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SOME SIMPLE GROUPS WHICH ARE DETERMINED BY
THE SET OF THEIR CHARACTER DEGREES I

BERTRAM HUPPERT

In memory of Michio Suzuki

ABSTRACT. The following conjecture is studied. Let G be a simple nonabelian group. If H is any group
which has the same set of character degrees as G, then H G x A, where A is abelian. In the present
paper this is proved if G is a Suzuki group on some SL(2, 2f).

I. Introduction

For any group G we denote by Irr G the set of all irreducible complex characters
of G. If we know the degreee X (1) for all X Irr G, then by

X(1)2

x Irr G

the order of G is known. For 2-groups this means very little. A. Caranti informed
me that the 2328 groups of order 27 have only 30 different degree patterns, and there
are 538 of them with the same degrees.

Ifwe turn to simple groups, we expect the situation to be much different, for simple
groups have a very high degree of individuality. It is known that the only pairs of
simple groups of the same order are

A8, PSL(3,4) and PSp(2n, q), Pf20(2n + I, q),

where n >_ 3 and q is odd. It is known that these groups are distinguished by their
smallest character degree larger than I. For instance, the smallest degree of A8 is
7, while the smallest degree of PSL(3, 4) is 20 (both coming from natural doubly
transitive permutation representations of the groups); see V. Landazuri, G. Seitz.

It seems that for simple groups much more is true. For any group G we define the
set cd G of character degrees of G by

cdG {X(1) X IrrG},

forgetting multiplicities. We dare to make a conjecture.
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CONJECTURE. Let H be any simple nonabelian group and G a group such that
cd G cd H. Then G H x A, where A is abelian. (All simple groups in the Atlas
are indeed distinguished by their sets ofcharacter degrees.)

As some evidence I can prove this conjecture for the following:

(1) H - Sz(q) (all q), PSL (2, 2f) (all f), PSL (2, q) forq 5, 7, 9, 11, 13, 17,
19,23,25,27,31,37,47,49,53, PSU (3, q) for q 3,4,5,7,8,9,
PSU (4, 3), PSU (5, 2), A7, A8, A9, A10, Mll, M12, J1, J2, PSL (3, q) for
q 3, 4, 5, PSp (4, 3), PSp (4, 4), PSp (6, 2), 0+(8, 2), G2(3), 3D4(2).

In this paper I present the proofs for the Suzuki groups Sz(q) and the linear fractional
groups PSL (2, 2f).

The proofs follow, with some deviations, the following pattern:
Step 1. Show G’ G".
Step 2. Identify H as a chief factor G’/M of G.
Step 3. Show that any t9 Irr M is stable under G’, which implies [M, G’] M’.
Step 4. Show M E(the trivial group).
Step 5. Show G G’ x C(G’).

Step 1 is rather uniform; it depends on Lemma 4 below and may generalize to
other groups, if their set of character degrees is completely known. Step 2 is the most
delicate; it depends in nearly all cases on consequences of the classification of simple
groups, in particular on the determination of all simple zr-groups, where zr is some
set of four primes. Step 3 uses information about the maximal subgroups of H; there
are complications if indices of some maximal subgroups of G’/M do divide some
character degree of G’/M. Step 4 needs the knowledge of the Schur multiplier
of H and sometimes information about the degrees of the irreducible projective
representations of H. Step 5 finally needs information about the automorphisms
of H.

For the groups H listed above all of this information is in the Atlas. I have to thank
the authors of the Atlas for the rich mine of information they have provided. It seems
possible, to prove the conjecture for Chevalley groups of small rank, like PSL(2, q)
or PSU(3, q), provided Step 2 can be overcome by some special argument.

Finally, I want to thank the referee for several helpful suggestions.
We now collect several well known facts, which will be used frequently in our

proofs.

LEMMA 1. (N. Ito, G. Michler, W. Willems; see Michler and Willems in biblio-
graphy). Suppose p is a prime and p X (1) for all X Irr G. Then G has a normal
abelian Sylow-p-subgroup. Hence if the character degrees of G are divisible only
by the primes p and q, then G has a normal abelian subgroup A such that G/A is a
{p, q }-group. By Burnside’s theorem then G is solvable. (For solvable G, see Isaacs,
p. 190.)
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We frequently use the following results from Clifford theory.

LEMMA 2. Suppose N <1 G and X Irr G.

(a) If XN O1 +’’" + Ok with Oj Irr N, then k divides G/NI. In particular,
if X (1) is prime to G/N then XN Irr N.

(b) If XN IrrN, then xO IrrG for every 0 IrrG/N. (See Huppert L
pp. 570-572.)

LEMMA 3. Suppose N G and O Irr N. By I I(O) we denote the inertia
subgroup ofO in G.

(a) If O’ Y’ki= oi with oi Irr I, then pi
a Irr G. In particular oi(1)l G" II

cdG.
(b) If O allows an extension Oo to I, then (00r)G Irr G for all r Irr I/N. In

particular 0 (1) r (1)IG II 6 cd G.
(c) If Irr I such that lV eO, then Ooro, where Oo is a character

of an irreducible projective representation of I of degree tg(1) while ro is
the character ofan irreducible projective representation of I/N of degree e
(Huppert I, pp. 571-574).

LEMMA 4. Let GIN be a solvable factor group of G, minimal with respect to
being nonabelian. Then two cases can occur.

(a) GIN is a p-group for some prime p. Hence there exists Irr G/N such
that ap (1) pb > 1. If x Irr G and p x (1), then x r Irr G for all
r Irr G/N (see Lemma 2).

(b) GIN is a Frobenius group with an elementary abelian Frobenius kernel FIN.
Then IG/FI cd G and IF/NI pa for some prime p. Then F/N is an
irreducible modulefor the cyclic group G/F, hence a is the smallest integer
such that pa 1 0(mod IG/FI). If Irr F, then either IG/FIT/(1)
cd G or IF/NI divides ap(1)z. In the latter case p divides (1).

Ifnoproper multiple of G/F is in cd G, then X (1) divides G/F for all X Irr G
such that p X X (1).

Proof. All these statements except the last one are in Isaacs, pp. 199-200. Sup-
pose that no proper multiple oflG/FI is in cd G. Then p divides the degree of each
nonlinear character of F. Suppose X 6 Irr G and p X X (1). Then by Lemma 2,

XF +"" + k, j Irr F,

where k divides G/FI. As p { X (1), so p apj (1), hence j (1) 1. But then

X (1) k divides IG/El.
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In some cases the proof of G’ G" is a consequence of the following lemma.

LEMMA 5. Let G be a group with thefollowing properties:

(1) If X Irr G and X (1) > 1, then no proper multiple ofX (1) is in cd G.
(2) For any X Irr G, X (1) > 1, the largest common divisor of

{r(1) r IrrG, r(1) 7 X(1), r(1) > 1}

is 1. (This obviously implies lcd G > 4.)

Then G’ G".

Proof. Otherwise there exists a solvable, minimal nonabelian factor group G/N
of G.

Suppose at first that GIN is a p-group. Then by assumption (2) there exists

X IrrG such thatx(1) > andp X(1). ByLemma4, Xr IrrG, where
r Irr G/N and r (1) pb > 1. But this contradicts assumption (1).

Hence we are in the situation of Lemma 4(b). In particular GIN is a Frobenius
group with Frobenius kernel FIN of prime p-power order, and 1 < G/FI cd G.
Let X Irr G with X (1) > 1 and X (1) :/: G/FI. Then X (1) does not divide
G/FI, by assumption (1). But no proper multiple of G/FI is in cd G, again by
assumption (1). We deduce from Lemma 4 that p divides X (1). But this violates
assumption (2).

Hence G’ G".

LEMMA 6. Suppose M G’ G". For all . Irr M such that X(1) 1 and
all g G’ suppose that .g ). Then M’ [M, G’] and IM/M’I divides the order
ofthe Schur multiplier ofG’/M.

Proof.

Hence

For every ) 6 Irr M such that )(1) 1, all m 6 M, g 6 G’ we obtain

)(m-lmg) ,(m)-l,g- (m) 1.

[m,g]6 N Ker.=M’,
M1)=I

which shows [M, G’] M’. As G G", so

M/[M, G’] < Z(G’/[M, G’I)fq (G’/[M, G’])’.

Hence IM/M’I IM/[M, G’]) divides the order of the Schur multiplier
H2(G’/M, C) of G’/M [Huppert I, p. 629].

We first consider the series of the Suzuki groups Sz(q) (q 22n+l > 8), indeed
the only infinite series for which we can prove the conjecture at present.
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2. The Suzuki groups Sz(q)

Remarks. Suppose q 22n+l >_ 8. The Suzuki group Sz(q) is a simple group
of order

(q2 q_ 1)q2 (q 1).

Its order is not divisible by 3.
Indeed, the Suzuki groups Sz(q) are the only simple groups whose orders are

prime to 3 (see Glauberman, Cor. 7.3). Observe that 5 q2 _]_ 1, but 5 q 1.
If we put

r=2n, a=q+2r+l, b=q-2r+l,

then

cd Sz(q) 1, q2, q2 q_ 1, (q 1)a, (q 1)b, (q 1)r }.
Observe that q2 d- 1 a b and

(q2 + 1, q 1) (a, b) 1.

Hence no degree I of Sz(q) divides another degree, q2 22(2n+1) is the only prime
power among the degrees, and (q 1)r is the only "mixed" degree, which is even,
but not a power of 2.

so

As

b<q-l<a,

(q 1)b < a b q2 q_ 1 < (q 1)a.

Therefore (q- 1) a is the largest degree of Sz(q). (See Suzuki and Blackburn-Huppert
III, p. 182.)

THEOREM 1. If cd G ---cd Sz(q), then

Sz(q) x A,

where A is abelian.

Proof. Step 1. G’ G".

The assumptions (1) and (2) of Lemma 5 are obviously fulfilled as the greatest
common divisor of

{q2 + 1, (q 1)a, (q 1)b, (q 1)r

is for (q2 + 1, (q 1)r) 1. Hence by Lemma 5, G’ G".
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Step 2. If G’/M is a chief factor of G, then G’/M - Sz(q).
By Step 1,

G’/M S1 x x Sk, Si S

where S is a simple, nonabelian group. As degrees of S divide some degree of G,
so all degrees of S are prime to 3. By Lemma 1, the simple group S is a 3’-group.
Hence by Glauberman, S Sz(q0) for some q0 22m+1 >_ 8.

Supposek > 1. Then take aPi IrrSi (i 1,2), where 1(1) q02 and
2(1) q + 1.. Then q02 (q02 + 1) is a degree of G’/M, hence divides some degree
of G. As q (q + 1) is a mixed number, so

q(qo2 4- 1) divides (q 1)2n.

But 5 q + 1 and 5 q 1, a contradiction. Hence G’/M - Sz(q0) for some
qo 22m+1
We put G G/M. Then

Now IG/TI divides the order of the outer automorphism group of’ - Sz(q0), which
is cyclic of order 2m + 1, hence is odd. Let Irr’ such that ap(1) q and
extend ap trivially to T. If X Irr G and

,/,)r > o

then ((1) e(1) e q, where e divides G/TI, so e is odd. If e 1, then

X (1) q02 is a power of 2, so q0 q. If e > 1, then X (1) is a mixed degree of G,
hence

g(1) e qg (q- 1)2n.
But then qo2 2n, hence n 4rn + 2 and

22n+l 1 =q 1 =e < 2m + 1
n

2’

a contradiction. Therefore G’/M Sz(q).
Step 3. If 0 6 Irr M, then 16,(0) G’ and therefore M’ [M, G’].
Suppose I,(0) I < G’ for some 0 6 Irr M. If

b9 99i, i ( Irr I,

then, by Lemma 3,

o(1)lG’ II
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is a degree of G’, so divides some degree of G. The maximal subgroups of Sz(q) are
of the orders

q2 (q_ 1), 4a, 4b

or are Suzuki groups Sz(q0) over subfields GF(q0) of GF(q), where q q and s
odd (Suzuki, pp. 137-138). The indices are q2 + 1 and

q2(q2 .+. 1)q2 (q 1)
b (q 1)

4a -
and

(q2 _+_ 1)q2 (q 1) qa
4 b

a --(q 1)

(q2 + 1)q2 (q 1)

(qo2 + 1)qo2 (qo 1)

But a q2 (q 1) and b q2 (q 1) are mixed numbers, whose 2-part q 24 n is larger4 4 4
than r 2n, hence they cannot divide the only mixed degree (q 1)r of G. Also

(q2 q_ 1)q2 (q 1)
(q + 1)q02 (q0 1)

is a mixed number as qo < q. If it divides (q 1)r, then q2 d- 1 qo2s + has to
divide (qo2 + 1)(qo- 1). But as s >_ 3, so

q)S + 1 > q) > 2q > (q + 1)(qo- 1).

Hence this index is also impossible. Therefore IG’ I q2/ 1 is the only possibility.
But then o (1) 1, hence Pi is an extension of 0 to I.

Therefore

(q)i r) G’ Irr G’

for all r 6 Irr I/M, so

IG’" lit(l) (q2 -k- 1)r(1) 6 cd G’.

The subgroups I/M of G’/M of index q2 + are Frobenius groups, which have
characters of degreee q 1 (see Suzuki). Hence we obtain the contradiction

(q2 d- 1) (q 1) 6 cd G’.

Therefore I, (0) I for all 0 6 Irr M. Hence by Lemma 6,

[M, G’] M’.
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As Sz(8) has a Schur multiplier of order 4 while Sz(q) for q > 8 has trivial Schur
multiplier (see Alperin, Gorenstein), we first consider the case q > 8.

Step 4. If q > 8, then M E.
By Lemma 6, we obtain M M’.
Take t Irr M. By Step 3 then I,(0) G’. As G’/M has trivial Schur

multiplier, so t9 allows an extension tg0 to G’ (Huppert I, p. 572). Then tg0 r Irr G’
for all r Irr G’/M. As Irr G’/M Irr G, this implies

1 t?o(1) 0(1).

Hence M is abelian, so

M=M’=E.

Step 5. If q > 8, then G G’ x Co(G’), where G’ - Sz(q) and Co(G’) is
abelian.

If X Irr G’, X (1) > 1 and Io (X) I, we obtain a character of G of a degree
divisible by IG :/Ix(l). This forces Io(x) G forall X Irr G’. As the irreducible
characters of G’ separate the conjugacy classes of G’, so G fixes all conjugacy classes
of G’.

The outer automorphism group of Sz(q) is cyclic of odd order 2n + if q 22n/ l;
it is induced by the Galois automorphisms of GF(q). Now Sz(q) contains diagonal
matrices

a +2

a2n

a-2n
a-l-2.

where a GF(q). Let ct be an automorphism of GF(q) of odd prime order p >_ 3.
If M(a) and M(a) are conjugate in Sz(q), then

trace M(a)" trace M(a) GF(2m),

where rn 2n+___l. This impliesp

a 1+2" + a2" + a-2" + a-1-2" b GF(2m).

For every b GF(2m), the equation

1+2n+la2+2"+ + a + b a 1+2" +a + =0

has at most 2n+l + 2 solutions a. Hence if we show that

(,) (2n+l + 2)2 < 22n+l- 1,
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there exists some a such that M(a) and M(a) are not conjugate in Sz(q). If n > 1
and p > 3, then

Therefore

l+(2n+l)/p<n+l+(2n+l)/p<2n+l.

2n+ 22n 22n_ 22n+(2n+l q-2)2-’7- < + < 1.

Hence G induces only inner automorphisms on G’, which implies G G’ CG(G’).
Now we turn to the exceptional case q 8.
Step 4’. If q 8, then M
Again M/[M, G’] is bounded by the Schur multiplier of Sz(8), which is of order 4.

The degrees of the projective, not ordinary, representations of Sz(8) are

23 5 40, 23 7 56, 26, 23 13 104

(see Atlas, p. 28). But the degrees 40, 56, 104 do not divide any degree of G, as

cd Sz(8) 1, 14, 35, 64, 65, 91 }.

Therefore IM/[M, G’]I 4 is impossible. Suppose IM/[M, G’]I 2. Then 26 is the
only admissible degree of a representation of G’/[M, G’], not trivial on M/[M, G’].
But then

2-1Sz(8)1 IG’/[M, G’]I Sz(8)l / 212t
for some t.

This implies the contradiction 212 Sz(8)l. Hence M [M, G’] M’.
Step 5’. M E.
Suppose M M’ > E. Let M/N be a chief factor of G’, so

M/N - S1 x x Sk,

where the Si are isomorphic simple 3’-groups, transitively permuted by G’. If 0 6

Irr S1, then by Step 3, 0 is stable under G’. Hence M/N - Sz(q0) for some q0. As
the outer automorphism group of Sz(q0) is cyclic of order m, where q0 2m, so

G’/N M/Nx Ca,/:c(M/N) " Sz(q0) x Sz(8).

But this produces plenty of forbidden degrees.
Step 6’. G G’ x Co(G’), where G’ Sz(8) and Co(G’) is abelian.
As AutSz(8)l 31Sz(8)l, so G’ x Co(G’) has in G the index 1 or 3. As no

degree of G is divisible by 3, so by Lemma 1, G has a normal Sylow-3-subgroup,
which lies in Ca(G’). Hence

G G’ x Co(G’).

(By Atlas, p. 28 we have edAut Sz(8) {1, 14, 64, 91,105,195}.)
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3. The simple groups SL(2, 2f)

In this section we would like to prove the following theorem.

THEOREM 2. Suppose that f > 2 and

cd G cd SL(2, 2f) {1, 2f 1, 2f, 2f + }.

Then G - SL(2, 2f) x A, where A is abelian.

To master Step 2 in general, we use an unpublished result by E Ltibeck.

LEMMA 7. Let G be a simple group. Suppose for every X Irr G that either
X(1) is oddorapowerof2. Then G - PSL (2,2f)forsome f > 2.

To give proofs ofTheorem 2 for f 2 and f 3, independent of the unpublished
lemma 7, we shall use the following result.

LEMMA 8.

(a) The only simple groups whose orders are divisible by only three primes are
PSL(2, 5) SL(2, 4) As, PSL(2, 9) - A6,
PSp(4, 3) for the primes 2, 3, 5;
PSL(2, 7), SL(2, 8), PSU(3, 3) for the primes 2, 3, 7;
PSL(3, 3) for the primes 2, 3, 13;
PSL(2, 17) for the primes 2, 3, 17.
(See W. Feit.)

(b) The only simple groups, all ofwhose character degrees are powers ofprimes
are SL(2, 4) and SL(2, 8). (See O. Manz.)

ProofofTheorem 2.
Step 1. G’ G".
As cd G 1, 2f 1, 2f, 2f + 1 }, this follows immediately from Lemma 5.
Step 2. If G’/M is a chief factor of G, then G’/M - SL(2, 2f).
By Step 1,

G’/M $1 x x Sk,

where Si - S is a simple nonabelian group. If ap Irr S, then ap (1) is odd or a power
of 2, and there are odd and even degrees larger than 1 of the simple group S. As
G’/M has no mixed degrees, so k 1. Then by Lemma 7,

S SL(2, 2a) for some d > 2.

For the cases f 2 and f 3 we can give complete proofs. Suppose at first that

cd G cd SL(2, 4) {1, 3, 4, 5}.
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Then S is a simple {2, 3, 5}-group, whose degrees are powers of primes. Then by
Lemma 8, S SL(2, 4). Similarly if

cd G cd SL(2, 8) {1, 7, 8, 9},

then S - SL(2, 8).
Finally we remark that Step 2 can be done for

cdG= {1,3,4,5}

without any reference to the characterization of simple groups.
Takex 6 IrrG such thatx(1) 3. As G’ G", soxo, 6 IrrG’. If we

put M G’ fq Kerx, then G’/M is a perfect group with an faithful irreducible
representation of degree 3. A classical result then shows

G’/M As, PSL(2, 7) or V,

where the Valentiner group V is the non splitting, central extension of a cyclic group
of order 3 by the alternating group A6 (v. d. Waerden, pp. 33-34). But PSL(2, 7) and
V have the degree 6 (Atlas, p. 3 and p. 5), which does not divide any degree of G.
Hence by this argument we also obtain

G/M A5 SL(2, 4)

Hence by any of these arguments we have G’/M SL(2, 2d) for some d > 2. If
Irr G’/M and p (1) 2d, then the degree of any character of G/M above ap is

2f. Sod <f.

We claim that d f. Suppose d < f. We put G G/M. We have

cd cdG {1,2y 1, 2f, 2y + 1}.

We consider

Tc x(’).
Then IG/TI rn divides the order of the outer automorphism group of SL(2, 2a),
hence rn divides d.

Let ap be any character in Irr’, which we extend trivially to a character aP0 of.
If X Irr and X is above Po, then X (1) eap (1), where, by Lemma 2, e divides
m and d.

First we take ap 6 Irr’ such that (1) 2a. If X 6 Irr is above , then

2f X (1) e (1).
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Hence el 2f-d divides d. If f sd > d is a proper multiple of d, we obtain the
contradiction

d > 2f-d 2s-1)d > 2d.

Hence d does not divide f. We also can take P2 Irr" such that aP2 (1) 2d 1.
If X2 Irr G is above P2, we obtain

2f 4- 1 X2(1) e2(2d- 1).

As d does not divide f, so 2d 1 does not divide 2f 1, hence

2f + 1 e2(2d- 1).

As d < f, this implies

hence e2 > 2d- 1. But then

_= -e2 (mod 2d),

d>e2>2d--1,

a contradiction as d > 2. Hence

G’/M - SL(2, 2f).

Step 3. If 0 6 Irr M, then la,(O) G’ and hence [M, G’] M’.
We put I la, (0). Then by Lemma 3, if

LI 9i, i Irrl,

then

IG’ lltpi(1) cd G’.

The maximal subgroups of SL(2, 2f) are of index 2f d- 1 or are dihedral groups of
order 2(2f 4- 1) or are groups SL(2, 2d) for some divisor d of f (Huppert I, p. 213;
observe that SL(2, 22) - A5 is in SL(2, 2f) for even f and PGL(2, 2f) - SL(2, 2f).)
Observe that

SL(2, 2f)l
2(2f 4- 1)

2f-1(2f q: 1) > 3.2f-1 > 2f q- 1.

If f s d and s > 2, then

(2sd -t- 1)2sd(2sd- 1)
(2d -t- 1)2d (2d 1)

> 2sd+l,
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for

as

22s d2sa(2sa- 1) > > 23a > 2a(22a- 1)
2

2sd > 4d > 3d + 1.

Hence if I < G’, then IG’ II 2y + 1. Then qgi(1) 1, so qgi is an extension of 0
to I. Then

(i ’)G’ Irr G’

for all r Irr I/M. The subgroups of PSL (2, 2f) of index 2f + 1 are Frobenius
groups with a Frobenius kernel of order 2f. Hence I/M has a character r such that
v(1) 2f 1. Then

(2f + 1)(2f 1) e cdG’.

a contradiction.
Hence Io,(0) G’ for all 0 e Irr M. Then by Lemma 6 we obtain [M, G’] M’.
Step 4.If 2f > 4, then M E.
By Lemma 6, IM/[M, G’]I is bounded by the order of the Schur multiplier of

G’/M - SL(2, 2f). If f > 3, then

M [M, G’I M’

(see Huppert I, p. 645).
If 0 Irr M, as G’/M has trivial Schur multiplier, so 0 allows an extension 00 to

G’. Then 00r IrrG’ for all r IrrG’/M. This forces 0(1) 1; therefore

E=M’=M.

Step 4’. If 2f 4, then M E.
Again, IM/[M, G’]I is bounded by the order of the Schur multiplier of SL(2, 4)

As. Hence IM/[M, G’]I < 2 (see Huppert I, p. 646).
If IM/[M, G’]I 2, then G’/[M, G’] is the uniquely determined Schur coveting

group of G’/M - As, so

G’/[M, G’] SL(2, 5)

(see Huppert I, p. 646). But SL(2, 5) has the degree 6, which does not divide any
degree of G (Atlas, p. 2). Hence

M’.M [M G’]

As the degrees of G’ divide degrees of G, so

cdG’_ {1,2,3,4,5}.
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If X Irr G’, ((1) > 1 and XM Irr M, then by Lemma 3, X Irr G’ for all
IrrG’/M. But this produces forbidden degrees X(1)(1), where ap(1) {3, 4, 5}.

Hence the characters of G’ of degree 3 or 5 split on M into linear characters while
characters of degree 4 split on M into characters of degree 1 or 2. Therefore

cdM

_
{1,2}

and so M" E (see Isaacs, p. 202). As M M’, this implies M E.
Step 5. G G’ x C(G’), where G’ - SL(2, 2f) and C(G’) is abelian.
As cd G cd G’, so G stabilizes all X Irr G’, hence G stabilizes all conjugacy

classes of G’. If f 2, then the outer automorphisms of SL(2, 4) A5 are induced
by $5 and interchange the two classes of elements of order 5 of As.

Suppose f > 2. Let ct be an automorphism of GF(2f) of prime order p. For
a GF(2f) x we put

M(a) ( 0 )a_l

If M(a)a and M(a) are conjugate, then

trace M(a)a trace M(a) a + a-1 "-- b GF(2Y/P).

If a - 1, then b - 0. So

a2 +ab+ 1 =0.

The number of these a is at most

21GF(2f/P)[ 2(2f/p 1)

and

2(2f/p 1) < 2(2y/2 1) < 2f 2

as f > 2. Hence G induces only inner automorphisms on G’, which implies

G G’x CG(G’).
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