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Abstract In this paper, we analyze some single ma-
chine scheduling problems with the aging effect. We
extend the sum-of-processing-time-based aging model
such that the fatigue caused by each job to the machine
is equal to a non-increasing function dependent on the
normal processing time of a job and the aging effect is
job dependent. Although the proposed model is more
general and describes more precisely the real-life set-
tings, we show that the special cases of the maximum
completion time and the maximum lateness minimiza-
tion problems with this model are still polynomially
solvable. However, we prove the maximum completion
time minimization problem with the sum-of-processing-
time-based aging model is strongly NP-hard if some
jobs have deadlines and constant processing times. On
this basis, we show that the maximum lateness mini-
mization problem with this aging model is also strongly
NP-hard.

Keywords Scheduling · Deteriorating · Aging effect ·
Computational complexity · Polynomial algorithm

1 Introduction

Deterioration of machines or tiredness of human work-
ers is present in many manufacturing and industrial
systems (see [4, 5, 16, 17, 20]). These phenomena
usually increase times required to manufacture prod-
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ucts, thereby have an undesirable influence on pro-
duction rates, total output, and meeting deadlines. To
prevent or to minimize such negative effects, some
additional resources can be used (e.g., supplementary
energy or workers), and also optimization of a pro-
duction schedule (that takes into account increasing of
times required to manufacture products) can improve
production objectives. However, additional resources
increase expenses; furthermore, it is not always possible
to use them, whereas the optimization of a production
schedule can at least decrease outlay. Therefore, in the
further part, we will focus only on the optimization of
production schedules that do not include rest periods of
human workers nor maintenance activities of machines,
thus are valid between maintenances or for individual
shifts.

Nevertheless, to construct an efficient schedule that
optimizes the given production objectives, it is required
to use effective models that describe the fundamental
aspects of the considered manufacturing and industrial
systems, i.e., in this case the variability of times required
to manufacture products due to deterioration/tiredness.
In the scheduling theory, there are two groups of such
models. In the first one, processing times of jobs (e.g.,
tasks, products, or semi-finished products) are non-
decreasing functions of their starting times, and the
phenomenon is known as “deteriorating effect” (e.g.,
[2]). However, scheduling models consistent with this
approach are not relevant for environments, where de-
terioration is negligible during idle times of machines.
Such inconveniences are absent in a second approach,
called “aging effect,” in which job processing times are
described by non-decreasing functions dependent on
the actual condition (fatigue) of machines affected by
already processed jobs. Therefore, this group of models
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has attracted growing attention in research community
(see [1, 3, 10, 12–14, 23, 24, 26]).

Furthermore, there are two main approaches to de-
scribed the fatigue. The first, called “position dependent/
based aging model”, assumes that job processing times
are non-decreasing functions dependent on the number
of processed jobs, i.e., a job position in a sequence (see
[7, 11, 15, 18]). It models problems, where jobs have
similar impact on the fatigue of a machine. However, in
many cases, the fatigue can also depend on the time re-
quired to perform a job, i.e., more time-consuming jobs
can have greater impact on the fatigue of the machine.
Such settings are covered by “sum-of-processing-time-
based aging model” that assumes the job processing
time is a non-decreasing function dependent on the sum
of the normal processing times of already processed
jobs (see [8, 21, 22]). The normal processing time is
defined (measured) as the time required to perform a
job if a machine is not affected by aging.

Increase in job processing times is the result of a
fatigue of a machine (e.g., tool wear), whereas the
fatigue caused by each job to the machine depends on
the time required to process it (see [20]). Different jobs
can have various impact on the fatigue of a machine,
but usually a job causes more fatigue if more time is
required to perform it. In general, the relation between
the time required to process a job and the fatigue this
job causes to the machine can be described by a non-
decreasing function (see [19, 20]). Nevertheless, it was
not considered in the scheduling models. Therefore, in
this paper, we extend the existing sum-of-processing-
time-based aging models according to this approach.

Furthermore, in real-life problems, the fatigue of a
machine can have different impact on processing times
of jobs (see [25] and [26]), and some jobs can increase
the fatigue of a machine, but the fatigue does not affect
processing times of such jobs, e.g., tiredness of a human
worker does not increase the time required to move
him from one location to another; however, the disloca-
tion process can make the worker tired. To fill this gap,
we will further extend the considered aging model to be
job dependent as it was done for position-based models
(e.g., [24, 26]). Therefore, we present a new model of
scheduling problems in the deteriorating/aging environ-
ments that describes real-life problems more precisely
than sum-of-processing-time-based aging models. Fol-
lowing this approach, we will provide algorithms that
allow the practitioners to construct an optimal sched-
ule that minimizes the maximum completion time and
some special cases of the maximum lateness criterion
without having the knowledge about the exact shape of
the function describing the relation between the time
required to process a job and the fatigue it causes to

the machine nor the values of the aging characteristic of
the machine. However, we will also prove that the max-
imum completion time minimization problem with the
sum-of-processing-time-based aging model is strongly
NP-hard if jobs can have deadlines. It means that the
objective is to minimize the maximum completion time
under constraints that jobs must not exceed their dead-
lines. On this basis, we will show that the maximum
lateness minimization problem with this aging model
is strongly NP-hard. Thus, fast algorithms that solve
optimally these problems under aging of a machine
do not exist. Therefore, to solve the considered NP-
hard problems efficient heuristic or metaheuristic algo-
rithms have to be applied, which require the additional
analysis that determines the values of job parameters
describing aging.

The remainder of this paper is organized as follows.
A new model description and the problem formulation
are presented in the next section, whereas polynomially
solvable cases and the computational complexity status
are given subsequently. The last section concludes the
paper.

2 Problem formulation

There is given a single machine (e.g., a single worker
or a group of human workers, CNC machine, tool,
chemical cleaning bath) and a set J = {1, . . . , n} of n
jobs that have to be processed by the machine; there are
no precedence constraints between jobs. The machine
is continuously available and can process at most one
job at a time. Once it begins processing a job, it will
continue until this job is finished. Moreover, each job
can have deadline d̄ j or due date d j, when it must or
should be completed, respectively.

Due to the aging effect, the time required to com-
plete a job increases with the fatigue of the machine.
Wang et al. [22] proposed a model, where the process-
ing time of job j that is scheduled in the vth position in
a sequence is given by:

p̃ j(v) = pj ·
(

1 +
v−1∑
l=1

p[l]

)α

, (1)

where pj is the normal processing time that is the
time required to perform job j if the machine is not
influenced by aging (i.e., pj � p̃ j(1)),

∑v−1
l=1 p[l] is the

fatigue of the machine at the start of job j, where p[l]
denotes the processing time of a job scheduled in the
lth position in a sequence and α ≥ 0 is the aging index
(i.e., an aging characteristic) that describes a relation
between job processing times and the fatigue of the
machine.
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However, the fatigue caused by a job is seldom equal
to the time required to process this job (see [19, 20]);
thus, we extend model Eq. 1 such that the fatigue cased
by job j is equal to f (pj), where f is a positive increas-
ing function ( df

dx (x) > 0 for x > 0 and f (0) = 0) that
describes the relation between the time required to
process a job and the fatigue this job causes to the
machine (e.g., [20]); function f is specific for the ma-
chine. On this basis and taking into consideration that
jobs can have distinct aging characteristics (see [24]),
we propose a new more general model of job processing
times:

p̃ j(v) = pj ·
(

1 +
v−1∑
l=1

f (p[l])

)α j

, (2)

where α j ≥ 0 is the aging index of job j and it models
that the same level of the fatigue of the machine can
have various impact on the processing times of different
jobs.

An example of jobs whose processing times are de-
scribed by Eq. 2 is as follows: Consider jobs that are
processed on a CNC lathe machine. Their processing
times are not affected by the fatigue of the worker
(α j = 0); however, the monitoring process increases the
worker’s fatigue as well as his relocation (α j > 0). Fur-
thermore, the fatigue related with the relocation grows
with the distance and the dependency distance-fatigue
does not have to be linear, i.e., it can be described by
the function f . Similarly, the more time-consuming jobs
processed on a CNC lathe machine can cause more
fatigue to the machine than the less time consuming
jobs. Such dependency can be non-linear due to the
growing temperature of a drill. Such dependency can
also be modeled by f . Moreover, the fatigue of the
machine can increase the cutting time of hard materials
more significantly than in case of soft materials, i.e., α j

is greater for harder materials.
Let π = 〈

π(1), ..., π(i), ..., π(n)
〉

denote the sequence
of jobs (permutation of the elements of the set J),
where π(i) is the job processed in position i in this se-
quence. By � we will denote the set of all such permuta-
tions. For the given sequence (permutation) π ∈ �, we
can easily determine the completion time Cπ(i) of a
job placed in the ith position in π from the following
formulae:

Cπ(i) = Cπ(i−1) + p̃π(i)(i) =
i∑

l=1

p̃π(l)(l), (3)

where Cπ(0) =0 and according to Eq. 2, we have p̃π(i)(i)=
pπ(i) ·

(
1 +∑i−1

l=1 f (pπ(l))
)απ(i)

. The objective is to find

such a schedule (sequence) π of jobs on the single
machine, which minimizes the maximum completion

time (makespan) criterion Cmax(π) = maxi=1,...,n{Cπ(i)}.
Since in some of the considered problems each job j can
have deadline d̄ j, then for such problems the feasible
schedules have to hold Cπ(i) ≤ d̄π(i) for i = 1, . . . , n.

Formally, the optimal schedule π∗ ∈ � for the make-
span minimization problem is defined as follows: π∗ �
argminπ∈�

{
Cπ(n)

}
, where � is a set of all possible sched-

ules (permutations), but if jobs have deadlines, then �

is the set of all feasible schedules such that � = {π :
Cπ(i) ≤ d̄π(i) for i = 1, . . . , n}. Additionally, we also con-
sider the maximum lateness minimization criterion that
is defined as Lmax(π) = maxi=1,...,n{Lπ(i)}, where Lπ(i) =
Cπ(i) − dπ(i) and π∗ � argminπ∈�

{
maxi=1,...,n{Lπ(i)}

}
.

For convenience and to keep an elegant descrip-
tion of the considered problem, we will use the stan-
dard three field notation scheme X | Y | Z (see
[9]), where X describes the machine environment, Y
describes job characteristics and constraints, and Z
represents the minimization objectives. According to
this notation, the problems analyzed in the paper will
be denoted as 1| p̃ j(v) = pj

(
1 +∑v−1

l=1 f (p[l])
)α|Cmax,

1| p̃ j(v) = pj
(
1 + ∑v−1

l=1 f (p[l])
)α j

, α j ∈ {0, α}|Cmax,

1|d̄ j, p̃ j(v) = pj
(
1 + ∑v−1

l=1 βp[l]
)α j

, α j ∈ {0, 1}|Cmax,

1| p̃ j(v) = pj
(
1 + ∑v−1

l=1 βp[l]
)|Lmax, 1| p̃ j(v) = pj

(
1 +∑v−1

l=1 f (p[l])
)α j

, α j ∈ {0, α}, agr|Lmax and 1| p̃ j(v) =
pj
(
1 +∑v−1

l=1 βp[l]
)α j

, α j ∈ {0, 1}|Lmax, where agr de-
notes agreeable job parameters such that α j = α > 0
and αk = 0 or pj ≤ pk if α j = αk > 1 or pj ≥ pk if α j =
αk < 1 implies d j ≤ dk for all j, k ∈ J.

Throughout the paper, we assume that p̃ j(v) can be
calculated in time bounded by a polynomial dependent
on a problem size.

3 Computational complexity and algorithms

In this section, we will provide optimal polynomial time
algorithms that minimize the maximum completion
time with the special, however practical, cases of the
considered aging model. Moreover, we will also prove
that if jobs have deadlines (or due dates), then the prob-
lem to minimize the maximum completion time (or the
maximum lateness) even with the sum-of-processing-
time-based aging model is strongly NP-hard.

3.1 Polynomially solvable cases

The analysis of the special cases presented in this sec-
tion not only determines the boundary between poly-
nomially solvable and NP-hard instances but first and
foremost provides solution algorithms that can be used
by practitioners.
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Due to the aging effect, the job processing times
increase; however, the practitioners face the problem
of determining values of job parameters such as the
exact shape of f or the aging characteristics α j. There-
fore, the effective application of scheduling models to
efficiently solve real-life problems requires additional
analysis that is difficult. However, we will prove that
to construct an optimal production schedule for the
problems discussed in the further part of this section, it
is required only to know: whether the time required to
process a job increases with the fatigue of the machine
(i.e., for which jobs α j = 0), an approximate shape of
f (convex/concave) and relations (lower/equal/greater)
between values of the normal processing times of jobs.
Thus, the construction of an optimal schedule that
minimizes the maximum completion time (makespan)
or special cases of the maximum lateness does not
require additional analysis to precisely determine the
parameters of jobs.

Theorem 1 The problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

f (p[l])

)α

|Cmax

is optimally solvable by scheduling jobs according to

(a) an arbitrary order if α = 0 or α = 1 and f (x) = βx
(where β > 0),

(b) the non-increasing order of p j (LPT rule) if 0 <

α < 1 and d2 f
dx2 (x) ≤ 0,

(c) the non-decreasing order of p j (SPT rule) if α > 1
and d2 f

dx2 (x) ≥ 0.

Proof Assume there is given an optimal permutation
π , which does not hold the rule from the thesis of this
theorem. Therefore, for this permutation there exists
a pair of jobs π(i) and π(i + 1) such that for each
corresponding case

(a) Relation between pπ(i) and pπ(i+1) is immaterial.
(b) pπ(i) ≤ pπ(i+1).
(c) pπ(i) ≥ pπ(i+1).

Obviously, the schedule of jobs is immaterial if α = 0.
For other cases, assume that there is given a permuta-
tion π ′, which has been obtained from the permutation
π by interchanging the jobs from the ith and the (i +
1)th position. Based on Eq. 3, the difference � between
the criterion values for π and π ′ is given as follows:

� = Cmax(π) − Cmax
(
π ′)

= pπ(i) pπ(i+1)

(
g
(

pπ(i)
)− g

(
pπ(i+1)

))
.

where g(x) =
[(

A + f (x)
)α − Aα

]
/x and x > 0 and

A=1 +∑i−1
l=1 f (pπ(l)). To determine the value of sub-

traction, we have to analyze monotonicity of g(x). Ob-
serve that the derivative of g(x) is given as follows:

dg
dx

(x) =
[
αxf ′(x)

(
A+ f (x)

)α−1−
(
A+ f (x)

)α+ Aα
]/

x2

= h(x)/x2,

where h(x) = αxf ′(x)
(

A + f (x)
)α−1 −

(
A + f (x)

)α +
Aα and f ′(x) = df

dx (x) > 0 for x > 0. Thus, g(x) is non-
decreasing if h(x) ≥ 0 and non-increasing if h(x) ≤ 0.
Since h(0) = 0, then to determine the sign of h(x) for
x > 0 it is enough to analyze its monotonicity. The
derivative of h(x) is equal to:

dh
dx

(x) = αx
(
A+ f (x)

)α−2

×
[

f ′′(x)
(
A+ f (x)

)
+(α−1)

(
f ′(x)

)2
]
,

where f ′′(x) = d2 f
dx2 (x). On this basis, for the considered

cases we have

(a) Since f (x) = βx and α = 1, then h(x) = 0 thereby
g(x) is constant; thus, � = 0 independently on the
schedule.

(b) Since d2 f
dx2 (x) ≤ 0 and 0 < α < 1, then dh

dx (x) < 0
and g(x) is decreasing; thus, � ≥ 0 if pπ(i) ≤
pπ(i+1).

(c) Since d2 f
dx2 (x) ≥ 0 and α > 1, then dh

dx (x) > 0 and
g(x) is increasing; thus, � ≥ 0 if pπ(i) ≥ pπ(i+1).

Note that �=Cmax(π)−Cmax(π
′) is non-negative for all

cases. Thus, the permutation π cannot be optimal and
the optimal solution can be constructed according to
this theorem. ��

Obviously, the loner a job is processed, the more
fatigue it causes to the machine and in many cases this
relation can be described (see [19]) or approximated
(see [20]) by a proportional relation, i.e., f (x) = βx;
in real-life cases, β is usually a small number (i.e., β ∈
(0, 1)); otherwise, job processing times increase quickly
to very high values that describe an instant machine
wear. On the other hand, the impact of the fatigue on
the job processing times does not have to be linear,
which can be modeled by α. On this basis and fol-
lowing Theorem 1, we provide some useful hints for
practitioners.
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Corollary 1 The optimal schedule of jobs for the
problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

βp[l]

)α

|Cmax

is obtained according to

(a) an arbitrary order if there is no fatigue (α = 0) or
the aging characteristic is linear (α = 1),

(b) the non-increasing order of p j if the aging charac-
teristic is concave (0 < α < 1),

(c) the non-decreasing order of p j if the aging charac-
teristic is convex (α > 1).

Furthermore, we will show that the problem is still
polynomially solvable even if there are jobs that in-
crease the fatigue of a machine, but the fatigue does
not affect their processing times (α j = 0 for such jobs).
An example is a job that is based mostly on moving a
human worker from one location to another; thus, his
tiredness does not increase the time required to move;
however, the dislocation process can make the worker
tired.

Theorem 2 The problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

f (p[l])

)α j

, α j ∈ {0, α}|Cmax

is polynomially solvable according to the following rule:
First, the jobs with α j = α are scheduled according to
Theorem 1 and after them the jobs with α j = 0 are
scheduled in an arbitrary order.

Proof Obviously, the maximum completion time is
minimized if jobs with constant processing times (i.e.,
α j = 0) are scheduled after jobs with variable process-
ing times (i.e., α j = α); otherwise, the criterion value
increases. The maximum completion time of jobs with
α j = α is minimized according to Theorem 1. ��

Now we will analyze the maximum lateness mini-
mization problem with the special cases of the consid-
ered aging model.

Theorem 3 The problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

βp[l]

)
|Lmax

is polynomially solvable by scheduling jobs according to
the non-decreasing order of their due dates d j.

Proof Assume there is given an optimal permutation
π , which does not hold the rule from the thesis of this
theorem. Therefore, for this permutation, there exists a
pair of jobs π(i) and π(i + 1) such that dπ(i) ≥ dπ(i+1).
Consider a permutation π ′, which has been obtained
from the permutation π by interchanging the jobs from
the ith and the (i + 1)th position, i.e., π ′(i) = π(i +
1) and π ′(i + 1) = π(i). Note that π ′(l) = π(l) for l =
1, . . . , i − 1 ∪ i + 2, . . . , n; therefore, Lπ ′(l) = Lπ(l) for
l = 1, . . . , i − 1 ∪ i + 2, . . . , n. On the other hand, the
lateness of jobs in positions i and i + 1 for both permu-
tations π and π ′ are given as follows:

Lπ(i) = Cπ(i−1) + pπ(i)
(
1 + A

)− dπ(i),

Lπ(i+1) = Cπ(i−1) + pπ(i)
(
1 + A

)
+ pπ(i+1)

(
1 + A + βpπ(i)

)− dπ(i+1),

Lπ ′(i) = Cπ(i−1) + pπ(i+1)

(
1 + A

)− dπ(i+1),

Lπ ′(i+1) = Cπ(i−1) + pπ(i+1)

(
1 + A

)
+ pπ(i)

(
1 + A + βpπ(i+1)

)− dπ(i),

where A=∑i−1
l=1 pπ(l). Since dπ(i) ≥dπ(i+1), then Lπ(i+1) >

Lπ(i) and Lπ(i+1) > Lπ ′(i) and Lπ(i+1) > Lπ ′(i+1). There-
fore, maxi=1,...,n{Lπ(i)}≥maxi=1,...,n{Lπ ′(i)} thereby π can-
not be optimal and the optimal solution is constructed
according to the non-decreasing order of d j. ��

Following Theorem 2 and using the job interchang-
ing technique, it can be easily proved that the maxi-
mum lateness minimization problem under agreeable
job parameters is still polynomially solvable; therefore,
the proof is omitted.

Theorem 4 The problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

f
(

p[l]
))α j

, α j ∈ {0, α}, agr|Lmax

with agreeable job parameters is polynomially solvable
according to the following rule: First the jobs with α j = α

are scheduled according to Theorem 1 and after them
the jobs with α j = 0 are scheduled according to the non-
decreasing order of their due dates d j.

Note that it is easy to determine whether aging
affects the processing times of jobs; therefore, the pro-
cedures described in the presented theorems can be
easily used by practitioners. Further, we will show that
the makespan minimization problem with the sum-of-
processing-time-based aging model becomes strongly
NP-hard if jobs can have distinct deadlines even if the
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aging characteristics are linear, thereby the maximum
lateness minimization is not less complex.

3.2 Strong NP-hardness

Although the problem 1| p̃ j(v)= pj
(
1 +∑v−1

l=1 βp[l]
)α j

,

α j ∈ {0, 1}|Cmax is polynomially solvable in O(n) (see
Corollary 1), it becomes strongly NP-hard if some jobs
have deadlines; note that the problem with deadlines
but with constant job processing times (α j = 0 for j =
1, . . . , n) or with linear functions of job processing
times (α j = 1 for j = 1, . . . , n) is polynomially solvable
according to the non-decreasing order of deadlines that
follows from Theorem 3.

Observe that if β = 1, then the processing times of
jobs with α j = 1 model marginally the real-life aging
effect, since they increase very quickly to high values;
however, from the mathematical point of view, such
model is simpler. On the other hand, the small values
of β have strong practical justification. Therefore, we
will prove that the considered problem is strongly NP-
hard with arbitrary positive β (in particular β = 1)
such that β and β−1 can be bounded by a polynomial
dependent on the size of the considered problem and
on its maximal value.

Theorem 5 The problem

1|d̄ j, p̃ j(v)= pj

(
1 +

v−1∑
l=1

βp[l]

)α j

, α j ∈ {0, 1}|Cmax

is strongly NP-hard for arbitrary β > 0.

Proof We will show that the strongly NP-complete
problem 3-Partition [6] can be transformed in a
pseudopolynomial time to the decision versions of the
considered scheduling problem.

3-Partition (3PP) [6] There are given positive in-
tegers m, B, and x1, . . . , x3m of 3m positive inte-
gers satisfying

∑3m
q=1 xq = mB and B

4 < xq < B
2 for q =

1, . . . , 3m. Does there exist a partition of the set X =
{1, . . . , m} into m disjoint subsets X1, . . . , Xm such that∑

q∈Xi
xq = B for i = 1, . . . , m?

The decision version of the considered scheduling
problem is given as follows (decision scheduling prob-
lem, DSP): Does there exist such a schedule π of jobs
on the machine for which there are no late jobs and
the criterion value Cmax is equal or lower than the given
value y?

The pseudopolynomial time transformation from
3PP to DSP is constructed as follows. There are given
n = 4m jobs and among them there are 3m partition
jobs:

pj = H + x j, α j = 1,

d̄ j = D = pem +
m∑

l=1

Vl + β B2m,

for j = 1, . . . , 3m and m enforcer jobs ei (i = 1 . . . , m)
with the following parameters:

pei = pe = m2 BH, αei = 0,

d̄ei = pei +
i−1∑
l=1

Vl + β B2(i − 1),

and y = D, where

H = 2mB,

Vi = (3H + B)

+ β
[
(3H+B)

(
pei+H+(3H+B)(i−1)

)
+HB

]

for i = 1, . . . , m and
∑0

l=1 Vl = 0 and β = 1/a, where a
is an arbitrary constant value that can be bounded by
a polynomial dependent on the problem size, O(m),
and the maximal value, B, of 3PP. For this proof and
practical cases, we assume that a ≥ 1 (i.e., 0 < β ≤ 1),
but the proof is also valid if a < 1 (i.e., β > 1); however,
it models marginal real-life settings.

Note that computational complexity theory consid-
ers integer numbers, and the parameters of DSP are
expressed by integer (also β that is expressed by a and
its value does not have to be calculated). Moreover,
all calculations can be done on integer numbers, i.e.,
to calculate y, d̄ei , or d̄ j, it is required to reduced the
elements to the lowest common denominator, but it is
not greater than a. Thus, the given transformation from
3PP to DSP is pseudopolynomial, since the maximum
value of DSP does not increase exponentially in ref-
erence to 3PP (i.e., y is O(am6 B3)) and the problem
size does not decrease exponentially in reference to 3PP
(i.e., n = 4m); furthermore, all calculations can be done
on integer numbers in pseudopolynomial time.

Now we will provide the property of an optimal
schedule for DSP. For convenience let us renumber
partition jobs J′ = {1, . . . , j, . . . , 3m} such that for the
considered schedules, the jobs are in the natural order.
At first observe that there exists an optimal sched-
ule, where the enforcer jobs are scheduled in the
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non-decreasing order of their deadlines d̄ei . It results
from the optimal feasible schedule for the classical
problem 1|d̄ j|Cmax with constant job processing times,
since for DSP we have p̃ei(v) = pe for i = 1, . . . , m and
v = 1, . . . , 4m. Moreover, e1 is the first processed job;
otherwise, Ce1 > d̄e1 . Therefore, the optimal schedules
have the following form (e1, J′

1, . . . , ei, J′
i, . . . , em, J′

m),
where J′

i are disjoint subsets of partition jobs J′ =
J′

1 ∪ . . . ∪ J′
i ∪ . . . ∪ J′

m. In the further part, we will show
that |J′

i | = 3 for i = 1, . . . , m, where |J′
i | denotes the

cardinality of J′
i .

Let us define useful expressions for a schedule π∗,
where each J′

i = Ji and Ji consists of exactly three
partition jobs corresponding to the elements from Xi =
{3i − 2, 3i − 1, 3i}. Let V(Ji) denote the sum of process-
ing times of jobs from Ji for the schedule π∗:

V(Ji) =
⎛
⎝∑

j∈Ji

p j

⎞
⎠
⎛
⎝1 +

i∑
l=1

βpel +
i−1∑
l=1

∑
j∈Jl

βpj

⎞
⎠

+ β
∑

j,k∈Ji∧ j<k

p j pk

=
⎛
⎝∑

j∈Ji

p j

⎞
⎠+β

⎡
⎣
⎛
⎝∑

j∈Ji

p j

⎞
⎠
⎛
⎝ i∑

l=1

pel +
i−1∑
l=1

∑
j∈Jl

p j

⎞
⎠

+
∑

j,k∈Ji∧ j<k

p j pk

⎤
⎦ . (4)

Since jobs from Ji are constructed on the basis of the
elements from Xi (for i = 1, . . . , m), then Eq. 4 can be
expressed as follows:

V(Xi) =
⎛
⎝3H +

∑
j∈Xi

x j

⎞
⎠

+ β

⎡
⎣
⎛
⎝3H+

∑
j∈Xi

x j

⎞
⎠
⎛
⎝pei+

i−1∑
l=1

⎛
⎝3H+

∑
j∈Xl

x j

⎞
⎠
⎞
⎠

+
∑

j,k∈Xi∧ j<k

(
H + x j

)
(H + xk)

⎤
⎦

=
⎛
⎝3H +

∑
j∈Xi

x j

⎞
⎠+ β

⎡
⎣
⎛
⎝3H +

∑
j∈Xi

x j

⎞
⎠

×
⎛
⎝pei + H +

i−1∑
l=1

⎛
⎝3H +

∑
j∈Xl

x j

⎞
⎠
⎞
⎠

+ H
∑
j∈Xi

x j + W(Xi)

⎤
⎦ , (5)

where W(Xi) = ∑
j,k∈Xi∧ j<k x jxk for i = 1 . . . , m.

Knowing that B
4 < x j < B

2 for j = 1, . . . , m, and

3
16

B2 < W (Xi) <
3
4

B2 (6)

for i = 1, . . . , m, we can estimate V(Xi) as follows:

V (Xi) >

(
3H + 3

4
B
)

+ β

[(
3H+ 3

4
B
)(

pei+H+
i−1∑
l=1

(
3H+ 3

4
B
))

+ 3
4

HB + 3
16

B2
]

> (3H + B) − 1
4

B

+ β

[
(3H+B)

(
pei+H+(3H+B)(i−1)

)+ HB

− B
4

(
pei+2H+

(
6H+ 7

4
B
)

(i−1)

)]

> Vi− B
4

−β

[
B
4

(
1+ pei+2H+2(3H+B)(i−1)

)]

> Vi − B − β Bpei, (7)

since 2H + 2(3H + B)(i − 1) < 2(3H + B)i < pei.
Now we will show that there exists an optimal so-

lution π , where |J′
i | = 3 for i = 1, . . . , m. At first note

that the maximum completion time Cmax is minimal if
jobs with α j = 0 are scheduled after jobs with α j = 1
(Corollary 1). Therefore, in the optimal solution of
DSP, the enforcer jobs (αei = 0) are scheduled after as
many partition jobs (α j = 1) as it is possible. Let us
consider job e2 and assume that before this job at least
four partition jobs are scheduled, i.e., |J′

1| > 3 and J′
1 =

{J1, Q1}, where Q1 ⊆ J′\{J1}. Thus, its completion time
can be estimated as follows:

Ce2 > pe1 + V(J1) + pq

⎛
⎝1 + βpe1 +

∑
j∈J1

βpj

⎞
⎠+ pe2 ,

where q ∈ Q1. Knowing that pj > H (for j ∈ J′) and
based on Eq. 7, we have

Ce2 > 2pe + V(X1) + H
(

1 + βpe + 3Hβ
)

> 2pe + V1 − B − β Bpe + H + β
[

Hpe + 3H2
]

> d̄e2 − β B2 − B − β Bpe + H + β
[

Hpe + 3H2
]

= d̄e2 +H−B+β
[
[H−B]pe+3H2−B2

]
> d̄e2 ,
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since H > B. Therefore, before e2, no more than three
partition jobs can be scheduled. On the other hand,
the criterion value is minimized if enforcer jobs are
scheduled after as many partition jobs as it is possible;
thus, we conclude that in the optimal solution J′

1 = J1,
thereby |J′

1| = 3.
In order to proceed inductively, let us consider

job ei (i = 2, . . . , m) such that J′
l = Jl and |J′

l | = 3
for l = 1, . . . , i − 2 (J′

0 denotes an artificial empty set)
and |J′

i−1| > 3, where J′
i−1 = {Ji−1, Qi−1} and Qi−1 ⊆

J′\{J1 ∪ . . . ∪ Ji−1}. The total completion time of ei can
be estimated as follows:

Cei >

i∑
l=1

pel +
i−1∑
l=1

V(Jl)+ pq

⎛
⎝1 + βpe(i−1)+

i−1∑
l=1

∑
j∈Jl

βpj

⎞
⎠

> pei +
i−1∑
l=1

(Vl − B − β Bpel)

+ H (1 + βpe(i − 1) + 3H(i − 1)β)

= d̄ei −βB2(i−1)−B(i − 1)−β Bpe

i−1∑
l=1

l

+ H (1 + βpe(i − 1) + 3H(i − 1)β)

> d̄ei +H−B(i − 1)

+ β
[
[H − B(i − 1)] pe + 3H2 − B2] (i − 1) > d̄ei ,

where q ∈ Qi−1 and H > B(i − 1) for i = 1, . . . , m.
Thus, if J′

i consists of more than three partition jobs,
then at least one enforcer job is late. On this basis,
we conclude that in the optimal solution |J′

i | = 3 for
i = 1 . . . , m.

Therefore, in the further part, we consider only
schedules consistent with π∗, i.e., (e1, J1, e2, J2, . . . , ei,

Ji, . . . , em, Jm), where the sequence of jobs within each
set Ji is arbitrary, since it does not affect the objective
function.

From the definition of 3PP follows that
∑

j∈Xi
x j =

B + λi, where λi ∈ (− B
4 , B

2 ) for i = 1, . . . , m; therefore,
based on Eq. 5, we obtain

V(Xi) = (3H + B + λi)

+ β

[
(3H+B+λi)

(
pei+H+

i−1∑
l=1

(3H+B+λl)

)

+ H(B + λi) + W(Xi)

]
= Vi + λi + β

×
[
λi

(
pei + 2H + (3H + B) (i − 1) +

i−1∑
l=1

λl

)

+ (3H + B)

i−1∑
l=1

λl + W(Xi)

]
. (8)

Now let us define the completion time of the en-
forcer job ek and of the last job in Xk as follows (k =
1, . . . , m):

Cek = pek +
k−1∑
i=1

V(Xi), (9)

CXk = pek +
k∑

i=1

V(Xi). (10)

Following Eq. 8, the completion times of enforcer
jobs are:

Cek = d̄ek +
k−1∑
i=1

λi

+ β

[
k−1∑
i=1

(
λi

(
pei+2H+(3H+B)(i−1)+

i−1∑
l=1

λl

)

+ (3H + B)

i−1∑
l=1

λl + W(Xi)

)
− B2(k − 1)

]

(11)

for k = 1, . . . , m and based on Eq. 10, the criterion
value Cmax (i.e., the completion time of the last job in
Xm) is given as

Cmax = y +
m∑

i=1

λi

+ β

[
m∑

i=1

(
λi

(
pei+2H+(3H+B)(i−1)+

i−1∑
l=1

λl

)

+ (3H + B)

i−1∑
l=1

λl + W(Xi)

)
− B2m

]
.

(12)

Now we will show that the answer for DSP is yes (i.e.,
Cmax ≤ y = D and Cei ≤ d̄ei for i = 1, . . . , m) if and only
if it is yes for 3PP (i.e., λi = 0 for i = 1, . . . , m).

Only if Assume that the answer for 3PP is yes. Thus,
for each subset Xi (i = 1, . . . , m)

∑
q∈Xi

xq = B holds,
thereby λi = 0 for i = 1, . . . , m. Based on Eqs. 6 and 11,
the completion time of ek (k = 1, . . . , m) can be esti-
mated as follows:

Cek = d̄ek + β

[
k−1∑
i=1

W(Xi) − B2(k − 1)

]
< d̄ek ,
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thus, there are no late jobs. Further, from Eqs. 6 and 12
follows that

Cmax = y + β

[
m∑

i=1

W(Xi) − B2m

]
< y.

If Assume now that the answer for 3PP is no. Let∑
q∈Xi

xq = B + λi for i = 1, . . . , m; recall that from
the assumption B

4 < xq < B
2 (for q = 1, . . . , 3m) follows

that 3
4 B <

∑
q∈Xi

xq < 3
2 B, thereby λi ∈ (− B

4 , B
2 ).

Thus, for any partition of the set {1, . . . , 3m} into
disjoint subsets X1, . . . , Xm, there must exist at least
two subsets Xu and Xw (u �= w) such that

∑
q∈Xu

xq �=∑
q∈Xw

xq for u, w ∈ {1, . . . , m} and u < w. For this
proof, it is enough to consider only two cases, since any
distribution of λi (following the partition of jobs) can be
represented by these cases. They are given as follows:

(a) λu > 0 and λw < 0, such that
∑u−1

i=1 λi =0 and w is
the index of the first set Xw for which

∑w
l=u λl ≤0,

i.e.,
∑i

l=u λl > 0 for i = u, . . . , w − 1.
(b) λu < 0 and λw > 0, such that

∑u−1
i=1 λi =0 and w is

the index of the first set Xw for which
∑w

l=u λl ≥0,
i.e.,

∑i
l=u λl < 0 for i = u, . . . , w − 1.

where u, w ∈ {1, . . . , m} and u < w. Consider case (a)
and assume that Xw is the first one such that

∑w
i=u λi ≤

0 and if
∑w

i=u λi + λw+1 < 0 (i.e., λw+1 < 0), then there
must exist such k > w + 1, for which λk > 0 and∑k

i=w+1 λi ≥ 0, but this is represented by case (b). Thus,
without loss of generality, we assume that λi = 0 for
i ∈ {1, . . . , u − 1} ∪ {w + 1, . . . , m}.

Consider case (a). Since λi = 0 for i = 1, . . . , u − 1
and λu ≥ 1, then from Eq. 11 follows

Ceu+1 = d̄eu+1 +
u∑

i=1

λi

+ β

[
u∑

i=1

(
λi

(
pei+2H+(3H+B)(i−1)+

i−1∑
l=1

λl

)

+ (3H+B)

i−1∑
l=1

λl +W(Xi)

)
−B2u

]

= d̄eu+1 +λu+β

[
λu (peu+2H+(3H+B)(u−1))

+
u∑

i=1

W(Xi) − B2u

]

> d̄eu+1 + λu + β
[

peu − B2u
]

> d̄eu+1 .

Consider case (b). Recall that λi = 0 for i ∈ {1, . . . ,

u − 1} ∪ {w + 1, . . . , m}; thus, the criterion value is
equal to

Cmax = y +
w∑

i=u

λi

+ β

[
w∑

i=u

(
λi

(
pei+2H+(3H+B)(i−1)+

i−1∑
l=1

λl

))

+ (3H+B)

m∑
i=1

i−1∑
l=1

λl +
m∑

i=1

W(Xi)−B2m

]
.

Note that
∑i−1

l=1λl >−(i−1)B
4 and

∑m
i=1

∑i−1
l=1 λl >

− 1
4 m2 B; thus, we have

Cmax > y+β

[
pe

w∑
i=u

iλi− 1
4

m2 B(3H + B) − B2m

]

> y+β

[
pe

w∑
i=u

iλi− 1
4

mB (3Hm+(m + 4)B)

]
.

On this basis and taking into consideration that∑w
i=u iλi = w

∑w
i=u λi −∑w−1

i=u

∑i
l=u λl ≥ 1 (note that∑i

l=u λl < 0 for i = u, . . . , w − 1 and
∑w

i=u λi ≥ 0) and
(m + 4)B < 2mB = H, the criterion value can be
further estimated

Cmax > y+β

[
pe

(
w

w∑
i=u

λi−
w−1∑
i=u

i∑
l=u

λl

)
− 1

4
mB(3Hm+H)

]

> y+β
[

pe − m2 BH
] = y.

Therefore, for all the cases at least one job is late or the
criterion value Cmax is greater than y.

We hereby showed that DSP has an answer yes if
and only if the answer for 3PP is also yes, which means
DSP is strongly NP-complete, thereby the considered
scheduling problem is strongly NP-hard. Note that the
proof is correct for β = 1 and also for very small (prac-
tical) values, e.g., β = 1/y, and even for big numbers
that have at last a marginal practical justification. ��

From the strong NP-hardness of 1|d̄ j, p̃ j(v) =
pj
(
1 +∑v−1

l=1 βp[l]
)α j

, α j ∈ {0, 1}|Cmax follows that the
maximum lateness minimization problem with the con-
sidered model of the aging effect is also strongly NP-
hard.
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Corollary 2 The problem

1| p̃ j(v)= pj

(
1 +

v−1∑
l=1

βp[l]

)α j

, α j ∈ {0, 1}|Lmax

is strongly NP-hard even for arbitrary β > 0.

Therefore, to efficiently solve such real-life prob-
lems, more advanced algorithms have to be used (e.g.,
metaheuristics). However, such methods require addi-
tional analysis to determine the values of jobs parame-
ters that describe aging.

4 Conclusions

In this paper, we introduced a new model of the aging
effect that extended the sum-of-processing-time-based
approach such that the fatigue caused by each job to the
machine is equal to the non-decreasing function depen-
dent on its normal processing time. Moreover, we con-
structed the polynomial time algorithm that optimally
solves the single machine maximum completion time
minimization problem with the considered model of the
aging effect. The practitioners can apply the algorithm
without the complete knowledge about the optimized
system, but they only have to determine for which jobs
α j = 0, approximate shape of f (convex/concave), and
find relations (lower/equal/greater) between values of
the normal processing times of jobs. Finally, we proved
that the makespan minimization problem with the sum-
of-processing-time-based aging model (where some job
processing times are constant) is strongly NP-hard if
jobs can have deadlines, thereby the maximum late-
ness minimization problem with this model is not less
complex. Therefore, to efficiently solve such real-life
problems, heuristic or metaheuristic algorithms have to
be constructed that will be our future work.
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