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Abstract

We consider optimal harvesting of systems described by stochastic differential
equations with delay. We focus on those situations where the value function of
the harvesting problem depends on the initial path of the process in a simple way,
namely through its value at 0 and through some weighted averages.

A verification theorem of variational inequality type is proved. This is applied
to solve explicitly some classes of optimal harvesting delay problems.

1 Introduction

Consider a 1-dimensional stochastic differential delay equation (SDDE) of the form

dX(t) = b(X(t), Y (t), Z(t))dt

+σ(X(t), Y (t), Z(t))dB(t) , t ≥ 0(1.1)

where

Y (t) =

0∫
−δ

eλsX(t + s)ds and Z(t) = X(t − δ)

and b : R3 → R and σ : R3 → R are given functions, δ > 0 is the (constant) delay, λ ∈ R
is a constant and (Ω,F ,Ft, B(t) = B(t, ω); t ≥ 0, ω ∈ Ω) is a 1-dimensional Brownian
motion.
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For example, X(t) can model the size of a population or the value of an investment
at time t, in situations where not only the present value of X(t) but also X(t − δ) and
some (sliding) average of previous values has effect on the growth at time t. By allowing
for such delays δ in the equation we can obtain more realistic mathematical models for
such situations.

For such systems it is necessary to specify the whole initial path ξ(s); −δ ≤ s ≤ 0.
I.e., we set

X(s) = ξ(s) ≥ 0 for − δ ≤ s ≤ 0 .(1.2)

The solution of (1.1) with initial path (1.2) is denoted by X(ξ)(t), if it exists. See e.g.
[M1], [M2] for conditions for existence and uniqueness of solutions of such equations.

Suppose we introduce harvesting of such a system. For example, the harvesting could
be fishing from a fish population or paying of dividends from an investment. Let γ(t) =
γ(t, ω) be an Ft-adapted, right-continuous, nondecreasing stochastic process modelling
the total amount taken out of the system up to time t. The corresponding population
process X(t) = X(ξ,γ)(t) will then satisfy the equation

dX(t) = b(X(t), Y (t), Z(t))dt + σ(X(t), Y (t), Z(t))dB(t) − dγ(t) ; t ≥ 0 .(1.3)

Let Γ denote the set of all such harvesting processes γ. Let S ⊆ R3 be a given Borel set
(our survival set or solvency set) with the property that

S̄ = S0

where S0 denotes the interior of S, S̄ the closure of S, and define

T = inf{t > 0; (s + t, X(t), Y (t)) �∈ S}(1.4)

i.e., T is a time of extinction of the harvested population (or a time of bankruptcy for the
wealth).

Suppose the harvestor or investor obtains a price/utility rate u(t, x, y) when the size of
the population/wealth and its average at time t is x and y, respectively, where u : R3 → R
is a given continuous, increasing concave function. Let π(t) ≥ 0 be a given price/utility
per unit harvested at time t. Then the total utility obtained by using the harvesting
strategy γ ∈ Γ is given by

Jγ(s, ξ) = Es,ξ

[ T∫
0

u(s + t, X(t), Y (t))dt +

T∫
0

π(s + t)dγ(t)

]
,(1.5)

where Es,ξ denotes the expectation with respect to the law P s,ξ,γ of the time-space har-
vested process

W (t) = W (ξ,γ)(t) = (s + t, X(ξ,γ)(t)) .(1.6)
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We assume that

Es,ξ

[ T∫
0

|u(s + t, X(t), Y (t))|dt

]
< ∞ for all s, ξ, γ .(1.7)

We consider the problem of finding Φ(s, ξ) and γ∗ ∈ Γ such that

Φ(s, ξ) = sup
γ∈Γ

Jγ(s, ξ) = Jγ∗
(s, ξ) .(1.8)

For more information about SDDE’s in general we refer to [M1] and [M2].

For stochastic systems without delay optimal harvesting problems of this type have
been studied in [A], [AS], [JS], [LØ1] and [LØ2]. To the best of our knowledge this is
the first time such singular stochastic control problems have been considered for delay
systems.

In general one would expect that the value function Φ of problem (1.8) depends on
the initial path ξ in a complicated way. Indeed, even if we restrict ourselves to consider
initial paths ξ ∈ C[−δ, 0], the set of continuous real functions on [−δ, 0], the problem
is infinite-dimensional and therefore the usual variational inequality approach does not
work. However, the purpose of this paper is to show that for a certain class of systems
(1.1) the function Φ depends only on the initial path ξ through the three linear functionals

x = x(ξ) := ξ(0) , y = y(ξ) :=

0∫
−δ

eλsξ(s)ds and z = z(ξ) := ξ(−δ) .(1.9)

If this is the case we can write

Φ(s, ξ) = ϕ(s, x, y, z) where ϕ : R4 → R .(1.10)

In fact, we will show that in the cases we consider with π(t) = e−ρt we have

ϕ(s, x, y, z) = e−ρsψ(x, y)(1.11)

for some function ψ : R2 → R.
Our approach is inspired by [KM], where a (nonsingular) stochastic control problem

for a certain linear delay system with quadratic cost functional is solved. See also [KS].

2 A variational inequality formulation

In this section we establish a set of sufficient variational inequalities for the problem (1.7),
in the case when (1.8) and (1.9) hold. We first introduce some notation and establish
some useful auxiliary results.
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For t ≥ 0 let Xt(·) be the function defined by

Xt(s) = X(t + s) ; −δ ≤ s ≤ 0 ,(2.1)

i.e. Xt is the segment of the path of X from t − δ to t. Define

G(t) = f(s + t, X(t), Y (t))(2.2)

where f is a given function in C1,2,1(R3) and

Y (t) =

0∫
−δ

eλsX(t + s)ds(2.3)

as in (1.1). Then we have

Lemma 2.1 (The Ito formula)

dG(t) = Lf dt +
∂f

∂x
· σ(x, y, z)dB(t) +

∂f

∂y
· [x − e−λδz − λy]dt(2.4)

where

Lf = Lf(u, x, y, z) =
∂f

∂u
+ b(x, y, z)

∂f

∂x
+ 1

2
σ2(x, y, z)

∂2f

∂x2
(2.5)

and Lf(u, x, y, z) and the other functions are evaluated at

u = s + t , x = x(X
(ξ)
t (·)) = X(ξ)(t) ,

y = y(X
(ξ)
t (·)) =

0∫
−δ

eλsX(ξ)(t + s)ds =: Y (t) and(2.6)

z = z(X
(ξ)
t (·)) = X(ξ)(t − δ) =: Z(t) .(2.7)

Proof. First note that by (2.3) we have, for η ∈ C[−δ, 0],

d

dt
[y(ηt(·))] =

d

dt

[ 0∫
−δ

eλsη(t + s)ds

]

=
d

dt

[ 0∣∣∣
−δ

eλsH(t + s) −
0∫

−δ

λeλsH(t + s)ds

]

= η(t) − e−λδη(t − δ) −
δ∫

0

λeλsη(t + s)ds

= x(ηt) − e−λδz(ηt) − λy(ηt) ,(2.8)
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where H denotes an antiderivative of η. Therefore, since G(t)=f(s+t, X(ξ)(t), y(X
(ξ)
t (·))),

the result follows from the classical Ito formula. �

From Lemma 2.1 we immediately get

Lemma 2.2 (The Dynkin formula) Let f ∈ C1,2,1
0 (R3). Then for t ≥ 0 we have

Es,ξ[f(t + s, X(ξ)(t), y(X
(ξ)
t (·)))] = f(s, ξ(0), y(ξ))

+Es,ξ

[ t∫
0

{
Lf +

∂f

∂y
· [x − e−λδz − λy]

}
dr

]
,(2.9)

where Lf(u, x, y, z) and the other functions in the curly bracket are evaluated at

u = s + r , x = X(ξ)(r) , y = y(X(ξ)
r (·)) , z = X(ξ)(r − δ) .

We can now proceed as in the proof of Theorem 3.3 in [LØ1] and obtain the following
variational inequality verification theorem for optimal control of stochastic systems with
delay. Note that if X = X(ξ,γ) satisfies (1.3) then X(t) could possibly jump at t = 0,
which would imply that X(0) is different from the starting point x, which we will denote
by X(0−).

Theorem 2.3 a) Suppose ϕ(s, x, y) is a nonnegative function in C1,2,1(S0)∩C(S ) with
the following properties, (2.10)–(2.11):

∂ϕ

∂x
(s, x, y) ≥ π(s) everywhere on S0(2.10)

Lϕ(s, x, y, z) : =
∂ϕ

∂s
+ b(x, y, z)

∂ϕ

∂x
+ 1

2
σ2(x, y, z)

∂2ϕ

∂x2
(2.11)

+[x − e−λδz − λy]
∂ϕ

∂y
+ u(s, x, y) ≤ 0 for all z ∈ R, (s, x, y) ∈ S0 .

Then

ϕ(s, ξ(0), y(ξ)) ≥ Φ(s, ξ)(2.12)

for all (s, ξ) ∈ R × C[−δ, 0].

b) Define the non-intervention region D by

D = {(s, x, y) ∈ S0;
∂ϕ

∂x
(s, x, y) > π(s)}(2.13)

Suppose, in addition to (2.10)–(2.11), that

Lϕ = 0 for all z ∈ R if (s, x, y) ∈ D(2.14)
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and that there exists a harvesting strategy γ̂ ∈ Γ such that the following, (2.15)–(2.17),
hold:

(s + t, X(ξ,γ̂)(t), y(X
(ξ,γ̂)
t (·))) ∈ D for all t > 0(2.15) (

∂ϕ

∂x
(s, x, y) − π(s)

)
dγ̂(s) = 0(2.16)

(i.e. γ̂ increases only when ∂ϕ
∂x

(s, x, y) = π(s))

Es,ξ[ϕ(s + TR, X(ξ,γ̂)(TR), y(X
ξ,γ̂)
TR

(·))] → 0 as R → ∞(2.17)

for all (s, ξ), where

TR = T ∧ R ∧ inf{t > 0; |X(ξ,γ̂)(t)| ≥ R} .(2.18)

Then
ϕ(s, ξ(0), y(ξ)) = Φ(s, ξ) for all (s, ξ)

and
γ̂ is an optimal harvesting strategy .

Proof. The proof follows the proof of Theorem 3.3 in [LØ1]. For completeness we give
the details:

a) Choose γ ∈ Γ and assume ϕ ∈ C1,2,1(S0) ∩ C(S̄) satisfies (2.10)–(2.11). Then
by Dynkin’s formula Lemma 2.2, extended to the semimartingale case (see e.g. [P,
Th. II.7.33]) we get

Es,ξ[ϕ(s + TR, X(ξ,γ)(TR), y(X
(ξ,γ)
TR

(·)))] = Es,ξ

[
ϕ(s, X(ξ,γ)(s), y(ξ))

−
TR∫
0

∂ϕ

∂x
· dγ(t) +

TR∫
0

Lϕdt −
TR∫
0

u dt

+
∑

0<tk≤TR

{
∆ϕ(tk) −

∂ϕ

∂x
(s + tk, X

(ξ,γ)(t−k ), y(x
(ξ,γ)
tk

(·))) · ∆X(ξ,γ)(tk)

}]
,(2.19)

where the sum is taken over all jumping times tk ∈ (0, TR] and

∆ϕ(tk) = ϕ(s + tk, X
(ξ,γ)(tk), y(X

(ξ,γ)
tk

(·))) − ϕ(s + tk, X
(ξ,γ)(t−k ), y(X

(ξ,γ)
tk

(·)))
(2.20)

and

∆X(ξ,γ)(tk) = X(ξ,γ)(tk) − X(ξ,γ)(t−k )(2.21)
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are the jumps of ϕ and X at time t = tk (caused by γ). As in Lemma 2.2 we evaluate
Lϕ(u, x, y, z) at

u = s + t , x = X(ξ,γ)(t) , y = y(X
(ξ,γ)
t (·)) , z = X(ξ,γ)(t − δ)(2.22)

Using (2.11) this gives

Es,ξ[ϕ(s + TR, X(ξ,γ)(TR), y(X
(ξ,γ)
TR

(·)))]

≤ Es,ξ

[
ϕ(s, X(ξ,γ)(s), y(ξ)) −

TR∫
0+

∂ϕ

∂x
· dγ(t) −

TR∫
0

u dt

+
∑

0<tk≤TR

{
∆ϕ(tk) +

∂ϕ

∂x
(s + tk, X

(ξ,γ)(t−k ), y(X
(ξ,γ)
tk

(·))) · ∆γ(tk)

}]
.(2.23)

Let γc(t) denote the continuous part of γ(t), i.e.

γc(t) = γ(t) −
∑

0<tk≤t

∆γ(tk) .

Then (2.23) implies that

Es,ξ[ϕ(s + TR, X(ξ,γ)(TT ), y(X
(ξ,γ)
TR

(·)))]

≤ ϕ(s, ξ(0), y(ξ)) − Es,ξ

[ TR∫
0

u dt +

TR∫
0

∂ϕ

∂x
· dγc(t) −

∑
0≤tk≤TR

∆ϕ(tk)

]
.(2.24)

By the mean value property we have

∆ϕ(tk) = −∂ϕ

∂x
(s + tk, x̂k, y(X

(ξ,γ)
tk

(·))) · ∆γ(tk)

for some x̂k on the interval between X(ξ,γ)(t−k ) and X(ξ,γ)(tk). Hence by combining (2.24)
with (2.10) we get

ϕ(s, ξ(0), y(ξ)) ≥ Es,ξ

[ TR∫
0

u dt +

TR∫
0

π(s + t)dγ(t) + ϕ(s + TR, X(ξ,γ)(TR), y(X
(ξ,γ)
TR

(·)))
]

≥ Es,ξ

[ TR∫
0

π(s + t)dγ(t)

]
(2.25)

Therefore

ϕ(s, ξ(0), y(ξ)) ≥ lim
R→∞

Es,ξ

[ TR∫
0

u dt +

TR∫
0

π(s + t)dγ(t)

]
= Jγ(s, ξ)(2.26)
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Since γ ∈ Γ was arbitrary this proves (2.12).

b) Next, assume D is defined by (2.13) and that (2.14)–(2.17) hold. Then the above
calculations with γ replaced by γ̂ give equality everywhere and we end up with equality
in (2.26), viz.

ϕ(s, ξ(0), y(ξ)) = J γ̂(s, ξ) .(2.27)

Combining this with (2.12) we obtain that

ϕ(s, ξ(0), y(ξ)) = J γ̂(s, ξ) = Φ(s, ξ)

and hence γ̂ is optimal. �

3 A deterministic example

To illustrate Theorem 2.3 let us first consider the following example:

Suppose the equation for the harvested population X(t) = X(ξ,γ)(t) is of the form
(with θ, α, β constants)

dX(t) = [K + θX(t) + αY (t) + βZ(t)]dt − dγ(t)(3.1)

X(s) = ξ(s) ≥ 0 ; −δ ≤ s ≤ 0 ,(3.2)

where, as before,

Y (t) =

0∫
−δ

eλsX(t + s)ds and Z(t) = X(t − δ) .

Put

S = {(s, x, y); min(x, y) ≥ 0}

and

T = inf{t > 0; min(X(t), Y (t)) < 0} .

Assume π(t) = e−ρt for some constant ρ > 0. We want to find ϕ(s, x, y) ∈ C1,2,1(S0)∩C(S)
and γ∗ ∈ Γ such that (see (1.8))

ϕ(s, x(ξ), y(ξ)) = Φ(s, ξ) = sup
γ∈Γ

Jγ(s, ξ) = Jγ∗
(s, ξ) ,(3.3)
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where

Jγ(s, ξ) = Es,ξ

[ T∫
0

e−ρ(s+t)dγ(t)

]
, as in (1.5) (with u = 0) .(3.4)

Let us try

ϕ(s, x, y) = e−ρs

(
K

ρ
+ x + βeλδy

)
.(3.5)

Note that
∂ϕ

∂x
= e−ρs = π(s)

and, with L as in (2.11) and u = 0,

Lϕ(s, x, y, z) = e−ρs

{
− ρ

(
K

ρ
+ x + βeλδy

)
+

+[K + θx + αy + βz] · 1 + [x − e−λδz − λy]βeλδ

}
= e−ρs{(θ + βeλδ − ρ)x + (α − (λ + ρ)βeλδ)y} .

Hence
Lϕ(s, x, y) ≤ 0 for all s, x, y ≥ 0 , z ∈ R

if and only if

ρ ≥ θ + βeλδ and (λ + ρ)βeλδ ≥ α .(3.6)

Therefore, if (3.6) holds then, with x = x(ξ), y = y(ξ),

ϕ(s, x, y) = e−ρs

(
K

ρ
+ x + βeλδy

)
≥ Φ(s, ξ) .(3.7)

Do we have equality here?

To answer this, let us compute the expected discounted total income obtained by
choosing γ = γ̂ to be delay analogue of the “take the money and run” strategy, i.e. γ̂ is
the strategy which empties the system as quickly as possible (still by harvesting from X
only). If the current state of the system is (s, x, y, z), then γ̂ immediately brings x to 0
by harvesting all of x. After that γ̂ harvests exactly at the rate money is coming in from
the reserves, i.e.

dγ̂(t) =

[
K + α

0∫
−δ

eλrX(t + r)dr + βX(t − δ)

]
dt(3.8)
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(see (3.1)).
This gives the total harvested income

I = I0 + x + αI2 + βI3 ,(3.9)

where

I0 : =

∞∫
0

e−ρtK dt =
K

ρ
(3.10)

I3 : =

δ∫
0

e−ρuX(u − δ)du
(u−δ=v)

=

0∫
−δ

e−ρ(v+δ)X(v)dv = e−ρδ

0∫
−δ

e−ρvX(v)dv .(3.11)

Finally, using integration by parts we get,

I2 : =

δ∫
0

e−ρu

( −u∫
−δ

eλsX(u + s)ds

)
du

(v=u+s)
=

δ∫
0

e−ρu

( 0∫
u−δ

eλ(v−u)X(v)dv

)
du

=

δ∫
0

e−(ρ+λ)u

( 0∫
u−δ

eλvX(v)dv

)
du

=

δ∣∣∣
0

− 1

ρ + λ
e−(ρ+λ)u

( 0∫
u−δ

eλvX(v)dv

)

−
δ∫

0

(
− 1

ρ + λ
e−(ρ+λ)u

)
(−eλ(u−δ)X(u − δ))du

=
1

ρ + λ

[ 0∫
−δ

eλvX(v)dv −
δ∫

0

e−ρu · e−λδX(u − δ)du

]

(w=u−δ)
=

1

ρ + λ

[ 0∫
−δ

eλvX(v)dv − e−(ρ+λ)δ

0∫
−δ

e−ρwX(w)dw

]
,(3.12)

assuming
ρ + λ �= 0 .
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If
ρ + λ = 0

then a similar, but simpler, computation gives

I2 =

0∫
−δ

(v + δ)eλvX(v)dv(3.13)

Combining (3.9)–(3.12) we get, if ρ + λ �= 0,

I =
K

ρ
+ x +

α

ρ + λ

0∫
−δ

eλvX(v)dv

− α

ρ + λ
e−(ρ+λ)δ

0∫
−δ

e−ρvX(v)dv

+βe−ρδ

0∫
−δ

e−ρvX(v)dv

=
K

ρ
+ x +

α

ρ + λ
y

+
e−(ρ+λ)δ

ρ + λ
[β(ρ + λ)eλδ − α]

0∫
−δ

e−ρvX(v)dv .(3.14)

Similarly, if ρ + λ = 0 we get, using (3.13),

I =
K

ρ
+ x + α

0∫
−δ

(v + δ)eλvX(v)dv

+βeλδ

0∫
−δ

eλvX(v)dv .(3.15)

In any case we see that I can be expressed in terms of x = x(ξ) and y = y(ξ) if and only
if

α = (λ + ρ)βeλδ(3.16)

and if this is the case then

I = I(x, y) =
K

ρ
+ x + βeλδy = eρsϕ(s, x, y) .

We summarize what we have found in the following:
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Theorem 3.1 Suppose the equation for the harvested population X(t) = X(ξ,γ)(t) is of
the form (3.1)–(3.2) with

α = (λ + ρ)βeλδ and ρ ≥ θ + βeλδ .(3.17)

Then the solution of the optimal harvesting problem (3.3)–(3.4) is

Φ(s, ξ) = e−ρs

(
K

ρ
+ x(ξ) + βeλδy(ξ)

)
(3.18)

with x(ξ), y(ξ) as before (see (1.9)), and this optimal value is achieved by applying the
“ take the money and run”-strategy γ̂ (see (3.8) and above). Thus γ∗ : = γ̂ is an optimal
harvesting strategy.

4 Optimal harvesting from a geometric Brownian

motion with delay

The following example may be regarded as a delay version of an example studied in [A]
in the no delay case. Suppose the harvested system is given by

dX(t) = [θX(t) + αY (t) + βZ(t))]dt

+σ

[
X(t) + βeλδ

0∫
−δ

eλsX(t + s)ds

]
dB(t) − dγ(t)(4.1)

X(s) = ξ(s) , −δ ≤ s ≤ 0 ,(4.2)

where θ, α, β and σ are constants and, as before,

Y (t) =

0∫
−δ

eλsX(t + s)ds and Z(t) = X(t − δ) .

Suppose the price per unit harvested at time t is

π(t) = e−ρt(4.3)

where ρ > 0 is a constant and that the utility rate obtained when the size of the population
at time t is x is given by

u(t, x, y) = e−ρt(x + βeλδy)k(4.4)

where k ∈ (0, 1) is a constant.
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Let S = {(s, x, y); x + βeλδy > 0}, so that

T = inf{t > 0; X(t) + βeλδY (t) ≤ 0} .

We want to find ϕ(s, x, y) ∈ C1,2,1(S0) ∩ C(S̄) and γ∗ ∈ Γ such that (see (1.8)

ϕ(s, x(ξ), y(ξ)) = Φ(s, ξ) = sup
γ∈Γ

Jγ(s, ξ) = Jγ∗
(s, ξ) ,(4.5)

where

Jγ(s, ξ) = Es,ξ

[ T∫
0

e−ρ(s+t)(X(t) + βeλδY (t))kdt +

T∫
0

e−ρ(s+t)dγ(t)

]
(4.6)

With L as in (2.11) and with

ϕ(s, x, y) = e−ρsψ(x, y)

we get

eρsLϕ(s, x, y, z) = −ρψ(x, y) + (θx + αy + βz)
∂ψ

∂x

+1
2
σ2(x + βeλδy)2∂2ψ

∂x2
+ (x − e−λδz − λy)

∂ψ

∂y
+ (x + βeλδy)k

= z
[
β

∂ψ

∂x
− e−λδ ∂ψ

∂y

]
− ρψ + (θx + αy)

∂ψ

∂x

+1
2
σ2(x + βeλδy)2∂2ψ

∂y2
+ (x − λy)

∂ψ

∂y
+ (x + βeλδ)k .

Therefore Lϕ(s, x, y) = 0 for all z iff

β
∂ψ

∂x
− e−λδ ∂ψ

∂y
= 0(4.7)

and

L0ψ : = −ρψ + (θx + αy)
∂ψ

∂x
+ 1

2
σ2(x + βeλδy)2∂2ψ

∂x2

+(x − λy)
∂ψ

∂y
+ (x + βeλδy)k = 0 .(4.8)

Equation (4.6) holds iff

ψ(x, y) = g(v) for some g : R → R(4.9)
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where

v = v(x, y) = x + βeλδy(4.10)

Substituting (4.9)–(4.10) into (4.8) we get

L0ψ(x, y) = −ρg(v) + [(θ + βeλδ)x + (α − λβeλδ)y]g′(v)(4.11)

+1
2
σ2v2g′′(v) + vk = 0 .

Suppose

α = βeλδ(λ + θ + βeλδ) .(4.12)

Then (4.11) gets the form

L0ψ(x, y) = −ρg(v) + (θ + βeλδ)vg′(v) + 1
2
σ2v2g′′(v) + vk = 0 .(4.13)

The general solution of (4.13) is

g(v) = C1v
r1 + C2v

r2 + Kvk(4.14)

where C1, C2 are arbitrary constants,

ri = σ−2
[

1
2
σ2 − θ − βeλδ ±

√
(1

2
σ2 − θ − βeλδ)2 + 2ρσ2

]
; i = 1, 2(4.15)

are the solutions of the equation

1
2
σ2r2 + (θ + βeλδ − 1

2
σ2)r − ρ = 0 ; r1 < 0 < r2(4.16)

and

K = −[1
2
σ2k2 + (θ + βeλδ − 1

2
σ2)k − ρ]−1 .(4.17)

Assume that

ρ > θ + βeλδ .(4.18)

Then

r2 > 1 ,(4.19)

which implies that K > 0 (since 0 < k < 1).
We now guess that the value function Φ(s, ξ) has the form

ϕ(s, x, y) = e−ρsψ(x, y) = e−ρsg(v)(4.20)
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where

v = x + βeλδy(4.21)

and

g(v) =

{
C1v

r1 + C2v
r2 + Kvk for 0 < v < v∗

v − v∗ + g(v∗) for v ≥ v∗(4.22)

for some v∗ > 0. Since |g| must be bounded as v → 0+ we put C1 = 0. To determine C2

and v∗ we require that g be twice continuously differentiable at v = v∗. This gives the
two equations

r2C2(v
∗)r2−1 + kK(v∗)k−1 = 1(4.23)

r2(r2 − 1)C2(v
∗)r2−2 + k(k − 1)K(v∗)k−2 = 0(4.24)

By (4.19) we have r2 �= k so we can solve (4.24) for v∗ and get

v∗ =

[
k(1 − k)K

r2(r2 − 1)C2

] 1
r2−k

> 0 .(4.25)

Substituting this into (4.23) we obtain

C2 =

[
r2

({
k(1 − k)K

r2(r2 − 1)

}r2−1
r2−k

+ kK

{
k(1 − k)K

r2(r2 − 1)

} k−1
r2−k )]− r2−k

1−k

> 0 .(4.26)

We proceed to verify that with this choice of C1, C2 and v∗ the function ϕ given by
(4.20)–(4.22) satisfies all conditions of Theorem 2.3:

Verification of (2.10): We have

∂ψ

∂x
= r2C2v

r2−1 + kK vk−1 and

∂2ψ

∂x2
= r2(r2 − 1)C2v

r2−2 + k(k − 1)K vk−2

Since ∂2ψ
∂x2 = 0 for v = v∗ and r2 > k we conclude that ∂2ψ

∂x2 < 0 for v < v∗ and hence
∂ψ
∂x

> 1 for v < v∗.
Verification of (2.11): If ψ(x, y) = v − v∗ + g(v∗) we get from (4.13)

L0ψ(x, y) = −ρ(v − v∗ + g(v∗)) + (θ + βeλδ)v + vk

= (θ + βeλδ − ρ)v + ρ(v∗ − g(v∗)) + vk
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x
xx′

(x, y)(x′, y)

�

y

x + βeλδy = v∗

Since L0ψ(x, y) = 0 for v = v∗ and 0 < k < 1 we see that L0ψ(x, y) ≤ 0 for v > v∗ iff

ρ > θ + βeλδ , which is (4.18) .

Now let γ̂ be the harvesting strategy which corresponds to local time at the line

� : = {(x, y) ∈ R2; x + βeλδy = v∗}(4.27)

of the process (X̂(t), Ŷ (t)) obtained by reflecting (X(t), Y (t)) horizontally to the left at
�. Define

D = {(x, y) ∈ R2; 0 < x + βeλδy < v∗}(4.28)

Then if (x, y) ∈ D we have dγ̂ = 0. If (x, y) �∈ D̄ we harvest exactly enough to bring the
x-level down to the value x′ given by v(x′, y) = v∗, i.e.

x′ = v∗ − βeλδy .(4.29)

Note that if v > v∗ then

v − v∗ = x + βeλδy − v∗ = x − x′ ,(4.30)

so this stragegy γ̂ gives exactly the value of ϕ stated in (4.22) for v > v∗.
In short: γ̂ harvests (horizontally) exactly what is necessary to keep the process

(X γ̂(t), Y γ̂(t)) below or on the line �.
We conclude that (2.14) holds, as well as (2.15), (2.16) and (2.17). Hence ϕ = Φ and

γ̂ is optimal.
The precise construction of γ̂ goes as follows:
Consider the system (X(t), Y (t)) ∈ R2, where, as before,

Y (t) =

0∫
−δ

eλsX(t + s)ds =

t∫
t−δ

eλ(r−t)X(r)dr .(4.31)
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In other words,

dX(t) = [θX(t) + αY (t) + βZ(t)]dt + σ[X(t) + βeλδY (t)]dB(t)(4.32)

dY (t) = [X(t) − λY (t) − e−λδZ(t)]dt(4.33)

For f, g ∈ C([0,∞)) define

Λ(f, g)(t) = f(t) − max
0≤s≤t

(f(s) + βeλδg(s) − v∗)+ ; t ≥ 0 .(4.34)

Let U(t), V (t) be the solution of the stochastic delay equations

dU(t) = [θΛ(U, V ) + αy(Λ(U, V )) + βz(Λ(U, V ))](t)dt(4.35)

+[σΛ(U, V ) + βeλδy(Λ(U, V ))](t)dB(t) ,

dV (t) = [Λ(U, V ) − λy(Λ(U, V )) − e−λδz(Λ(U, V ))](t)dt ,(4.36)

where (see (2.7))

y(Λ(U, V ))(t) =

0∫
−δ

eλsΛ(U, V )(t + s)ds , z(Λ(U, V ))(t) = Λ(U, V )(t − δ) .

Now define

X̂(t) := Λ(U, V )(t), Ŷ (t) = V (t) , Ẑ(t) = Λ(U, V )(t − δ)(4.37)

and

γ̂(t) = max
0≤s≤t

(U(s) + βeλδV (s) − v∗)+ .(4.38)

Then by (4.34)

X̂(t) = Λ(U, V )(t) = U(t) − γ̂(t)

and therefore, by (4.35), (4.36),

dX̂(t) = [θX̂(t) + αŶ (t) + βẐ(t)]dt + [σX̂(t) + βeλδŶ (t)]dB(t) − dγ̂(t)(4.39)

and

dŶ (t) = [X̂(t) − λŶ (t) − e−λδẐ(t)]dt .(4.40)

Moreover,

γ̂(t) is a nondecreasing Ft-adapted process(4.41)

X̂(t) + βeλδŶ (t) ≤ v∗ for all t(4.42)

γ̂(t) increases only when X̂(t) + βeλδŶ (t) = v∗ .(4.43)

The proof is similar to the proof of Theorem 6.1 in [F, p. 89]. We omit the proof.

We summarize what we have found in the following:
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Theorem 4.1 Let the harvested system X(t) = Xγ(t) be on the form (4.1)–(4.2). Define

Jγ(s, ξ) = Es,ξ
[ T∫

0

e−ρ(s+t)(X(t) + βeλδY (t))kdt +

T∫
0

e−ρ(s+t)dγ(t)
]

and

Φ(s, ξ) = sup
γ∈Γ

Jγ(s, ξ) .

Assume that

α = βeλδ(λ + θ + βeλδ)(4.44)

and

ρ > θ + βeλδ .(4.45)

Then, with v = v(x, y) = x + βeλδy,

Φ(s, ξ) = ϕ(s, x, y) = ϕ(s, v) =

{
e−ρs(C2v

r2 + Kvk) for 0 < v < v∗

e−ρs(v − v∗) + ϕ(s, v∗) for v ≥ v∗(4.46)

where C2, K and v∗ are given by (4.22), (4.18) and (4.25) respectively.
Moreover, the local time γ̂ at the line � given by (4.27), as described in (4.37)–(4.43),

is a corresponding optimal harvesting strategy.

Remark 4.2 If we let the delay δ approach 0 then the system X(t) approaches the limit
X0(t) given by

dX0(t) = (θ + β)X0(t)dt + σX0(t)dB(t) − dγ(t) .(4.47)

The corresponding no delay problem

Φ0(s, x) : = sup
γ

Es,x
[ T∫

0

e−ρ(s+t)Xγ
0 (t)dt +

T∫
0

e−ρ(s+t)dγ(t)
]

(4.48)

will then be the limit of Φ(s, ξ) = Φδ(s, ξ) as δ → 0+. The problem (4.48) is solved in [A].

Remark 4.3 It is possible to see more directly why the example studied in this section
is finite-dimensional:
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Define

W (t) = X(t) + βeλδY (t) ; t ≥ 0(4.49)

Then by (4.1) and (4.32) we have

dW (t) = [θX(t) + αY (t) + βZ(t) + βeλδX(t) − λβeλδY (t)

−βZ(t)]dt + σ[X(t) + βeλδY (t)]dB(t)

= [(θ + βeλδ)X(t) + (α − λβeλδ)Y (t)]dt + σW (t)dB(t) .

If we assume that (4.44) holds, then this can be written

dW (t) = (θ + βeλδ)W (t)dt + σW (t)dB(t) ; t > 0 .(4.50)

Moreover,

W (0) = X(0) + βeλδY (0) = ξ(0) + βeλδ

0∫
−δ

eλδξ(s)ds =: w .(4.51)

So W (t) is an ordinary (no delay) geometric Brownian motion.
However, this in itself does not imply that the original delay harvesting problem for

X(t) can be reduced to a corresponding no-delay harvesting problem for W (t), because
we have a priori assumed harvesting from X(t), not from W (t) = X(t)+βeλδY (t). On the
other hand, the associated variational inequalities, culminating in Theorem 4.1, proves
that the two problems have the same value function Φ. Moreover, if we harvest from X(t)
as described in Theorem 4.1 then we get the same result as when we harvest from W (t)
according to local time for W (t) reflected downwards at W (t) = v∗. However, the latter
harvesting strategy for W (t) is not admissible for X(t), because it implies harvesting from
X(t) and Y (t) simultaneously (corresponding to a normal and not horizontal reflection
of (X(t), Y (t)) at the line � = {(x, y); x + βeλδ = v∗}).
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