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Abstract: In this paper, the classes of symmetric density functions which de-

pend on a parameter have been studied. In particular the skew normal, uni-

form, t, Cauchy, Laplace, and logistic distributions are given and some of their

properties are explored.
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1. Introduction

The skew-normal distributions have been introduced by many authors, e.g. Azzalini

(1985), Arnold et al. (1993), Aigner et al. (1977), Andel et al. (1984). This class

of distributions includes the normal distribution and possesses several properties which

coincide or are close to the properties of the normal family. However, this class has a

skewness parameter which makes it possible to have a reasonable model for a skewed

population distribution thus providing a more flexible model which represents the data as

adequately as possible.

Besides being useful in modeling, they are helpful in studying the robustness, and in

Bayesian analysis as priors. The construction of such models is based on the following

lemma (see Azzalini, 1985).

Lemma 1. Let Y be a random variable with density function f(x) symmetric about 0,

and Z a random variable with absolutely continuous distribution function G(x) such that

G′(x) is symmetric about 0. Then

g(x|λ) = 2f(x)G(λx), −∞ < x < ∞ (1.1)
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is a density function of a random variable X for any real λ.

Note that there are three special cases:

(i) g(x|λ) tends to the density of |Y | as λ →∞.

(ii) g(x|λ) tends to the density of −|Y | as λ → −∞.

(iii) g(x|0) is the density of Y .

Some interesting properties of X can be proved by the following lemma.

Lemma 2. Let X, Y and Z be three random variables as defined in Lemma 1. Then

(i) the even moments of X are independent of λ and the same as those of Y .

(ii) X2 and Y 2 have the same distribution function.

Proof. Let ψX(t) denote the characteristic function of X. Then

ψX(−t) =
∫ ∞

−∞
e−itx[2f(x)G(λx)] dx

=
∫ −∞

∞
−eity[2f(−y)G(−λy)] dy

=
∫ ∞

−∞
eity[2f(y)(1−G(λy))] dy.

The second equality follows from making the change of variable x = −y and the third

equality from the symmetry of f(x) and G′(y). Therefore, it implies that g(t) = ψX(t) +

ψX(−t) = 2
∫∞
−∞ eitxf(x) dx = 2ψY (t) is independent of λ. It is easy to see that if

(−1)ng(2n)(0)/2 and (−1)nψ
(2n)
Y (0) exist, then they are the 2nth moments of X and Y ,

and the nth moments of X2 and Y 2, respectively. Both are the same. Then the desired

properties follow immediately. 2

In the next section we summarize the results for the skew-normal distribution as given

by Azzalini (1985, 1986) by taking f(·) and G(·) as the probability density (p.d.f.) and

distribution function (c.d.f) of a standard normal distribution, respectively. Then we de-

fine skew-uniform, t, Cauchy, Laplace, and logistic-distribution and study some of their

properties.

2. Skew-normal model

The univariate skew-normal distribution can be found in different settings in several

papers. We shall follow Azzalini (1985). In econometric literature the distribution appears
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in the so called stochastic frontier model in papers by Aigner et al. (1977), Andel et al.

(1984).

The random variable X is said to have a skew-normal distribution if it is continuous

and its density function is given by

fX(x) = 2φ(x)Φ(λx), x ∈ R (2.1)

where λ ∈ R, φ(·) is the standard normal density and Φ(·) is the corresponding distribution

function. Several skew-normal densities are illustrated in Figure 1 (a). It is denoted as

X ∼ SN(λ) to mean that X has skew-normal density (2.1). It has been shown that

X2 ∼ χ2
1 with density function e−x/2/(

√
2πx), x ≥ 0. The moment generating function of

X is

M(t) = 2et2/2Φ(tλ/
√

1 + λ2) (2.2)

with

E(X) =

√
2

π

λ√
1 + λ2

, Var(X) = 1− 2

π

λ2

1 + λ2

γ1 =
1

2
(4− π) sign(λ)

[
(E(X))2

Var(X)

]3/2

γ2 = 2(π − 3)

[
(E(X))2

Var(X)

]2

where γ1, γ2 are the measures of skewness µ3/µ
3/2
2 , and kurtosis µ4/µ

2
2, respectively (µk =

E[X − E(X)]k). Note that 1 − 2/π < Var(X) ≤ 1, −√2(4 − π)/(π − 2)3/2 < γ1 <√
2(4− π)/(π − 2)3/2 ≈ 0.995 and 0 ≤ γ2 < 8(π − 3)/(π − 2)2 ≈ 0.869.

3. Skew-uniform model

We are now ready to discuss the other five univariate skewed distributions. The random

variable X is said to have a skew-uniform distribution if it is continuous and its density

function is given by

fX(x) = 2f(x)F (λx)

=
1

θ2
[max(min(λx, θ),−θ) + θ], −θ < x < θ,

where λ ∈ R, θ > 0, f(x) = 1/(2θ), −θ < x < θ is the symmetric uniform density

on (−θ, θ) and F (x) = [max(min(x, θ),−θ) + θ]/(2θ) is the corresponding distribution

function. Several skew-uniform densities are illustrated in Figure 1 (b). Then X2 has the

density function 1/(2θ
√

t), 0 ≤ t < θ2. The moment generating function of X is

M(t) =

(
λ

t

)
cosh(θt)−

(
λ− θt

θt2

)
sinh(θt) (3.1)
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with

E(X) =
λθ

3
, Var(X) = (3− λ2)

θ2

9

γ1 =
2

5

λ(5λ2 − 9)

(3− λ2)3/2

γ2 =
3

5

(9− 5λ2)(λ2 + 3)

(3− λ2)2

where γ1, γ2 are the measures of skewness µ3/µ
3/2
2 , and kurtosis µ4/µ

2
2, respectively (µk =

E[X−E(X)]k). Note that γ1 is strictly decreasing from 0 to −2
√

2/5 whereas γ2 is strictly

increasing from 9/5 to 12/5, as λ moves from 0 to 1 .

4. Skew-t model

Let W be a random variable with skew normal distribution SN(λ) and V a random

variable with Chi squared distribution χ2
ν . Suppose that W and V are independent. The

random variable X = W/
√

V/ν is said to have a skew-t distribution with degree ν if it is

continuous and its density function is given by

fX(x) = 2fTν (x)F (λx) (4.1)

= 2
Γ((ν + 1)/2)√

πν Γ(ν/2)

(
1 +

x2

ν

)−(ν+1)/2

FTν+1

(
λx

√
1 + ν

ν(ν + x2)

)
, x ∈ R (4.2)

where λ ∈ R, σ > 0, fTν (x) = [Γ((ν + 1)/2)/(Γ(ν/2)
√

πν)] (1 + x2/ν)
−(ν+1)/2

is the den-

sity of a t distribution with degree ν and FTν+1(x) is the distribution function to fTν+1(x).

Several skew-t densities are illustrated in Figure 1 (c). The density can be derived directly

from the definition of X by using the following lemma.

Lemma 3. Let Y have a standard normal distribution with distribution function Φ(y),

and Z has Chi squared distribution with ν degrees of freedom and is independent of Y .

Then

EZΦ(a
√

Z) = FTν (a
√

ν)

where FTν is the distribution function of t distribution with ν degrees of freedom.

Some basic quantities of X are given by

E(X) = bδ
√

ν
2

Γ( ν−1
2 )

Γ( ν
2 )

, ν ≥ 2 E(X2) = ν
ν−2

, ν ≥ 3

E(X3) = bδ(3− δ2)
(

3
2

)3/2 Γ( ν−3
2 )

Γ( ν
2 )

, ν ≥ 4 E(X4) = 3ν2

(ν−2)(ν−4)
, ν ≥ 5

Var(X) = ν
ν−2

− ν
π

λ2

1+λ2

[
Γ( ν−1

2 )
Γ( ν

2 )

]2

, ν ≥ 3

γ1 = E(X3)−3E(X2)E(X)+2[E(X)]3

[Var(X)]3/2
γ2 = E(X4)−4E(X3)E(X)+6E(X2)[E(X)]2−3[E(X)]4

[Var(X)]2

(4.3)
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where b =
√

2/π and δ = λ/
√

1 + λ2. In particular, X has a t distribution with ν

degrees of freedom when λ = 0, a skew normal distribution SN(λ) as ν →∞, and X2 has

F distribution with degrees of freedom 1 and ν.

5. Skew-Cauchy model

The random variable X is said to have a skew-Cauchy distribution if it is continuous

and its density function is given by

fX(x) = 2f(x)F (λx)

=
σ[1 + 2 arctan(λx/σ)/π]

π(σ2 + x2)
, x ∈ R (5.1)

where λ ∈ R, σ > 0, f(x) = σ/[π(σ2 + x2)] is the Cauchy density on (−∞,∞) with

F (x) = 1/2 + arctan(x/σ)/π is the corresponding distribution function. Several skew-

Cauchy densities are illustrated in Figure 1 (d). Then X2 has the density function

σ/[
√

t(σ2 + t)], t ≥ 0. The moment generating function of X does not exist and the

characteristic function does not have a closed form. The kth moment of X does not exist

for k ≥ 1.

A second way of defining skew-Cauchy distribution is to take ν = 1 in skew-t distribu-

tion (4.2). Then its density function is given by

1

π(1 + x2)


1 +

λx√
1 + (1 + λ2)x2


 , x ∈ R. (5.2)

Its properties are the same as those of skew-Cauchy distribution defined in (5.1).

A third way of defining skew-Cauchy distribution is as follows. Let Y and Z be in-

dependent random variables distributed as SN(λ). Then X = Y/Z is said to have a

skew-Cauchy distribution. Although its density does not have a closed form, it shares the

same properties of skew-Cauchy distribution defined in (5.1).

6. Skew-Laplace model

The random variable X is said to have a skew-Laplace distribution if it is continuous

and its density function is given by

fX(x) = 2f(x)F (λx)

=
e−|x|/σ

[
1 + sign(λx)

(
1− e−|λx|/σ

)]

2σ
, x ∈ R (6.1)

where λ ∈ R, σ > 0, f(x) = e−|x|/σ/(2σ) is the Laplace density with F (x) = [1 +

sign(x)(1 − e−|x|/σ)]/2 is the corresponding distribution function. Several skew-Laplace
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densities are illustrated in Figure 1 (e). Then X2 has the density function e−
√

t/σ/(2σ
√

t), t ≥
0. The characteristic function of X is

ψ(t) =
σt + (λ + 1)2i

(σt + i)((σt)2 + (λ + 1)2)
(6.2)

with

E(X) = σ

[
1− 1

(λ + 1)2

]
, Var(X) = σ2

[
2− λ2(λ + 2)2

(λ + 1)4

]
,

λ > −1 +
√√

2− 1, λ < −1−
√√

2− 1

γ1 =
2λ(λ + 2)(λ2 + λ + 1)(λ2 + 3λ + 3)

[2(λ + 1)4 − λ2(λ + 2)2]3/2

γ2 =
3 (3λ8 + 24λ7 + 88λ6 + 192λ5 + 276λ4 + 272λ3 + 176λ2 + 64λ + 8)

(λ4 + 4λ3 + 8λ2 + 8λ + 2)2

where γ1, γ2 are the measures of skewness µ3/µ
3/2
2 , and kurtosis µ4/µ

2
2, respectively (µk =

E[X − E(X)]k). Note that γ1 is strictly decreasing on λ < −1 −
√√

2− 1 and strictly

increasing on λ > −1 +
√√

2− 1, limλ→±∞ γ1 = 2, lim
λ→±−1±

√√
2−1

γ1 = −∞, and

limλ→±∞ γ2 = 9.

7. Skew-logistic model

The random variable X is said to have a skew-logistic distribution if it is continuous

and its density function is given by

fX(x) = 2f(x)F (λx)

=
2e−x/σ

σ(1 + e−x/σ)2(1 + e−λx/σ)
, x ∈ R (7.1)

where λ ∈ R, σ > 0, f(x) = e−x/σ/[σ(1 + e−x/σ)2] is the logistic density with F (x) =

1/(1 + e−x/σ) the corresponding distribution function. Several skew-logistic densities are

illustrated in Figure 1 (f). Then X2 has the density function e−
√

t/σ/[σ(1+e−
√

t/σ)2
√

t], t ≥
0. Neither the moment generating function nor the characteristic function of X has a closed

form. The first four moments of X are given by

E(X) = 2σA1, E(X2) = 1
3

(πσ)2

E(X3) = 2σ3A3, E(X4) = 7
15

(πσ)4 (7.2)

where Aj =
∫∞
0 (ln z)j/[(1 + z)2(1 + zλ)] dz, j = 1, 3.

8. Remarks

The density functions of skew-symmetric distributions defined in this paper are illus-

trated in Figure 1. Based on an intensive numerical study, it shows that all of them have
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a single mode m except for the skew-uniform density with |λ| > θ or = 0. Furthermore,

the mode is negative if λ < 0 and positive if λ > 0, except for the skew-Laplace density,

and fX(m) is an increasing function in |λ|. For the skew-Laplace density, the mode occurs

at the y-axis and it has a cusp at x = 0 for all λ.
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Figure 1: The density functions of skew-symmetric distributions with λ = −1 (longer
dashing line), λ = 1 (shorter dashing line) and λ = 0 (solid line), and the other parameters
are set to 1.

The families defined in this paper do not have a wide range of the indices of skewness and

kurtosis. To include the wide range of the indices of skewness and kurtosis (see O’Hagan

and Leonard, 1976; Henze, 1986) these families of distributions can also be extended.

One would like do estimate the shape parameter λ and test hypothesis about it. In

the skew-normal case, Azzalini (1985) has discussed the estimation problem in the more

general case. For the other cases discussed in this paper this problem is under study. The
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testing problem has not been discussed – not even in the normal case.
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