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ABSTRACT

In inverse electrocardiography one tries to accurately and
meaningfully characterize cardiac electrical activity from elec-
trical potential measurements on the body surface and a vol-
ume model of the torso. This is a typical ill-posed bioelec-
tric field problem requiring constraints (regularization). One
source of constraints is the strongly spatio-temporal nature
of cardiac electrical activity. However formulating such con-
straints in a tractable fashion can be challenging. We review
the major approaches used for this problem, and present work
on a middle ground between simple non-electrophysiological
constraints and strong electrophysiological constraints that elim-
inate useful complexity in solutions.

Index Terms- dynamic inverse problems, inverse elec-
trocardiography, spatio-temporal regularization

1. INTRODUCTION

Characterizing cardiac electrical activity based on recordings
on the body surface is already common clinical practice, in
the form of the ubiquitous electrocardiogram (ECG). The stan-
dard clinical 12-lead ECG uses a relatively small number of
electrodes (9) and relies on the clinicians ability to identify
abnormalities based on training and heuristic pattern recogni-
tion. Although a tremendously valuable part of current prac-
tice, there remain significant limitations in the diagnostic abil-
ity of ECG's, leading to a significant degree of both missed
detections and false positives. One approach to improve our

ability to extract information from such body surface record-
ings, which has by now been the subject of over 30 years of
research, is to record from a significantly larger number of
sites on the body and then, using a mathematical model of
the torso interior, attempt to synthesize a representation of the
cardiac electrical activity which could have produced those
recordings. In other words, one takes the measurements and
a forward model and attempts to invert it, thus solving what
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is known as the inverse problem of electrocardiography'.

However there are some intrinsic difficulties in solving
this problem accurately and reliably. The most critical is that
the inverse problem, due to superposition and attenuation in
the torso volume, is quite ill-posed. Small errors in model-
ing and measurements can cause large errors in estimated car-
diac activity, so much so that simply finding the answer that
best matches the data, without additional constraints, leads to
wildly oscillatory and thus useless results. Thus, despite 30
years of effort, there have been relatively few attempts to tran-
sition these methods into clinical practice. This situation has
begun to change in the last half-decade or so, in response to
continued advances in methodology. Nonetheless, there re-
main considerable limitations that, in turn, continue to spur
on-going research.

The need to combat the ill-posedness of the inverse prob-
lem requires imposition of a priori constraints on the solu-
tions. Thus a significant fraction of the effort in this field
has gone into discovering physiologically effective and math-
ematically tractable constraints. As we describe in some de-
tail below, the types of constraints available turns out to be
strongly tied to the choice of model of cardiac electrical activ-
ity. In particular, we concentrate in this paper on approaches
that attempt to include information about the temporal be-
havior of the solution into the constraint set. The basic idea
is that the electrophysiology of cardiac propagation dramati-
cally reduces the space of realistic solutions; currents flow in
the heart as determined by a complex but highly structured in-
teraction of cell morphology, tissue structure, and the electro-
physiology and biophysics that link structure to function. The
result, especially during the activation phase of the cardiac
cycle, which is the direct trigger of the pattern of mechanical
contraction, is a wavefront-like behavior. That is to say, there
is a strong spatio-temporal coherence, or correlation, in the
pattern of spread of electrical activation in the heart.

'We note that this methodology currently has a number of other names
including Cardiac Electrical Imaging (CEI), ElectroCardioGraphic Imaging
(ECGI), and Noninvasive Imaging of Cardiac Electrophysiology (NICE).
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2. CARDIAC SOURCE MODELS FOR THE INVERSE and a block diagonal forward matrix to relate them. Then
PROBLEM a spatial regularizer and a temporal regularizer are both em-

ployed, one of which operates separately on spatial nodes at
The physics of current flow between the heart and body sur- each time instant, while the other operates on each node sep-
face can be well represented by Laplace's equation, with Dirich- arately across time. A second approach, using a state-space
let boundary conditions on the heart and Neumann on the model [2, 3], is to treat the source in Eq. 1 as the unobserved
body surface. In a realistic geometry, forward models are typ- state of a system, and augment that equation with an explicit
ically built using techniques such as the Boundary Element or state evolution equation. The inverse problem can then be
Finite Element method. We note that propagation from heart found via the Kalman filter or smoother. A third approach
to body surface is essentially instantaneous as the quasi-static is based on what is known as the separability or isotropy as-
approximation is valid. This model gives a mathematical pre- sumption [4]. In this approach one assumes that the temporal
diction of the potentials on the body given the sources. The statistics of the measurements have the same eigenstructure
exact nature of the Dirichlet boundary depends on the source as those of the data. (Greensite, in [5] and other publications,
model used. showed that this is true if the source is "separable", that is if

Perhaps the simplest representation of the sources is to its spatio-temporal correlation can be written as the product of
treat the heart as a closed surface: for instance, the epicardium, a space-only correlation and a time-only correlation.) Details
the outer surface of the ventricles, can be mathematically con- on these models and an analysis of how they are related to
sidered to be capped, or the ventricular epicardium and endo- making different structural assumptions about the underlying
cardium (the inner surface) can be mathematically joined at spatio-temporal correlation matrix can be found in [6].
the base (where the ventricles meet the atria), at least during A quite different approach to imposing temporal constraints
the part of the cardiac cycle when the atria are electrically in- on the source model, known as activation-time imaging (see
active. Then the potentials on this surface can be considered [7, 8, 9], among many others), represents the source as a dou-
an equivalent source model, and the body surface potentials ble layer of dipoles located where the wavefront intersects
are linearly related to the heart surface potentials via the for- the heart surface, or equivalently as the trans-membrane po-
ward model at each time instant, as in tentials of the cardiac cells on that surface. If assumptions of

y(k) = Ax(k() 1 isotropy and homogeneity are made, then the temporal wave-

y(k) Ax(k). (1) forms can be assumed to have the same shape, but are sim-

A is a transfer operator, a discretized matrix representation ply shifted in time to represent the different arrival times of
.. ~~~~~~~~~~~thewavefront at each location on the heart surface. Thus thecontaining transfer coefficients which link heart surface source

potentials x(k) to the remote body surface potentials (k). unknowns are time instants of arrival as a function of space,
The ill-posedness is then typically dealt with through Tikhonogenerally denoted T(s), and the forward equation becomes

regularization, leading to f

x(k) = argminllAx- yl + AIRxll, (2)

where - represents the 2-norm. R is typically a smoothing
operator used to control the oscillatory effect of ill-posedness.
An explicit form of the solution to Eq. 2 can be written as

X(k) = (ATA + RTR) lATy(k). (3)

These methods can be called "potential imaging". How-
ever since spatially sharp wavefronts characterize the actual
potential distribution, this approach reconstructs such phe-
nomena poorly. Moreover, the propagating wavefronts im-
ply significant temporal correlation in the source but in this
approach the source is treated as temporally uncorrelated.

There have been several expansions of this approach to al-
low incorporation of temporal correlation. Most of them start
with an augmented model in which multiple time instants are
dealt with jointly. Mathematically this can be accomplished
by solving Eq. 1 jointly over those time instants. We briefly
describe three examples of such approaches. In the first, joint
regularization [1], one forms an augmented model by creating
block vectors of the heart surface and body surface potentials

y(k) = Af(k- T(S))ds, (4)

where f( ) is a step function or a smooth approximation to a
step. Thus the number of degrees of freedom is dramatically
reduced compared to potential imaging, and a physiologically-
based temporal model is imposed. However this model is a
significantly oversimplified representation of reality. We note
that the remaining problem is still ill-posed, although con-
siderably better-posed than the potential imaging formulation
due to the constrained solution space. The inverse problem is
also now non-linear, and is typically solved via iterative solu-
tions. Such solutions tend to be sensitive to the initial starting
point, and much recent work has been devoted to devising ef-
fective initializations. (Perhaps the most interesting from a

signal processing standpoint is a MUSIC-like algorithm pro-
posed by Huiskamp and Greensite [10].)

Recently, our group introduced a pair of approaches which
attempt to combine virtues of both potential and activation-
time imaging [11]. Both of these approaches use a three-level
model of the potential surface; the surface is divided into flat
regions of activated and non-activated tissue, separated by a
transition region where the wavefront is located. The transi-
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tion region is modeled by combinations of exponential curves.
The first of these methods, Wavefront-Based Curve Recon-
struction (WBCR), models the source as a propagating curve
on the epicardium. Anisotropic propagation models and an
approximate potential-from-wavefront model were built from
a phenomenological study of recorded data. A non-linear
state-space model used the curve location at each time instant
as the state, and the solution was calculated via an extended
Kalman filter. The second approach, Wavefront-Based Poten-
tial Reconstruction (WBPR), uses a wavefront-based approx-
imation of the potential reconstruction at each time instant as
a prior mean, or regularization term. In the WBPR method,
this prior guess is formed by a non-linear transformation of
the current solution, but the inverse problem itself is linear.
The wavefront is "propagated" by using each time instant for
the prior in the inverse solution at the subsequent (or, in back-
wards mode, the previous) time sample.

3. RESULTS

In order to effectively compare various types of electrocar-
diographic inverse solutions, we have constructed geometric
models which have a combined endocardial/epicardial heart
surface (which is a theoretical requirement of the activation-
time imaging methods), with given source potentials on that
surface. We have been working to build such a computational
model. The results presented here use a geometry and source
potentials based on the program ECGSim [12], a free cardiac
modeling program available from
http: //www.ecgsim.org. We note that the only other
published results we are aware of which report potential re-
constructions on a combined epicardial and endocardial sur-
face are in [13].

We used the geometric model of the heart and torso sur-
faces extracted from ECGSim, together with the default dataset
distributed by ECGSim, itself based on a measured set of hu-
man body surface potentials. ECGSim performs an activation-
time based solution, and from those activation times it can

calculate the corresponding potentials on the heart surface
using a Boundary Element Method (BEM) solution relating
the transmembrane and heart surface potentials. We used the
recorded body surface potentials generated by ECGSim as
our data in the results presented here and compared results
to the heart surface potentials generated by ECGSim from
its activation-based solution. The forward model used in our
simulations was a BEM matrix generated by our own BEM

code from the ECGSim geometry. We then performed recon-
structions using the Tikhonov regularization of Eq. 2, with R
equal to an identity matrix and using the WBPR method in
both the forward and backward directions.

Figures 1 and 2 report results from two different time in-
stants during the cycle. The results are shown as visualiza-
tions of potentials color-mapped onto the heart surface. In
addition to the color mapping, isopotential lines (contours of

constant potential) are shown on the figures. All visualiza-
tions were performed using map3d [14], a free program dis-
tributed by the Center for Integrative Biomedical Computing.

Fig. 1 shows results very early in the cardiac cycle. The
heart is oriented in the visualization so as to display the ven-
tricular cavities down to the lower parts of the endocardium,
because this is where the earliest activations take place in the
ECGSim reconstruction. In the figure, the upper left panel
shows the original ECGSim data, while the upper right panel
shows a standard Tikhonov reconstruction with the regular-
ization matrix R from Eq. 2 set equal to an identity matrix
(thus constraining the amplitude of the reconstruction at each
time instant). The two lower panels show WBPR reconstruc-
tions, with the results of a forward (in time) recursion shown
on the left and a backward recursion on the right. The Tikhonov
solution completely misses the early endocardial activations,
as illustrated in the figure. This is not surprising because,
of course, the endocardial surface is much more difficult to
"see" in the body surface potentials. The WBPR reconstruc-
tions, because they use a prior model which "expects" to find
a wavefront, is able to find this phenomenon in the data. We
note that the backward WBPR recursion is able to localize
the early activation much more precisely than the forward
WBPR. This is not surprising as the forward recursion needs
the phenomenon to be large enough to overcome the thresh-
old by which the wavefront is detected, while the backward
recursion can follow the wavefront as it reduces in area and
amplitude in the anti-causal direction.

Fig. 2 shows results from the same simulation later in
time, as the activation wavefront progresses through the heart
wall and begins to break through onto the epicardium. In
this image the heart is oriented so as to present this break-
through. We note that the ECGSim data reveals the break-
through with great fidelity, sharp boundaries, and little ac-

tivity away from the wavefront, because it was synthesized
directly from an activation-time model. In reality the poten-
tials on the epicardial surface would not be nearly as well-
defined and focused, and would have more variability way
from the breakthrough, compared to the ECGSim solution
used for comparison here. Fig. 2 also shows that the WBPR
methods captured the wavefront-like behavior of the cardiac
potentials much more clearly than the Tikhonov reconstruc-
tion. The two breakthrough foci were visible in the Tikhonov
reconstruction, but with much lower contrast and greater spa-
tial extent, or smearing, than either the WBPR reconstructions
or the ECGSim data. We also note here that the two WBPR
methods perform about equally.

4. DISCUSSION

The potentials used as the original cardiac sources in the sim-
ulations reported here were based, as described, on an activation-
time solution. Thus they may show an undetectable bias that
makes any potential-based reconstruction look less accurate.
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Fig. 1. The original ECGSim data is shown in the upper left
panel. The upper right panel shows a Tikhonov reconstruc-
tion, while the lower left shows a forward WBPR and the
lower right panel a backward WBPR reconstruction. The col-
ormap is the same for all four panels, using blue to represent
the most negative potentials and red the most positive, with
green representing zero. The heart is oriented so that the ear-
liest activations, which appear on the lower endocardial sur-
face, are visible when the reconstruction method finds them.
A sample temporal waveform from the ECGSim "original"
data is show at the center top of the entire figure.

Given that bias, the ability of the WBPR methods to find
events that are difficult to reconstruct, such as early endocar-
dial activations, is encouraging.

The role of the initial guess in the WBPR reconstruction
is analogous to that of a prior mean in a statistical setting. To
be more specific, we note that the reconstruction equation for
WBPR was

x(k) = x(k) + (ATA + c2I) -lAT(y(k)- A-(k)), (5)

where x(k) is the prior guess at time k, formed by threshold-
ing and interpolating the reconstruction x(k) at time k -1 or
k + 1 depending on the direction of the recursion. Compar-
ing Eq. 5 to Eq. 3, it is clear that the regularization is applied
to the part of the data that is not explained by the wavefront-
based estimate x(k). The identity matrix in Eq. 5, in this
context, plays the role of an inverse spatial covariance of the
solution. It is interesting to note that considerable effort, by
our group and others, has been spent in exploring the util-
ity of a more accurate spatial covariance matrix in Tikhonov-
regularized inverse electrocardiographic solutions, that is, re-
placing R in Eq. 3 with the inverse of a realistically estimated

Fig. 2. Reconstructions showing the earliest breakthrough of
the activation wavefront onto the epicardium. Format is the
same as the previous figure.

covariance matrix. The importance of the mean, as repre-
sented by our x(k), has not been explored. We have tested
the advantages of using a wavefront-based estimate of the co-
variance in this equation, but we found that it had little effect
and that, indeed, it was the prior mean which played a much
more important role.

5. CONCLUSION AND FUTURE WORK

The various methods that have been introduced to solve the
inverse problem of electrocardiography take contrasting ap-
proaches to incorporating spatio-temporal assumptions about
the behavior of the cardiac sources. On the one extreme are
the standard potential-based solutions which treat each time
sample independently and concentrate only on regularizing
spatial behavior. At the other extreme are the activation-based
imaging methods which reduce the problem to the estimation
of the timing, but not the shape, of the same temporal wave-
form at each point on the heart surface. In between are modifi-
cations of the potential-based methods which attempt to regu-
larize in time or impose temporal constraints on the solutions.
Our recent addition to this suite of methods, the WBCR and
WBPR approaches, use an explicit characterization of wave-
front behavior. The goal is to allow much of the flexibility
and freedom of the potential-based methods while retaining
the physiological insight behind the activation-based meth-
ods. Initial results with the WBPR method, in particular, are
quite promising. We plan to test the method further, compar-
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ing to activation-based methods using common sets of syn-
thesized and measured body surface potentials.
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