI2(t)
dt

= 2I3(t).

In view of Proposition 1, it suffices to prove that there exists a t0 > 0 such
that I3(t0) > 0. Suppose this is not true, then I3(t) ≤ 0 for all t. Then we
obtain

dI2(t)
dt

= 2I3(t) ≤ 0, and hence I2(t) ≤ I2(0).

Thus
dwJ

dt
= w2

J − I2(t) ≥ w2
J − I2(0).

Let c =
√

I2(0). Then we have wJ(0) > c by the assumption. Also, ẇJ(t) > 0
as long as wJ(t) > c. Consequently, wJ(t) > c for all t. Thus it must hold
that

1
w2

J − c2

dwJ

dt
≥ 1.



80 Hisashi Okamoto and Jinghui Zhu

Integrating this inequality, we obtain

1 ≥ wJ(t)− c

wJ(t) + c
≥ wJ(0)− c

wJ(0) + c
exp(2ct).

This is a contradiction for sufficiently large t, since c is positive.

Corollary 2. If αJ < 1/2, then any globally existing solution, if it exists,
satisfies ẇJ(t) ≤ 0 for all t.

Proof of Theorem 7. Assume that there exists a global solution. Then
by the last corollary, the solution satisfies ẇJ(t) ≤ 0. Also we may assume,
without losing generality, that wj(t) < 0 for all t and j 6= J . Now let us
take I such that wI(0) < 0 is the largest among {wj(0)}j 6=J . Then it holds
that −wI(0) < wJ(0). In fact, if otherwise, then, for all k 6= J , it holds that
wk(0) ≤ wI(0) ≤ −wJ(0), whence

αJwJ(0) =
∑

k 6=J

αk(−wk(0)) ≥
∑

k 6=J

αkwJ(0) = (1− αJ)wJ(0).

Since wJ(0) > 0 and αJ < 1/2, this is a contradiction. Now it is obvious that

ẇI(0) < ẇJ(0) ≤ 0.

By the same reasoning, we can conclude that

ẇI(t) < ẇJ(t) ≤ 0

for all t. Therefore wj(t) ≤ wI(0) < 0 for all j 6= J . Consequently,

αJwJ(t) =
∑

k 6=J

αk(−wk(t))

is bounded from below by a positive constant.
On the other hand, take any i 6= J . Then we have

d(wI − wi)
dt

= w2
I − w2

i ≤ −(wI − wi)2.

Integrating both sides, we obtain

0 ≤ wI(t)− wi(t) ≤ wI(0)− wi(0)
(wI(0)− wi(0))t + 1

(0 ≤ t).

Thus we may write
wi = wI + bi (i 6= J),
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where bi(t) = O(t−1) as t →∞. By this observation, we have

d

dt
wJ = (1− αJ)w2

J −
∑

i6=J

αiw
2
i

= (1− αJ)w2
J −

∑

i6=J

αi(wI + bi)2

= (1− αJ)w2
J − (1− αJ)w2

I − 2d1(t)wI + d2(t),

where d1(t) =
∑

k 6=J αkbk(t) = O(t−1) and d2 = O(t−2). Since

αJwJ = −
∑

k 6=J

αk(wI + bk) = −(1− αJ)wI − d1,

with the same d1 as above, we obtain

d

dt
wJ =

1− 2αJ

1− α
w2

J − r2(t),

where r2(t) = d2 + d2
1/(1− αJ) = O(t−2). Since wJ(t) is bounded from below

by a positive constant, there exists a t0 > 0 such that ẇ(t0) > 0. This is
against our assumption.

Proof of Theorem 8. Note that

αJwJ = −
∑

k 6=J

αkwk ≤

∑

k 6=J

αk




1/2 
∑

k 6=J

αkw
2
k




1/2

.

This gives us

−
∑

k 6=J

αkw
2
k ≤ − α2

J

1− αJ
w2

J .

Consequently,

d

dt
wJ(t) = (1− αJ)w2

J −
∑

k 6=J

αkw
2
k

≤ (1− αJ)w2
J −

α2
J

1− αJ
w2

J =
1− 2αJ

1− αJ
w2

J .

This inequality gives us the conclusion if αJ > 1/2.
If αJ = 1/2, wJ is still nonincreasing and wJ > 0. Consequently, there

exists U∞ ∈ [0,∞) such that

lim
t→∞wJ(t) = U∞.
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By the boundedness of wJ(t) and Lemma 2, it must hold that wk(t) < 0
for all sufficiently large t and all k 6= J . In order to prove that U∞ > 0, we
note that there exists a j 6= J such that 0 < −wj(0) < wJ(0). For this j we
have

ẇj(t) ≤ ẇJ(t) ≤ 0.

Consequently, wj(t) ≤ wj(0) < 0. If U∞ = 0, then limt→∞wk(t) = 0 for all k.
Thus U∞ must be a positive constant.

It is interesting to note that any decaying solution has in its any L∞-
neighborhood many solutions which blow up. In fact, the situation is best
understood from Figure 1. The function in the left-hand side decays to zero,
while the function in the right-hand side blows up by Theorem 7.

Remark: In our numerical experiments with various initial data, we find
that, for almost all initial data, the solution blows up in such a way that the
maximum tends to infinity while all the other wj ’s become negative eventually.
Thus it is natural to ask whether the situation in Lemma 2 actually occurs or
not. Our experiments suggest that it does not occur but we cannot prove it.

FIG. 1. Blow-up solution in a neighborhood of decaying solution. In the left, the
interval length αJ is greater than 1/2. In the right, the interval length αJ

is less that 1/2.

5.1. Converse of Theorem 5 is not true

We consider piecewise constant initial data with three components. Using
the same notation in Section 4, we have

∫ 1

0
u0(x)3dx = α1w

3
1 + α2w

3
2 + α3w

3
3,(33)

α1 + α2 + α3 = 1,

and
α1w1 + α2w2 + α3w3 = 0.
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The proof is completed by Theorem 7 if we have shown that, by choosing w3 <
0 < w2 < w1 and αj appropriately, we can accomplish both

∫ 1
0 u0(x)3dx < 0

and α1 < 1/2. To this end, we put α1 = 1/2− ε, α2 = 1/2− 2ε, and α3 = 3ε
with ε > 0. Given 0 < w2 < w1, we define w3 by w3 = −(α1w1 + α2w2)/α3

and substitute it into (33). We obtain
∫ 1

0
u0(x)3dx =

(
1
2
− ε

)
w3

1 +
(

1
2
− 2ε

)
w3

2

− 1
9ε2

[
(w1 + w2)3

8
− 3ε

4
(w1 + w2)2(w1 + 2w2)

+
3ε2

2
(w1 + w2)(w1 + 2w2)2 − ε3(w1 + 2w2)3

]
.

The right-hand side is negative if ε is sufficiently small.

6. Comparison of (5) with (1)

The purpose of the present section is to explain how different (5) is from
(1). As for (1), there are some papers which study blow-up. Childress et al. [5]
reports that there is a solution which blows up in finite time. The first author
of the present paper and M. Shōji have made several numerical experiments
on (1) and (3) with different numerical methods and different initial data
[24, 25]. We could not find any blow-up solution, though the solution ω =
−fxx can be very large especially near the boundary. Due to this boundary
layer, the numerical computation by finite difference method experiences a
serious difficulty if the number of mesh points is insufficient. This may well be
regarded erroneously as a blow-up, but the solution continues to exist if more
mesh points are used and if the time-step is adaptively chosen. The second
author of the present paper also gave careful numerical experiments in [35]
and confirmed the conclusion in [24, 25]. So we believe that the solution does
not blow up for (1) under the boundary condition (3).

On the other hand, Grundy and McLaughlin [16] show numerically that
there is a blow-up if the boundary condition is the following inhomogeneous
one:

f(t, α) = ρ1, fxx(t, α) = −σ1, f(t, β) = ρ2, fxx(t, β) = −σ2,(34)

where ρj and σj are constants. Further, the paper shows that the blow-up
rate is O((t0 − t)−2), if the solution blows up at t = t0. But the occurrence of
the blow-up for (1) under (34) does not seem to be proved rigorously by any-
body. Also, Cox [9] gives numerical evidences for the blow-up of (1) and (34).
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Another important discovery of [16] is that the blow-up occurs everywhere in
the interval. Namely,

lim
t→t0

|u(t, x)| = ∞

for all x ∈ (α, β). Our numerical experiments also confirm their results, which
are not reported here.

So, as numerical experiments show, blow-ups are present if we replace the
boundary condition (3) with some inhomogeneous one. We, however, strongly
believe that any solution to (1) and (3) exists globally in time and that any
solution tends to zero as t → ∞. In particular, the global attractor would
consist of u ≡ 0 only. Except for numerical evidences, we do not have a proof
for this statement. The uniqueness of the steady-state which is proved in
Section 9 seems to support this conjecture, too. Anyway, there seems to be no
mathematical proof of blow-up or global existence of the solutions to (1) with
any boundary condition, except for the global existence in the case where the
initial value is small (see [5]). The reason that we cannot use Levine’s theorem
for (1) which was used in Section 2 for (5) is that Levine’s theorem requires
the symmetry of the Fréchet derivative of the nonlinear term F . The nonlinear
term of (1) does not seem to meet the requirement.

We may summarize as follows. The equation (1) does not admit blow-up
for homogeneous boundary data but blow-ups may happen for inhomogeneous
boundary data. We also remark that if we generalize (1) to coupled equations
for 3D flows, then blow-up can occur for homogeneous boundary data [17].

The equation (5) is obtained by dropping the convection term from the
equation (1). At first glance, the difference appears to be insignificant, since
the function of the convection term is to move things sideward: the nonlinear
convection term may yield a singularity of shock-wave type as in the Burgers
equation but it seems to have nothing to do with the mechanism by which
the solution itself becomes large. However, we have seen that solutions of
equation (5) with homogeneous boundary condition can blow up. This fact is
an indirect evidence that the convection term may play an important role once
the solution grows large enough. We may say that the convection term can
suppress the blow-up. Other numerical evidences for the existence of solutions
to (1) and related equations are reported in a paper by the second author [35].

Remark. The present paper is by no means the first to recognize the
importance of nonlocal nonlinear convection term. In fact, P. Constantin
shows in [6] that 3D Euler equations for incompressible fluid, after a certain
modification, have a solution which blows up in finite time. His result indicates
the importance of the convection term.
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It is also important to note how different the blow-ups are from those
appearing in the equation without the projection. Let us consider the following
equation:

ut − uxx − u2 = 0 (0 < t, 0 < x < 1).(35)

Both (5) and (35) are considered with the homogeneous Dirichlet boundary
condition. The blow-up behavior of (35) is well-known; see Giga and Kohn
[14, 15]. We compute a typical solution numerically and the graph is given in
Figure 2.

On the other hand, a graph of blow-up in (5) is shown in Figure 3. Solutions
in Figures 2 and 3 are computed by a finite difference scheme using the idea of
Nakagawa [22] and Tabata [31]. There are visible differences between Figure
2 and Figure 3. A big difference is that u becomes positive in less and less
part in the x-interval, while the central part of Figure 2 does not shrink. In
equation (35), the blow-up generically occurs at a single point. On the other
hand, the solution of (5) satisfies the following two asymptotics:

lim
t→t0

u(t, x) =

{
+∞ x = a,
−∞ x 6= a,±1,

(36)

where t0 is a blow-up time, a is the point at which u blows up to +∞. In
addition, it holds that

lim
t→t0

u(t, x)
u(t, a)

= 0.

FIG. 2. The graph of the solution u to (35) (left), the maximum of u and t (right).
The initial value is aU(x), where U is the steady-state and a is equal to
1.01.
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FIG. 3. The graph of the solution u to (17)–(19). The initial value is 300 sin
(2πx).

FIG. 4. The graph of the solution u. Initial data are u0(x) = −50x3 + 30x.

Thus, u blows up everywhere but the +∞ blow-up occurs at a single point.
In this sense, the blow-up is localized. This remarkable fact is proved in [3].

The asymptotic form of the function u(t, x) near the blow-up time is known
for (35); see [13, 14, 15]. The asymptotic form of the function u(t, x) near the
blow-up for (5) is given in [3].
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FIG. 5. The graph of the solution u. The same initial data as in Figure 4.

7. Existence for Generalized Equations

We consider (2). Only the case where ν > 0 is considered in this section
and the case for ν = 0 is considered in the next section.

Theorem 9. If a = −1/(2n) with a positive integer n, a = 0, or a = −2,
then all the solutions exist globally in time and tend to zero as t →∞.

Proof. Multiplying (2) by f , we obtain

1
2

d

dt

∫ 1

−1
fx(t, x)2dx−

(
1 +

a

2

) ∫ 1

−1
fx(t, x)3dx = −ν

∫ 1

−1
fxx(t, x)2dx.

From this we can prove the global existence for all initial data if a = −2. This
conclusion is valid for both the homogeneous Dirichlet boundary condition
and the periodic boundary condition.

When we assume the periodic boundary condition, we multiply (2) by fxx

to obtain
1
2

d

dt

∫ 1

−1
f2

xxdx−
(

a +
1
2

) ∫ 1

−1
fxf2

xxdx = −ν

∫ 1

−1
f2

xxxdx.

From this we can prove the global existence for all initial data if a = −1/2.
Therefore solutions of (7) exist globally in time if m = 5.

Similarly we can prove the global existence if a = −1/(2n) for n = 1, 2, · · ·
and if the periodic boundary condition is assumed. In fact, we multiply (2)
by f2n−1

xx and integrate by parts to obtain

1
2n

d

dt

∫ 1

−1
f2n

xxdx−
(

a +
1
2n

) ∫ 1

−1
fxf2n

xxdx = −ν

∫ 1

−1
f2n−2

xx f2
xxxdx.
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Global existence is also guaranteed for the case of a = 0. This is because
the equation becomes

ωt + G(ω)ωx = νωxx

and the maximum principle holds true in this case.

We have unsuccessfully tried to prove the existence or blow-up for other
values of a. Figures 4 and 5 seem to indicate that any solutions of (2) do not
blow up if 0 ≤ a ≤ 1 and that some of them can blow up in finite time if
1 < a < ∞.

For a < 0, it is not easy to see where the boundary between the global
existence and blow-up is. See Figure 6.

FIG. 6. The graph of the solution u. ν = 0.001. The same initial data as in Figure
4.

Remark. In their analysis of nonstationary boundary-later equation, E
and Engquist [11] were lead to the following initial-boundary value problem:

vt = vxx + v2 −
(∫ x

0
v(t, y)dy

)
vx (0 < x < ∞),(37)

v(t, 0) = 0, v(t,∞) = 0.

They proved that some solutions blow up in finite time.
Using their argument, we can prove the following theorem:

Theorem 10. Let w satisfy

wt = wxx + w2 −
(∫ x

0
w(t, y)dy

)
wx (0 ≤ x < 2π)
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and the periodic boundary condition. Then w blows up in finite time if

1
2

∫ 2π

0
wx(0, x)2dx− 1

4

∫ 2π

0
w(0, x)3dx < 0.

An equivalent form of (1) with ν = 1 is given by:

ut = uxx + u2 −
(∫ x

0
u(t, y)dy

)
ux + γ(t) (0 < x < 2π),

0 =
∫ 2π

0
u(t, x).

Therefore we may say that the presence of the constant term, γ(t), can arrest
the blow-up of solutions.

The results of the present section are certainly fragmental and the authors
welcome the readers who strengthen them.

8. The Case Where ν = 0

Throughout this section, we consider

ftxx + ffxxx − afxfxx = 0 (0 ≤ x < 2π)(38)

under the periodic boundary condition. Integrating once, we obtain

ftx + ffxx − a + 1
2

f2
x = γ(t),

where

γ(t) = −a + 3
4π

∫ 2π

0
f2

x .

Then we easily obtain the following two equalities:

d

dt

∫ 2π

0
f2

x = (2 + a)
∫ 2π

0
f3

x ,(39)

d

dt

∫ 2π

0
f3

x =
5 + 3a

2

∫ 2π

0
f4

x −
3(3 + a)

4π

(∫ 2π

0
f2

x

)2

.(40)

We now prove the following lemma.

Lemma 3. Suppose that a function w defined in [0, 2π] has zero mean :
∫ 2π

0
w(x)dx = 0.
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Then, unless w is identically zero, it holds that

(∫ 2π

0
w2

)2

≤ 4π




∫ 2π

0
w4 −

(∫ 2π
0 |w|3

)2

2
∫ 2π
0 w2


 .(41)

Proof. Let A = A(x) denote the characteristic function of the set of point
x such that w(x) > 0 and let B denote 1−A. Then for any ξ ∈ R, we have

∫ 2π

0
w2A =

∫ 2π

0
(w2A + ξw) ≤

√
2π

(∫ 2π

0
(w4A + 2ξw3A + ξ2w2)

)1/2

.(42)

Similarly, we get

∫ 2π

0
w2B =

∫ 2π

0
(w2B + ξw) ≤

√
2π

(∫ 2π

0
w4B − 2ξw3B + ξ2w2)

)1/2

.(43)

By these inequalities, we obtain

∫ 2π

0
w2 =

∫
w2A +

∫
w2B

≤ √
2π

(
2

∫
w4A + 2

∫
w4B + 4ξ2

∫ 2π

0
w2 + 4ξ

∫
w3A− 4ξ

∫
w3B

)1/2

≤ √
4π

(∫ 2π

0
w4 + 2ξ2

∫ 2π

0
w2 + 2ξ

∫ 2π

0
|w|3

)1/2

.

If we choose ξ which minimizes the right-hand side, then we obtain (41).

Applying this lemma to w = fx, we obtain by (39) and (40)

φ̈(t)=
(2 + a)(5 + 3a)

2

∫ 2π

0
f4

x −
3(3 + a)(2 + a)

4π
φ(t)2

≥ (2 + a)(5 + 3a)
2

[
1
4π

φ(t)2 +

(∫ 2π
0 |fx|3)

)2

2φ(t)

]

−3(3 + a)(2 + a)
4π

φ(t)2

= −(2 + a)(13 + 3a)
8π

φ(t)2 +
(2 + a)(5 + 3a)

4

(∫ 2π
0 |fx|3

)2

φ
,
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where we have put φ(t) =
∫ 2π
0 fx(t, x)2dx and we have assumed that (2+a)(5+

3a) > 0. On the other hand, Hölder’s inequality gives us

1
2π

(∫ 2π

0
f2

x

)3

≤
(∫ 2π

0
|fx|3

)2

.

Combining these inequalities, we obtain

φ̈(t) ≥ −(2 + a)(13 + 3a)
8π

φ(t)2 +
(2 + a)(5 + 3a)

8π
φ(t)2

= −a + 2
π

φ(t)2.

Therefore we have reached the following proposition: if a < −2, then φ(t) =∫ 2π
0 f2

x satisfies

φ̈(t) ≥ −a + 2
π

φ(t)2.

We now prove the following theorem.

Theorem 11. Assume that a < −2 and that
∫ 2π

0
fx(0, x)3dx > 0.

Then the solution of (38) blows up in finite time.

Proof. The function φ(t) satisfies

bφ2 ≤ φ̈(44)

with a constant b > 0. By the assumption, φ̇(0) > 0. Consequently, φ̇(t) > 0
for 0 ≤ t < t0 for some t0 > 0. As far as φ̇(t) > 0, it holds that

bφ2φ̇ ≤ φ̈φ̇.

Integrating it, we obtain

c0 ≤ 1
2

(
φ̇
)2 − b

3
φ3,

where
c0 =

1
2

(
φ̇(0)

)2 − b

3
φ(0)3

is a constant. If c0 ≥ 0, then
√

2b

3
φ(t)3/2 ≤ φ̇(t).
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It would be easy to show by this inequality that φ blows up in finite time.
This inequality is valid as far as φ̇(t) ≥ 0. Since it guarantees monotonicity of
φ, φ never turns negative once φ̇ ≥ 0. Thus, we have proved that φ blows up
in finite time if c0 ≥ 0.

If there exists a t1 such that 1
2 φ̇(t1)2 − b

3φ(t1)3 > 0, then we can prove the
blow-up in the same way. If such a t1 does not exist, then we may assume
that (

φ̇(t)
)2 ≤ 2b

3
φ(t)3.

By this inequality and (44), we have

(
φ̇(t)

)4/3 ≤
(

2b

3

)2/3

φ(t)2 ≤
(

2b

3

)2/3 1
b
φ̈(t).

If we put ψ = φ̇, then we obtain

b

(
3
2b

)2/3

ψ4/3 ≤ ψ̇.

In a way similar to the one above, we can prove the blow-up.

8.1. 3D axisymmetric Euler

We consider (38) in the case where a = 0. Note that this equation gives
us exact solutions for axisymmetric Euler flow. The equation is

ftxx + ffxxx = 0 (0 ≤ x < 2π)(45)

and the periodic boundary condition is imposed. As we have seen in Section
3, there exists a unique local solution for fxx(0, ·) ∈ L2/R. It is not difficult
to see that f is smooth for short time if fxx(0, ·) is smooth.

Figure 7 shows the graph of a numerical solution. This graph shows a very
sharp internal layer which seems to indicate a singularity of shock-wave type.
However, we can prove that the smooth solution does not lose its smoothness
for any t.

We rewrite (45) as follows:

vt + G(v)vx = 0.

We prove that, if v(0, ·) belongs to L2(S1)/R ∩C0(S1), then v belongs to the
same function space for all t > 0. This can be seen as follows. Note first that
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FIG. 7. The graph of the solution of (45). Initial data are fxx(0, x) = 20 sin(πx).

v ∈ C0([0, T ];L2) implies fx is bounded in [0, T ]× S1, where f = G(v). This
means that the characteristic curves

ẋ = f(t, x(t)), x(0) = ξ

are well-defined. Let φ(t, ξ) denote the solution of this ordinary differential
equation. Then

v(t, φ(t, ξ)) = a(ξ),

where a denotes v(0, ·). This shows that the solution satisfies the following a
priori estimate

‖v(t, ·)‖L∞ ≤ ‖v(0, ·)‖L∞ .(46)

Since the L∞-norm of fx is bounded by a constant which depends only on
the L∞-norm of v, the characteristic curves exist in a time interval whose
length depends only on ‖v(0, ·)‖L∞ . This, together with a repeated use of
(46), guarantees the continuity of v for all t.

This fact shows that the shock-like phenomenon in Figure 7 actually does
not contain singularity at all. The figure shows only that the L∞-norm of fxxx

grows very rapidly.
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9. Remarks on Stationary Viscous Flow

We proved theorems showing that a solution blows up if its initial value is
sufficiently large. On the other hand, it can be proved easily that the solution
exists globally in time if the L2-norm of initial function is sufficiently small
(see Childress et al. [5] for (1)). The precise boundary between blow-up and
global existence seems to be difficult to locate, as is often the case in many
blow-up problems.

Concerning this question, it may be helpful to study the stationary prob-
lem, since, in many evolution equations, steady-states stand on the border of
blow-up and global existence. Throughout this section, ν is assumed to be
positive.

9.1. The case where a = ∞

The case of the periodic boundary condition, the easiest case, is studied
first. The problem is to find a 2π-periodic function U = U(x) such that

(47) Uxx + U2 − 1
2π

∫ π

−π
U(x)2dx = 0,

(48)
∫ π

−π
U(x)dx = 0.

The solution can be expressed by elliptic functions in an explicit but tedious
form. Instead, we compute the solution as follows. Following the method in
[23], we consider the following generalized problem:

(49) Uxx + AU + U2 − 1
2π

∫ π

−π
U(x)2dx = 0,

(50)
∫ π

−π
U(x)dx = 0,

where A is a parameter, which is artificial in our context. This problem is
the same as the one in [23], where −U instead of U is taken as the unknown.
Reference [23] shows that any solution of (49) and (50) with real A including
A = 0 gives an exact solution of the Navier-Stokes equations called Oseen’s
spiral flow. It is interesting to see that the same equations lead to stationary
solutions in a different situation.

We now outline how we can solve (49) and (50). We first note that if
U(x) is a solution to (49) and (50) then U(x− a) with a constant a is also a
solution. In order to eliminate this indeterminacy, we henceforth consider only
those solutions which are even functions of x. By linearizing (49) at U = 0,
we obtain

Uxx + AU = 0,(51)
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FIG. 8. Numerical solutions of (47) and (48). The solution in the right-hand side
is obtained from the one in the left-hand side by shifting the former by π.
Namely, U(x) and U(x− π) .

∫ π

−π
U(x)dx = 0.(52)

This is an eigenvalue problem with A being the eigenvalue. It has a nontrivial
solution if and only if

A = n2, U = constant× cosnx,

where n is a positive integer. Therefore, nontrivial solutions may bifurcate
from A = n2. It is shown numerically in [23] that the bifurcations are sub-
critical pitchforks and the branches of the nontrivial solutions exist for all
A ∈ (−∞, n2). In particular, there exists a solution with A = 0. This is true
for all n = 1, 2, · · · and we obtain infinitely many solutions of (47) and (48).
Two solutions obtained by the continuation from (A,U) = (1, 0) are shown in
Figure 8.

It is easy to see that, if U(x) is a solution to (47) and (48), then Ũ(x) =
n2U(nx) with n a positive integer is a solution to the same boundary value
problem, too. Accordingly, the stationary solutions which are obtained by
the continuation from (A,U) = (n2, 0) are nothing but n2U(nx) with U the
solution in Figure 8.

The stationary solutions are not stable. In fact, our numerical experiments
show that u blows up if u(0, x) = aU(x) with a > 1 and that u decays to zero
if u(0, x) = aU(x) with 0 < a < 1.
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It should be noted that the Dirichlet boundary value problem:

(53) uxx + u2 − c0 = 0,

(54)
∫ π

−π
u(x)dx = 0,

(55) u(±π) = 0,

has nontrivial solutions. In fact, if we take a constant a appropriately, then
U(x− a), where U is the solution in Figure 8, satisfies all the requirements.

The situation is quite different if we consider the equation without the
projection. In fact, let us consider the following boundary value problem:

uxx + u2 = 0(56)

with the periodic boundary condition. It is easy to prove the following propo-
sition.

Proposition 3. If (56) is fulfilled in a < x < b and u satisfies u(a) = u(b),
ux(a) = ux(b), then u is identically zero.

Proof. From (56), we obtain

1
2
u2

x +
1
3
u3 = c(57)

with a constant c. Suppose that u is not identically zero. Then it assumes its
maximum and minimum at, say, x1 and x2, respectively. Since equation (57)
implies that u(x1) = u(x2), u must be a constant function. Then (56) forces
u to be identically zero.

A quite similar reasoning leads us to the same conclusion under the homo-
geneous Neumann boundary condition. On the other hand, it is well-known
that there exists a unique solution which satisfies

uxx + u2 = 0,(58)

u(a) = u(b) = 0.(59)

Figure 9 shows the stationary solution of (58) and (59) in [0, 1].

9.2. General Case

We consider

ffxxx − afxfxx = νfxxxx (0 ≤ x < 2π)(60)
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FIG. 9. Numerical solution of (58) and (59).

under the periodic boundary condition. Here f is a function of x only and ν is
assumed to be positive. For this problem, we have the following propositions
which guarantee the nonexistence of nontrivial solutions.

Proposition 4. If a = 0, 1, or −1/(2n) with a positive integer n, then
f ≡ constant is the only solution to (60).

Proof. If a = 0, then (60) can be rewritten as
(

νfxxxe−
1
ν

∫ x

0
f(ξ)dξ

)

x
= 0.

Consequently, we have
νfxxx = c0e

1
ν

∫ x

0
f(ξ)dξ,

where c0 is a constant. By integrating on [0, 2π), we obtain c0 = 0. Therefore
fxxx = 0.

Assume that a = 1 and differentiate (60). We then obtain

νf (V ) − ffxxxx = −f2
xx.

This equation can be rewritten as
(

νfxxxxe−
1
ν

∫ x

0
f(ξ)dξ

)

x
= −f2

xxe−
1
ν

∫ x

0
f(ξ)dξ.

By integration, we obtain

0 = −
∫ 2π

0
f2

xxe−
1
ν

∫ x

0
f(ξ)dξdx.
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Consequently, fxx ≡ 0 if a = 1.
If we multiply (60) by f2n−1

xx with a positive integer n and integrate it on
[0, 2π), then we have

−(2n− 1)ν
∫ 2π

0
f2

xxxf2n−2
xx = −

(
a +

1
2n

) ∫ 2π

0
fxf2n

xx .

Therefore, fxx ≡ 0 if a = −1/(2n).
If we multiply (60) by fxxxx and integrate it on [0, 2π), then we have

ν

∫ 2π

0
f2

xxxx =
(

a− 1
2

) ∫ 2π

0
fxf3

xxx.

Therefore, fxxxx ≡ 0 if a = 1/2.

Proposition 5. If −3 ≤ a ≤ −1, then f ≡ constant is the only solution
to (60).

Proof. Integrating (60), we obtain

ffxx − 1 + a

2
f2

x = νfxxx + γ,

where

γ = −3 + a

4π

∫ 2π

0
f2

x .

We therefore have

−1 + a

2
f2

xe−
1
ν

∫ x

0
f(ξ)dξ − γe−

1
ν

∫ x

0
f(ξ)dξ =

(
νfxxe−

1
ν

∫ x

0
f(ξ)dξ

)

x
.

By integrating this equation, we obtain

0 = −1 + a

2

∫ 2π

0
f2

xe−
1
ν

∫ x

0
f(ξ)dξdx +

3 + a

4π

∫ 2π

0
f2

xdx

∫ 2π

0
e−

1
ν

∫ x

0
f(ξ)dξdx,

from which the conclusion follows.

We now define g = a
2ν f . Then the equation (60) is written as

1
a
ggxxx − gxgxx =

1
2
gxxxx (0 ≤ x < 2π).(61)

Putting b = 1/a, we get to

bggxxx − gxgxx =
1
2
gxxxx (0 ≤ x < 2π).(62)
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FIG. 10. Plot of solution curves, where (b, S) are plotted for each solution. Here
b = 1/a and S is the sum of all the Fourier coefficients.

If b = 0, then the equation is reduced to

Uxx = U2 − 1
2π

∫ 2π

0
U(x)2dx,

where U(x) = −gx(x). This equation possesses nontrivial solutions as we have
seen in the previous subsection.

For nonzero b, we can compute the solutions of (62) by the path-continuation
method as was done in [4]. Figure 10 shows our result of numerical compu-
tation, which is carried out by the Fourier-spectral method. It suggests that
nontrivial solutions exist for −1/3 < b < 1, i.e., for −∞ < a < −3 and
1 < a < +∞. Therefore the nonexistence results for a = −3 and a = 1 would
be a sharp one. We, however, do not know what happens for −1 < a < 1,
except for the discrete values discussed in Proposition 4. It may be that the
trivial solution is the only solution for all a ∈ [−3, 1].

The asymptotic behavior as b → 1 and b → −1/3 is another interesting
problem. It is argued in Budd et al. [4] that, as b → 1, the steady-state
tends to constant ×(1− b)−1 sinx in the case where the boundary condition is
f = fxx = 0 at the boundary. They determine the constant by an asymptotic
expansion. Their boundary condition is essentially the same as ours and, in
our case, we have

g(x) =
1

2(1− b)
sinx + O(1)

as b → 1. Here O(1) is uniformly bounded as b → 1.
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FIG. 11. Plot of two solutions. b = 0.99 in the right and b = −0.33 in the left.

Budd et al. [4] does not consider the case where b < 0. In our computation
we obtain

g(x) ∼ constant
1− b

x (−π < x < π)

as b → −1/3. See Figure 11.

Remark. If we consider (60) with a = 1 under nonhomogeneous boundary
conditions, then multiple solutions can exist. See [2, 9, 16, 29, 30, 34] and the
references therein.

10. Von Kármán’s Swirling Flow

The three-dimensional axisymmetric flow (6) is generalized so as to include
nonzero azimuthal component. In fact, the ansatz

(ur, uθ, uz, p) =
(
−r

2
fz(t, z), rg(t, z), f(t, z), ρνfz − ρ

2
f2 + ρ

∫ z

0
ft

)
,

which was invented by von Kármán, leads us to the following coupled equa-
tions:

ftxx + ffxxx + 4ggx = νfxxxx,(63)

gt + fgx − fxg = νgxx.(64)

Let us consider those equations in the interval −α < z < α with the
boundary condition

f(t,±α) = fz(t,±α) = 0, g(t,−α) = γ1, g(t, α) = γ2.(65)



Navier-Stokes Equations 101

Physical meaning of this boundary condition is evident: the fluid is contained
between two planes z = −α and z = α and the two bounding planes are
rotated about z-axis with constant angular velocities γ1 and γ2. Let the initial
values be fxx(0, x) and g(0, x). As is already noted, the global existence of
the solution is guaranteed by the maximum principle if γ1 = γ2 = 0 and if
g(0, x) ≡ 0. We do not know of existence or blow-up if general initial data are
given.

It is worthwhile to note that there are many stationary solutions to (63),
(64), and (65). See Zandbergen and Dijkstra [33].

Acknowledgment

It is our pleasure to thank Prof. H. Fujita and Prof. Z.-h. Teng. We come
up with our equation (2) and subsequent analysis by their valuable advice.

References

1. G. R. Baker, X. Li and A. C. Morlet, Analytic structure of two 1D-transport
equations with nonlocal fluxes, Phys. D 91 (1996), 349-375.

2. J. F. Brady and A. Acrivos, Steady flow in a channel or tube with an acceler-
ating surface velocity. An exact solution to the Navier-Stokes equations with
reverse flow, J. Fluid Mech. 112 (1981), 127-150.

3. C. Budd, B. Dold and A. Stuart, Blowup in a partial differential equation with
conserved first integral, SIAM J. Appl. Math. 53 (1993), 718-742.

4. C. Budd, B. Dold and A. Stuart, Blowup in a system of partial differential
equations with conserved first integral. Part II: Problems with convection,
SIAM J. Appl. Math. 54 (1994), 610-640.

5. S. Childress, G. R. Ierley, E. A. Spiegel and W.R. Young, Blow-up of unsteady
two-dimensional Euler and Navier-Stokes solutions having stagnation-point, J.
Fluid Mech. 203 (1989), 1-22.

6. P. Constantin, Note on loss of regularity for solutions of the 3-D incompressible
Euler and related equations, Comm. Math. Phys. 104 (1986), 311-326.

7. P. Constantin, A. J. Majda and E. G. Tabak, Singular front formation in a
model for quasigeostrophic flow, Phys. Fluid 6 (1994), 9-11. —, Formation
of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity
7 (1994), 1495-1533.

8. P. Constantin, P. D. Lax and A. J. Majda, A simple one-dimensional model for
the three-dimensional vorticity equation, Comm. Pure Appl. Math. 38 (1985),
715-724.



102 Hisashi Okamoto and Jinghui Zhu

9. S. M. Cox, Two-dimensional flow of a viscous fluid in a channel with porous
walls, J. Fluid Mech. 227 (1991), 1-33.

10. K. Deng and H. A. Levine, The role of critical exponents in blowup theorems:
the sequel, preprint.

11. W. E and B. Engquist, Blowup of solutions of the unsteady Prandtl’s equation,
Comm. Pure Appl. Math. 50 (1997), 1287-1293.

12. H. Fujita, On the blowing up of solutions of the Cauchy problem for ut =
∆u + u1+α, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124.

13. A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat
equations, Indiana Univ. Math. J. 34 (1985), 425-447.

14. Y. Giga and R. V. Kohn, Asymptotic self-similar blow-up of semilinear heat
equations, Comm. Pure Appl. Math. 38 (1985), 297-319.

15. Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables,
Indiana Univ. Math. J. 36 (1987), 1-40.

16. R. E. Grundy and R. McLaughlin, Global blow-up of separable solutions of the
vorticity equation, IMA J. Appl. Math. 59 (1997), 287-307.

17. R. E. Grundy and R. McLaughlin, Three-dimensional blow-up solutions of the
Navier-Stokes equations, IMA J. Appl. Math., to appear.

18. K. Hiemenz, Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom
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