SOME SIMPLE EXAMPLES OF SYMPLECTIC MANIFOLDS

W. P. THURSTON

Abstract. This is a construction of closed symplectic manifolds with no Kaehler structure.

A symplectic manifold is a manifold of dimension $2 k$ with a closed 2 -form α such that α^{k} is nonsingular. If $M^{2 k}$ is a closed symplectic manifold, then the cohomology class of α is nontrivial, and all its powers through k are nontrivial. M also has an almost complex structure associated with α, up to homotopy.

It has been asked whether every closed symplectic manifold has also a Kaehler structure (the converse is immediate). A Kaehler manifold has the property that its odd dimensional Betti numbers are even. H. Guggenheimer claimed [1], [2] that a symplectic manifold also has even odd Betti numbers. In the review [3] of [1], Liberman noted that the proof was incomplete. We produce elementary examples of symplectic manifolds which are not Kaehler by constructing counterexamples to Guggenheimer's assertion.

There is a representation ρ of $Z \oplus Z$ in the group of diffeomorphisms of T^{2} defined by

$$
(1,0) \xrightarrow{\rho} \text { id, } \quad(0,1) \xrightarrow{\rho}\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

where " $\left[\begin{array}{lll}0 & 1 \\ 0 & 1\end{array}\right]$ " denotes the transformation of T^{2} covered by the linear transformation of \mathbf{R}^{2}. This representation determines a bundle M^{4} over T^{2}, with fiber $T^{2}: M^{4}=\tilde{T}^{2} \times_{Z \oplus Z} T^{2}$, where $Z \oplus Z$ acts on \tilde{T}^{2} by covering transformations, and on T^{2} by ρ (M^{4} can also be seen as \mathbf{R}^{4} modulo a group of affine transformations). Let Ω_{1} be the standard volume form for T^{2}. Since ρ preserves Ω_{1}, this defines a closed 2 -form Ω_{1}^{\prime} on M^{4} which is nonsingular on each fiber. Let ρ be projection to the base: then it can be checked that $\Omega_{1}^{\prime}+p^{*} \Omega_{1}$ is a symplectic form. (It is, in general, true that $\Omega_{1}^{\prime \prime}+K \rho^{*} \Omega_{1}$ is a symplectic form, for any closed $\Omega_{1}^{\prime \prime}$ which is a volume form for each fiber, and K sufficiently large.) But $H_{1}\left(M^{4}\right)=Z \oplus Z \oplus Z$, so M^{4} is not a Kaehler manifold.

Many more examples can be constructed. In the same vein, if $M^{2 k}$ is a closed symplectic manifold, and if $N^{2 k+2}$ fibers over $M^{2 k}$ with the fundamental class of the fiber not homologous to zero in N, then N is also a symplectic manifold. If, for instance, the Euler characteristic of the fiber is not zero, this

[^0]hypothesis is satisfied. To do this, one must see that if there is a closed 2 -form α_{1} whose integral on a fiber is nonzero, then α_{1} is cohomologous to a 2 -form α which is nonsingular on each fiber. To find α, first find a 2 -form β, not necessarily closed, which is nonsingular on each fiber, and whose integral on each fiber agrees with that of α_{1} : this exists by convexity considerations. On each fiber, F, there is a form γ_{F} such that $\beta_{F}-\left(\alpha_{1}\right)_{f}=d\left(\gamma_{F}\right)$. This equation can also be solved differentiably in a small neighborhood of the base, so, by convexity considerations, there is a global 1 -form γ such that on each fiber, $\beta_{F}-\left(\alpha_{1}\right)_{F}=d\left(\gamma_{F}\right)$. Let $\alpha=\alpha_{1}+d(\gamma)$. If Ω_{1} is a symplectic form for $M^{2 k}$, then $\Omega=\alpha+K\left(\rho^{*} \Omega_{1}\right)$ is a symplectic form for $N^{2 k+2}, K$ is sufficiently large.

This construction, although it applies only to a narrow range of examples, nonetheless has a certain amount of flexibility. This leads me to make the

Conjecture. Every closed $2 k$-manifold which has an almost complex structure τ and a real cohomology class α such that $\alpha^{k} \neq 0$ has a symplectic structure realizing τ and α.

I would like to thank Alan Weinstein for pointing out this question and for helpful discussions.

References

1. H. Guggenheimer, Sur les variétés qui possèdent une forme extérieure quadratique dermée, C . R. Acad. Sci. Paris 232 (1951), 470-472. MR 12, 535.
2. , Variétés symplectiques, Colloq. Topologie de Strasbourg, 1951 (mimeographed notes).
3. P. Liberman, review of [1], Zentralblatt für Mathematik 54 (1956), 68.

Department of Mathematics, Fine Hall, Princeton University, Princeton, New Jersey 08540

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

[^0]: Received by the editors July 31, 1974.
 AMS (MOS) subject classifications (1970). Primary 57D15, 58H05.

