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Abstract 

In visual processing the ability to deal with missing and noisy informa

tion is crucial. Occlusions and unreliable feature detectors often lead to 
situations where little or no direct information about features is availa
ble. However the available information is usually sufficient to highly 
constrain the outputs. We discuss Bayesian techniques for extracting 
class probabilities given partial data. The optimal solution involves inte
grating over the missing dimensions weighted by the local probability 
densities. We show how to obtain closed-form approximations to the 
Bayesian solution using Gaussian basis function networks. The frame
work extends naturally to the case of noisy features. Simulations on a 
complex task (3D hand gesture recognition) validate the theory. When 
both integration and weighting by input densities are used, performance 
decreases gracefully with the number of missing or noisy features. Per

formance is substantially degraded if either step is omitted. 

1 INTRODUCTION 

The ability to deal with missing or noisy features is vital in vision. One is often faced with 
situations in which the full set of image features is not computable. In fact, in 3D object 
recognition, it is highly unlikely that all features will be available. This can be due to self
occlusion, occlusion from other objects, shadows, etc. To date the issue of missing fea
tures has not been dealt with in neural networks in a systematic way. Instead the usual 
practice is to substitute a single value for the missing feature (e.g. 0, the mean value of the 
feature, or a pre-computed value) and use the network's output on that feature vector. 
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Figure 1. The images show two possible situations for a 6-class classification problem. (Dark 
shading denotes high-probability regions.) If the value of feature x is unknown, the correct 
solution depends both on the classification boundaries along the missing dimension and on the 
distribution of exemplars. 

When the features are known to be noisy, the usual practice is to just use the measured 
noisy features directly. The point of this paper is to show that these approaches are not 
optimal and that it is possible to do much better. 

A simple example serves to illustrate why one needs to be careful in dealing with missing 
features. Consider the situation depicted in Figure 1 (a) . It shows a 2 -d feature space with 6 
possible classes. Assume a network has already been trained to correctly classify these 
regions. During classification of a novel exemplar. only feature y has been measured, as 
Yo; the value of feature x is unknown. For each class Ci , we would like to compute p(Cily). 

Since nothing is known about x, the classifier should assign equal probability to classes 1, 
2, and 3, and zero probability to classes 4,5, and 6. Note that substituting any single value 
will always produce the wrong result. For example, if the mean value of x is substituted, 
the classifier would assign a probability near 1 for class 2. To obtain the correct posterior 
probability, it is necessary to integrate the network output over all values of x. But there is 
one other fact to consider: the probability distribution over x may be highly constrained by 
the known value of feature y. With a distribution as in Figure 1 (b) the classifier should 
assign class 1 the highest probability. Thus it is necessary to integrate over x along the line 
Y=Yo weighted by the joint distribution p(x,y). 

2 MISSING FEATURES 

We first show how the intituitive arguments outlined above for missing inputs can be for

malized using Bayes rule. Let x represent a complete feature vector. We assume the classi

fier outputs good estimates of p (Cil x) (most reasonable classifiers do - see (Richard & 

Lippmann, 1991». In a given instance, x can be split up into xc' the vector of known (cer

tain) features, and xu. the unknown features. When features are missing the task is to esti

mate p (Cil xc) . Computing marginal probabilities we get: 



Some Solutions to the Missing Feature Problem in Vision 395 

Jp (Cil Xc' xu) p (xc' xu) dxu 

p (xc) 
(1) 

Note that p (Cil XC' xu) is approximated by the network output and that in order to use (1) 

effectively we need estimates of the joint probabilities of the inputs. 

3 NOISY FEATURES 

The missing feature scenario can be extended to deal with noisy inputs. (Missing features 

are simply noisy features in the limiting case of complete noise.) Let Xc be the vector of 

features measured with complete certainty, Xu the vector of measured, uncertain features, 

and xtu the true values of the features in Xu. p (xul XtU) denotes our knowledge of the noise 

(i.e. the probability of measuring the (uncertain) value Xu given that the true value is xtu ). 

We assume that this is independent of Xc and Ci • i.e. that p (xul xlU , Xc' Ci ) = p (xul xlU ) • 

(Of course the value of xlU is dependent on Xc and Cj .) We want to compute p (Cil Xc' xu) . 
This can be expressed as: 

",,. Jp (xc' xu' xtu, Ci ) dxtu 
p(Cjlxc,xu) = ~ ~ 

p (xc' xu) 
(2) 

Given the independence assumption, this becomes: 

Jp (Cjl x ,XtU ) p (xc' xtu ) p (Xul XtU) dxtu 
p(Cilxc'xu) = ____ c __________ _ 

Jp (xc' XtU ) p (xul XtU ) dxtu 

(3) 

As before, p (C il Xc> X tu) is given by the classifier. (3) is almost the same as (1) except that 

the integral is also weighted by the noise model. Note that in the case of complete uncer
tainty about the features (i.e. the noise is uniform over the entire range of the features), the 
equations reduce to the miSSing feature case. 

4 GAUSSIAN BASIS FUNCTION NETWORKS 

The above discussion shows how to optimally deal with missing and noisy inputs in a 
Bayesian sense. We now show how these equations can be approximated using networks 
of Gaussian basis functions (GBF nets). Let us consider GBF networks where the Gaus
sians have diagonal covariance matrices (Nowlan, 1990). Such networks have proven to 
be useful in a number of real-world applications (e.g. Roscheisen et al, 1992). Each hid-

den unit is characterized by a mean vector ~j and by aj, a vector representing the diagonal 

of the covariance matrix. The network output is: 

4: wijbj (x) 

Yj (x) 
= -..::1 ___ _ 
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with bj (x) = 1tj n (x;a.j , crJ) = d
1tj 

d exp [-r (xi -':;/l 
- I 20'·· 
2 II~ JI 

(21t) O'kj 

(4) 

k 

wji is the weight from the j'th basis unit to the i'th output unit, Ttj is the probability of 

choosing unit j, and d is the dimensionality of x. 

4.1 GBF NETWORKS AND MISSING FEATURES 

Under certain training regimes sur.h as Gaussian mixture modeling, EM or "soft cluster
ing" (Duda & Hart, 1973; Dempster et ai, 1977; Nowlan, 1990) or an approximation as in 
(Moody & Darken, 1988) the hidden units adapt to represent local probability densities. In 

particular Yi (x) "" p (Cil x) and p (x) "" Ijbj (x) . This is a major advantage of this archi

tectur and can be exploited to obtain closed form solutions to (1) and (3). Substituting into 
(3) we get: 

J (L, wijbj (xc' XtU» p (xul XtU) dXtu 

p (C il xc' xu) == ---"j----------

J (Lbj (xc' xlU) ) p (xul xtu ) dxlu 
J 

(5) 

For the case of missing features equation (5) can be computed directly. As noted before, 

equation (1) is simply (3) with p (xui x,u) uniform. Since the infinite integral along each 

dimension of a multivariate normal density is equal to one we get: 

'" w .. b· (xc) 4 JI J 

p(Cilxc)""J", 3. 

~bj(xc) 
j 

(6) 

(Here bj (xc) denotes the same function as in except that it is only evaluated over the 

known dimensions given by xc.) Equation (6) is appealing since it gives us a simple closed 

form solution. Intuitively, the solution is nothing more than projecting the Gaussians onto 
the dimensions which are available and evaluating the resulting network. As the number 
of training patterns increases, (6) will approach the optimal Bayes solution. 

4.2 GBF NETWORKS AND NOISY FEATURES 

With noisy features the situation is a little more complicated and the solution depends on 

the form of the noise. If the noise is known to be uniform in some region [a, b] then 

equation (5) becomes: 

'" w iJb. (xc) II [N (bjal .. , 0'2.) - N (ai;~'" O'~.)] 
~ J. IJ IJ IJ IJ 

p(C'lx,x)== J lEV 

ICU L 3. II . 2 . 2 
bJ.(xc) [N(b"'~ ' :7O' '' ) -N(a, . ,~ .. ,(J .. )] 
.. IJ IJ IJ IJ 
J I E V 

(7) 
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Here ~jj and a~ select the i'th component of the j'th mean and variance vectors. U ranges 

over the noisy feature indices. Good closed form approximations to the normal distribu

tion function N (x; 1.1., ( 2) are available (Press et al, 1986) so (7) is efficiently computable. 

With zero-mean Gaussian noise with variance O'~, we can also write down a closed form 

solution. In this case we have to integrate a product of two Gaussians and end up with: 

4, wjjb') (xc' xu) 
J ~.. ..>. .... 2..>.2 .>. 

= ~----- with b'j (xc' xu) = n (xu;J..Lju' 0u + 0ju) b/xc)' 
Lb') (xc' xu) 
j 

5 BACKPROPAGATION NETWORKS 

With a large training set, the outputs of a sufficiently large network trained with back
propagation converges to the optimal Bayes a posteriori estimates (Richard & Lippmann, 

1992). If B j (x) is the output of the i'th output unit when presented with input x, 

B j (x) "" p (Cj / x) . Unfortunately, access to the input distribution is not available with back

propagation. Without prior knowledge it is reasonable to assume a uniform input distribu
tion, in which case the right hand side of (3) simplifies to: 

.>. Jp (Cil xc' xtu)p (xul xtu ) dxtu 
p (C -I x ) == --------

I C Jp (xul xtu ) dxtu 

(8) 

The integral can be approximated using standard Monte Carlo techniques. With uniform 
.>. 

noise in the interval [a, b] , this becomes (ignoring normalizing constants): 

" b 

p(Cjlxc) == JBj(Xc.Xtu)dXtu (9) 

With missing features the integral in (9) is computed over the entire range of each feature. 

6 AN EXAMPLE TASK: 3D HAND GESTURE RECOGNITION 

A simple realistic example serves to illustrate the utility of the above techniques. We con
sider the task of recognizing a set of hand gestures from single 2D images independent of 
3D orientation (Figure 2). As input, each classifier is given the 2D polar coordinates of the 
five fingertip positions relative to the 2D center of mass of the hand (so the input space is 
lO-dimensional). Each classifier is trained on a training set of 4368 examples (624 poses 
for each gesture) and tested on a similar independent test set. 

The task forms a good benchmark for testing performance with missing and uncertain 
inputs. The classification task itself is non-trivial. The classifier must learn to deal with 
hands (which are complex non-rigid objects) and with perspective projection (which is 
non-linear and non-invertible). In fact it is impossible to obtain a perfect score since in 
certain poses some of the gestures are indistinguishable (e.g. when the hand is pointing 
directly at the screen). Moreover, the task is characteristic of real vision problems. The 
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"five" "four" "three" "two" "one" "thumbs_up" "pointing" 

Figure 2. Examples of the 7 gestures used to train the classifier. A 3D computer model of 
the hand is used to generate images of the hand in various poses. For each training exam
ple, we choose a 3D orientation, compute the 3D positions of the fingertips and project 
them onto 2D. For this task we assume that the correspondence between image and model 
features are known, and that during training all feature values are always available. 

position of each finger is highly (but not completely) constrained by the others resulting in 
a very non-uniform input distribution. Finally it is often easy to see what the classifier 
should output if features are uncertain. For example suppose the real gesture is "fi ve" but 
for some reason the features from the thumb are not reliably computed. In this case the 
gestures "four" and "five" should both get a positive probability whereas the rest should 
get zero. In many such cases only a single class should get the highest score, e.g. if the fea
tures for the little finger are uncertain the correct class is still "five". 

We tried three classifiers on this task: standard sigmoidal networks trained with backprop
agation (BP), and two types of gaussian networks as described in . In the first (Gauss
RBF), the gaussians were radial and the centers were determined using k-means clustering 

as in (Moody & Darken, 1988). 0'2 was set to twice the average distance of each point to 

its nearest gaussian (all gaussians had the same width). After clustering, 1t . was set to 
J 

L k [ n (Xk~ ~< ~J~2 ] . The output weights were then determined using LMS gradient 
L j n(xk,llj,O'J 

descent. In the second (Gauss-G), each gaussian had a unique diagonal covariance matrix. 
The centers and variances were determined using gradient descent on all the parameters 
(Roscheisen et ai, 1992). Note that with this type of training, even though gaussian hidden 
units are used, there is no guarantee that the distribution information will be preserved. 

All classifiers were able to achieve a reasonable performance level. BP with 60 hidden 
units managed to score 95.3% and 93.3% on the training and test sets, respectively. Gauss
G with 28 hidden units scored 94% and 92%. Gauss-RBF scored 97.7% and 91.4% and 
required 2000 units to achieve it. (Larger numbers of hidden units led to overfitting.) For 
comparison, nearest neighbor achieves a score of 82.4% on the test set. 

6.1 PERFORMANCE WITH MISSING FEATURES 

We tested the performance of each network in the presence of missing features. For back
propagation we used a numerical approximation to equation (9). For both gaussian basis 
function networks we used equation (6). To test the networks we randomly picked samples 
from the test set and deleted random features. We calculated a performance score as the 
percentage of samples where the correct class was ranked as one of the top two classes. 
Figure 3 displays the results. For comparison we also tested each classifier by substituting 
the mean value of each missing feature and using the normal update equation. 

As predicted by the theory the performance of Gauss-RBF using (6) was consistently bet
ter than the others. The fact that BP and Gauss-G performed poorly indicates that the dis
tribution of the features must be taken into account. The fact that using the mean value is 
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Figure 3. The performance of various classifiers when dealing with missing features. Each 
data point denotes an average over tOOO random samples from an independent test set. For 
each sample. random features were considered missing. Each graph plots the percentage 
of samples where the correct class was one of the top two classes. 

6 

insufficient indicates that the integration step must also be carried out. Perhaps most 
encouraging is the result that even with 50% of the features missing. Gauss-RBF ranks the 
correct class among the top two 90% of the time. This clearly shows that a significant 
amount of information can be extracted even with a large number of missing features. 

6.2 PERFORMANCE WITH NOISY FEATURES 

We also tested the performance of each network in the presence of noisy features. We ran
domly picked samples from the test set and added uniform noise to random features. The 
noise interval was calculated as [x . - 2cr ., x · + 2cr.J where XI· is the feature value and cr . is 

I I I I I 

the standard deviation of that feature over the training set. For BP we used equation (9) 
and for the GBF networks we used equation (7). Figure 3 displays the results. For compar
ison we also tested each classifier by substituting the noisy value of each noisy feature and 
using the normal update equation (RBF-N, BP-N, and Gauss-GN). As with missing fea
tures, the performance of Gauss-RBF was significantly better than the others when a large 
number of features were noisy. 

7 DISCUSSION 

The results demonstrate the advantages of estimating the input distribution and integrating 
over the missing dimensions, at least on this task. They also show that good classification 
performance alone does not guarantee good missing feature performance. (Both BP and 
Gauss-G performed better than Gauss-RBF on the test set.) To get the best of both worlds 
one could use a hybrid technique utilizing separate density estimators and classifiers 
although this would probably require equations (1) and (3) to be numerically integrated. 

One way to improve the performance of BP and Gauss-G might be to use a training set 
that contained missing features. Given the unusual distributions that arise in vision, in 
order to guarantee accuracy such a training set should include every possible combination 
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6 

of missing features. In addition, for each such combination, enough patterns must be 
included to accurately estimate the posterior density. In general this type of training is 
intractable since the number of combinations is exponential in the number of features. 
Note that if the input distribution is available (as in Gauss-RBF), then such a training sce
nario is unnecessary. 
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