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Some Special Solutions of the Equations of Axially Symmetric
Gravitational Fields.

By T. Lewis, M.Se., Aberystwyth.
(Communicated by G. A. Schott, F.R.8.—Received November 26, 1931.)

Introduction.

The problem of axially symmetric fields was first treated by Weyl,* who
succeeded in obtaining solutions for a static field in terms of the Newtonian
potential of a distribution of matter in an associated canonical space. He also
solved the more general problem involving the electric field. Levi Civita,t
by slightly different methods, obtained solutions differing from those of Weyl

"in one respect, and discussed fully the case in which the field is produced by an

infinite cylinder. R. Bach] has discussed the special case of two spheres and
has calculated their mutual attraction. Bach also considered the field of a
slowly rotating sphere, and obtained approximate solutions, taking the Schwarz-
child solution as his zero-th approximation. The same field was discussed
earlier by Leuse and Thirring,§ who considered the linear terms, only, in the
gravitational equation. Kornel Lanczos| has also considered a special case
of stationary fields and applied the results to cosmological problems. The
more general case of gravitational fields produced by matter in stationary
rotation has been treated by W. R. AndressY and E. Akeley.** Both these
authors obtain approximate solutions of the general problem, and the latter
treats at length the field of a rotating fluid.

The object of this paper is to present some special, but exact, solutions which
the author obtained some years ago and, also, two methods of successive
approximation for obtaining solutions of a more general type, which behave
in an assigned manner at infinity and on a surface of revolution enclosing the
rotating matter to which the field is due. Our solutions include as special
cases the solutions of Weyl, Levi Civita and others which pertain to static
fields. Also, the approximate solutions for stationary fields obtained by Leuse

* ¢ Ann. Physik,’ vol. 54, p. 117 (1017).

1 “ R. Ace. Lincei,’ 5, vol. 28, p. 101 (1919).
1 ¢ Mat. Z.," vol. 13, p. 134 (1922).

§ ¢ Phys. Z.,’ vol. 19, p. 156 (1918),

|| ¢ Z. Physik,’ vol. 21, p. 73 (1924).

9 ¢ Proe. Roy. Soe.,” A, vol. 126, p. 502 (1930).
% ¢ Phil. Mag.,” vol. 11, p. 322 (1931).
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and Thirring, Bach and Andress are contained in our solutions when appro-
priate choice of boundary conditions is made and higher order terms are
neglected.

The special feature of this paper is the simplification of the gravitational
equations which results on the introduction of canonical co-ordinates. This is
always admissible in space free of matter. In order to illustrate the advantage
gained by working with canonical co-ordinates we express Andress’ approximate
equations in these co-ordinates and show that, to the approximation con-
sidered by him, they are equivalent to our equations. No loss of generality
is involved in the use of canonical co-ordinates, which are connected with any
other co-ordinates preserving the normal form of the line element by a trans-
formation of the type

r iz = (@ + izy).

In fact, the canonical co-ordinates serve to remind one of the degree of
arbitrariness involved in our solutions.

We do not concern ourselves with the problem of finding the gravitational
field inside matter. Certain stresses, fy, of non-gravitational origin, are
necessary to maintain the steady rotation of the field producing matter, so
we will assume that inside matter the gravitational potentials have any
reasonable values which are continuous on the surface, and regard the equations

Ry — 39aR = — (T + ),

as equations to determine the #; (Ty being the components of the energy-
momentum tensor).

The gravitational equations will be derived from a Variational Principle
after the manner of Weyl. The latter’s work was criticised by Levi Civita
on the grounds that he did not make full use of the principle. Weyl based his
calculation of the action function on a normal form of the line element and
thereby obtained a set of equations which are not complete, though certainly
compatible with the complete set. In order to avoid this difficulty we shall
base our calculation of the action function on a non-normalised line element .
and show that it can be normalised without violating the gravitational
equations. The possibility of introduction of canonical co-ordinates is
immediately suggested by the form of our equations.

Exact solutions will be given in the case of the field due to an infinite
rotating cylinder in the canonical space, and, to illustrate one method of
approximation in the general case, the field of a rotating sphere will be worked
out to a second order of approximation.
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§ 1. The Hamiltonian Function and Gravitational Equations.

The field will depend upon two variables ; and &y, z; = 0 being the axis of
symmetry of the field. =z, will be interpreted as time co-ordinate and z; as
an angular variable varying from 0 to 2rx. The fundamental quadratic form
may be written

ds? = fio? — {edw? + e'dagd + ldag?} — 2mday da,, (L.1)

in which v will be put equal to 1 after the gravitational equations have been
deduced. The effect of the rotation is represented mainly by the last term.
With the usual notation we find that

— g =1%""", where 7%= fl4 m? (1.2)
and

goo = 7-21’ g" =—eH 922 =—e" gaa ook r-%f: 903 = —i"m.

The only 3-index symbols which concern us are the following :

{0{!} S %e—"fv ll}=% Pas "12 i _%e—““ Vi {818} — —%e_“ ll: {018} = _ie_“ My,
B =1e"fo, B} =—3"pa (=dvy, () = — 2471, (T} = 2 my,

where the suffix 1 denotes differentiation with respect to z, and 2 with respect
to 4.

The action function from which the field equations are derived differs from
RV — g by the divergence of a function of the gravitational potentials and
their derivatives. It is G, defined by

% ={F} o v=g {1} =6 v=a.

Inserting the above expressions for the 3-index symbols we obtain, finally,

G — e~ W12 (M + 2,‘\,1‘) + vz | fﬁ#f i 2,,-39"5 . (L3)
f /

\

The gravitational equations are the necessary and sufficient set of conditions
for a stationary value of the integral

dea:

for arbitrary small variations of the g, which vanish on the boundary of the
region of integration.
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On carrying out the variation and putting v = p. the following equations
are obtained —

2199 + (rytty — Talkg) + o {(flll + mg®) — (fala + mq?)} = 0. (1.4)

— 21y + (rypq — 7aike) + {(flll + my®) — (fols + my?)} =0, (L.5)
9 (A) g (la) £ {Eﬂ.‘%[ﬂﬂ] 73 2V2;ﬂ’. o=, (1.6)

oz, \r ax, o
'L 0 l‘ I ([ U4 [m,m
SRR T e e A
! 8 /m m (Lfill 4 [m, m] !
e T
where
[$.4] = 1y + dade
and
T = 81: T f

§ 2. The Compatibility of our Equations and Introduction of Canonical
Co-ordinates.

We notice that the last three equations are invariant with respect to a
transformation of the type

@y + 12y = ¢ (% + 17y).

Again, subtracting (1.5)‘ from (1.4) yields a simple equation involving r only,
namely,

711 + 733 = 0. (2.1)
Hence, if z be the conjugate of 7, we can make the following identification
r 4 12 = 3 + W, (2.2)
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This equation defines our canonical co-ordinates. The equations (1.4)
and (1.5) now become identical.

Multiplying (1.6) by 1, (1.7) by f, (1.8) by 2m, and adding, we get, in virtue of
(1.2)

2(E2)+ 4 - s 4o

5;(@’-\4-

But
0.

22 (ff;)_x)

I

Lo

N
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Hence
1
Vip = 55 {Lf, 1] + [m, ml}. (2.3)
The remaining equations now become
iy === %,{f il my® — (fola + mg®)}, (2.4)
Ju+fae "‘):,A o rig{[.f’ U1+ [m, m]}, (2.5)
by + by — 3 = =L {(f, 11+ D 26)
g+ gy — 2 = — S {(f, 0+ [m, m]}. (2.7)

The last three equations are not independent. If f and [, for example, have
been found (1.2) determines m which will satisfy (2.7) identically.

We also notice that when f, I, m have been determined, p. can be found from
(2.3) and (2.4). But instead of the latter equation it is convenient to use
another equation which has been calculated separately, namely, the one
resulting from

Ryp =0.

(This equation could have been obtained by including a term gy, dz, dz; in
our quadratic form and putting g,, = 0 after variation of G.)
In canonical co-ordinates the equation is

e —51-7 {Fils 4 fiby + 2mymg). (2.8)

If (2.5)~(2.7) are taken into account, one easily verifies that pye — pei=0,
and that (2.3) is a consequence of (2.4) and (2.8). We can therefore write

jhst— [2% {filh + my® — (fola + mg?)} dr + er {fila + foly + 2mymg} dz. (2.9)

Thus the determination of f, I, m completely determines w except for an
additive constant, and it follows that p cannot assume an arbitrarily assigned
value on the boundary.

§ 3. Transformation of Equations (2.5)~(2.7).

One can always find a linear transformation of the differentials of the
co-ordinates such that the fundamental quadratic form (1.1) transforms into

ds? = F dt'® — {e* (dr® + da?) + L6
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In general, this transformation is purely local, .., non-integrable. For
example, let

dzy = dt = dt’ cosh u —d0’ sinh , d0 = dxg = d0’ cosh u — d¢’ sinh u, (3.1)
f=TFcosh®u — Lsinh®», =L cosh?u — F sinh?®u,
m =} (L — F)sinh 2u. (3.2)
fl+ m?=FL =1+ (3.3)
o This relation suggests the substitutions

Ij follows that

F=re? L=reé. (3.4)
The action function now becomes

G———%r[)\ A] + 27 sinh® A [u, u] 4+ [r, pl,

and variation gives the following equations for A and u :—

%@ %}+a§z(rg—:‘;)+2¢smh21[u. =0, (3.5)
(ramhu ) : ai( smh*xg—“)=o, (3.8)

A special set of solutions suggests itself at once, namely,
u = constant, A =logr — 2¢, (3.7)

where { is the Newtonian potential of an arbitrary axially symmetric distribution
of matter in the canonical space (r, 2, 8). It follows that F and L are identical
with the f and I found by Weyl in the static case. Our f and [ are linear com-
binations of Weyl’s, with constant coefficients. They admit of a very simple
interpretation—the observer in the canonical space (r, 2, 0) is using a system of
reference which rotates with constant angular speed to describe the static
field of the canonical space (¢, 2/, ©’).
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§ 4. Special Solutions involving Functional Relation between
A and w.
It is possible to obtain solutions of (3.5) and (3.6) on the assumption that
% is a function of A. It is easily verified that the condition for this is

+2d“ ha—2 (d—“> sinh 22 = 0. (4.1)

PR dr
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The general solution of this equation is

cosh A F Vk2sinh? A + 1
sinh A

u = uy+ % log (4.2)
where u, and % are arbitrary constants, and £* need not be positive. Let us

now put
sinh Adx *

Viesinh? A+ 1

$= rsinhz)\du=:{:{;r

Equation (3.6) shows that { satisfies the equation for a Newtonian potential
in the canonical space, namely,

Y + Yoa + Yu/r =0. (4.3)
Integration of the expression for ¢ gives
1
¢ = = 57 log (k cosh & + Vk® sinh? A + 1), (4.4)

Solving this equation for cosh A we get

cosh A =ﬁ{€““"‘ — (1 — k®) e¥2%¥}

and (4.5)

Vizsinh® A + 1 = §{e*® | (1 — k?) 2%}

We can substitute these expressions in (4.2) and thus find %, and then find
[+ I, m from the formule (3.2) and (3.4). The calculation, however, which is
long and tedious, will not be given here. But one can verify directly that

f=r(te —yle™¥), l=r(—ade 4yl ™Y),

m =1 (—amoge? +yiyee™¥) (4.6)
satisfy equations (2.5), (2.6) and (2.7), where the constants satisfy the equation
%yYe — %gY1 = 1, (4.7)

and ¢ is any function which is a formal solution of (4.3). But since f, [, m
must be real, J cannot be complex—it must be real or purely imaginary.

We notice that if § is a function of » only, the solutions (4.6) are the most
general solutions, for they involve four arbitrary constants, the fourth being
contained in ¢, which is now of the form

Y = — klog r/ry, (4.8)
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where both % and r, are arbitrary. (r,, however, plays no essential réle, for it
can be absorbed in the constants (e, s, v;, Ys) Without violating (4.7)).
In this special case

a R () = — 1
= 2 (f: l) + iy ) B (1 ra\l-’]_ 9 5
which, on integration, gives
v =4 (K* — 1) log r 4 constant, (4.9)

k is not necessary real. The solutions corresponding to an imaginary & will
be given separately.
It is convenient to introduce new constants defined by the formule

o =kKB;, Yi=Kk0Bs wg=krofyY yy==«B;7Y 1—k=c (4.10)

where k = (1 — w?)4
The expressions (4.6) and (4.9) can now be written in the form

=2 (BRr — PR, 1= (Bt — By,
m=r*w (B* 70 — B2 r) BBy (411)

¢ = (rfr)~* @92, (4.12)

When « = 0, these solutions reduce to those discussed by Levi Civita, i.e.,
those characteristic of the gravitational field of an infinite cylinder in the
canonical space. The modification of the field due to the stationary rotation
of the cylinder is thus represented by the terms involving «, which is of zero
dimensions and may be regarded as a measure of the angular velocity of rota-
tion. ¢ is of zero dimensions and proportional to the mass per unit length of
cylinder. {, is of zero dimensions and very nearly equal to unity and B, is the
reciprocal of a length—Newtonian theory gives no indication of its magnitude.

One of the most interesting effects of the rotation is to disturb the radial
character of the field. It can be shown from the equations of motion that,
in general, a particle started at rest anywhere in the field will not move radially,
as in the corresponding static field. (The exceptional case is given by o =1,
which makes « infinite.) This result is consistent with Einstein’s fundamental
hypothesis that a gravitational field is equivalent to an acceleration field.
In our case, the forces derived from the «®* terms in f and ! are analogous to
centrifugal forces, and the forces derived from m correspond to Coriolis forces
of the classical theory of rotating axes.
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The more general solutions (4.6) allow for a variation of the density of the
cylinder as z varies, but they are essentially solutions associated with an
infinite cylinder.

If we write 7¢ for ¢ in (4.6), the corresponding f, I, m are still formal solutions
of the gravitational equations. We easily verify that these solutions are
real provided

u?—T1% %' — Y% oyme — YyYs are real
and
u?+1® %y g+ Yrye imaginary.

These conditions are satisfied if we introduce new real constants defined
by
\/5“1 = a, + by, V§Y1 = b, + ia, \/5‘*3 = g + thy \/_271 = by + ia,.
The new constants are arbitrary except for the condition
aby — agh, == 1. (4.7)
The solutions may now be written
r1f=(a® — b®) cos ¢ — 2a,by 8in ¢, — r711 = (ag® — by?) cos ¢
— 2ahy8in U, — r7im = (a0 — byb,) cos Y — (a,by 4 agh,) sin . (4.6)'
If ¢ is a function of r only, it is of the form
b= — ¥ log (r/vy), 4.8y

and

e 1 B . i |
B = o (1+"2‘I’12) - i

It follows that
p. = — 3} (K" 4- 1) log r 4 constant. (4.9)

These solutions are interesting because there are no corresponding, real
solutions of the static problem, z.e., the constants @ and b cannot be chosen so
as to make m vanish everywhere.

The space-time defined by these solutions is entirely without resemblance
to space-time, empty of matter, ordinarily available to physical exploration.
Its deviation from flat space-time could be demonstrated without exploring
very large tracts of it. If these solutions have any applications at all, it must
be to the fields of vast astronomical distributions of matter. The discussion
of such fields is safer in the hands of astronomers.

Some further special solutions of (3.5) and (3.6) may be obtained by assuming
2 to be a function of » only and that

u = v (r) + az,
where a is a constant.
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A and v satisfy the differential equations

2(,98) 1 304 4 L
%(\rdr)+2rsmh2l(k3/r’smh b = 0
%‘r’=k/rsinh=x.

When a is zero, the solutions of these equations reduce to those already
discussed. The equation for A may be solved by a method of successive
approximation, but as the solutions obtained in this way do not appear to
have any obvious application they will not be pursued. A more general
solution obtained by successive approximations is given in the next paragraph.

§ 5. Approximate Solutions satisfying given Boundary Conditions.
If we multiply (2.5) by [, (2.6) by —f, and add, we obtain the equation

9 {1 iyl 8l _ } X
or \r (lfl fll) J + oz l; (lfa flﬂ) = 0.
Introducing new functions defined by the equations

2y =logllf, ~=m/r, (5.1)

the above equation becomes
27

Yin + Yog + y/r = 1___:2[‘77 1. (6.2)

The equation for = is obtained by writing = for m in (2.7). Itis

T+ Tea + Tfr — Tt = — ria{[ £, 1] + [m, m]}, (5.3)
where
Ff=rV1l—22e¥ [1=ry1—2¢. (5.4)

Downloaded from https://royalsocietypublishing.org/ on 04 August 2022

Provided m and the differential coefficients of f are small quantities, equations
(5.2) and (5.3) are forms suitable for obtaining solutions by successive approxi-
mations. The first approximations are got by neglecting the right-hand sides.

They are
Yo=1logr—2V, =t=n1, (5.5)

where V is the Newtonian potential of an arbitrary, axially symmetrical dis-
tribution of matter in the canonical space (r, z, 0), and =, is the coefficient of
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sin 0 in the expansion of ¢ (r, 2, 0), which is a second arbitrary Newtonian
potential. It is of the form

¢ = ¢y (r, 2) + To5in 0 + :;J .,¢" sin n0 - cosine terms.

Each term of the expansion is a solution of Laplace’s equation.

It will be assumed that all the matter producing the field is enclosed by a
surface of revolution 8§ and that on this surface f; I, m assume assigned values,
while at infinity f -1, [ =%, m — 0, that is, the metric approaches that of the
Special Theory of Relativity.

We can always determine ¢, and 7, such that these conditions are satisfied.*

If we write
Y =9¢—dg T=1—1 (5.6)

¢’ and =" are small quantities of the second order which vanish on S and at
infinity. They satisfy the differential equations

Y+ e+ Vafr = %ﬁ (= 4, (5.2)

Tut Pt T —1 = —T—z{[f: U] + [m, m]}. (5.3)

Approximate solutions of these equations can be obtained if on the right-
hand sides quantities of order higher than the second are neglected, t, and the
differential coefficients of f being treated as small.

To this order, the right-hand side of (5.2)" is

Po = 2ToTo/"; (5.7)
and the right-hand side of (5.3)", by means of (5.4) and (5.5)
O’o - — 41'0V,/1’. (5-8)

It is convenient to introduce the functions
¢ =1"sinh, o&'yg=0,sin0. (5.9)

We have now to find functions §’ and ¢’ which vanish on 8 and at infinity
and satisfy the Poisson equations

VA =pg V' =0y

The problem may be regarded as a purely geometric one and can be solved
with the aid of Green’s function, i.e., a function G (z, y, z; @/, ¥, '), which

* Dirichlet’s problem for space.
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vanishes on 8 and at infinity, and satisfies Laplace’s equation at all points
except (#/, ', #), where it behaves like 1/4nV/(z — @')®+ .... In terms of
this funetion
¥ = -J'G(x, (ST P T
: (5.10)
¢ =— J G (&, ..., &y ) 09 (7, ...) dT ...

where the region of integration is the space bounded by S and the sphere at
infinity.
Approximations of higher order can be obtained by similar processes.
Using the expressions (5.4) for f and I, one easily verifies the relations

Fib A mg? =1 — (L — %) 42 — =21 — )
fola 4 ma? = — 2 {(1 — 72) {g? — 72/(1 — <%},
Sl + foh + 2mmy = — 2,2 {(1 — %) g4y — 7y 79/(1 — )}
If we substitute these expressions in (2.9) and neglect terms of order higher

than the second, and bear in mind the equations satisfied by V and ¢’, we
get, eventually,

w2V —¢ = j Ir{a (V2 — V) — 12fr® — (v — 7e?)} dr
+ 3 {8V,Vy — 275, Toa} dz.  (5.11)

Another method of approximation is available when S has certain forms.
This method will be illustrated by an example in § 7.

§ 6. Andress’ Equations in Canonical Co-ordinates.

In the second part of his paper Andress deduces the approximate equations
of the stationary field with axial symmetry on the basis of the quadratic

form
ds® = — e (da® + dr®) — rPe Pt |- er e di® 4 2rv dO di, (6.1)

and the final forms of his differential equations are*

T + Toa + Tofr — TR =0, (62)
Vip + &) = — 7 — (sa+ /7, (6.3)
e + Egp + 2e5/r = — (1,2 + 74% + TTfr + T/7), (6.4)

* Loc. cit., pp. 601, 602. 1In (6.5), Andress’ (5.44), he has ¢ instead of —c on the left-
hand sides. But it is clear from his equations (2.11)~(2.14) and (5.11), (5.12) and (5.16)
that —e is correct. There are other minor misprints in the indices of the last equation.
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2 (0 p — &) =l (o — ) — 1 (611 — 20
— 77 (T — Teg — To/r) — ¥ (72 — 7 + 2/r?) L, (6.5)

2 (A + p — &) = rorpa + sy reulmy + TIr) + 2y

where the suffix 1 means differentiation with respect to = and 2 with respect
to 7.
Comparing (6.1) with (1.1) of this paper we get

b=ttt l=re ", m=—1r5, p=2»x1

It follows from (5.1) that
2¢ =logl/ff =21logr —2p (6.6)
and
Jl+md =1 (> + %) (6.7)
In virtue of the existence of canonical co-ordinates we can write

e+ =1, (6.8)

1.e., we can identify » and z with the canonical co-ordinates without changing
the form of (6.1). The relation (6.8) does not follow accurately from Andress’
equations on account of his neglecting all but linear terms in (6.2).

However, to the order of approximation considered by Andress, we can
write, in virtue of (6.8),

e=— 7% (6.9)

On substituting this expression for ¢ in (6.4) we find that the latter is
identically satisfied in virtue of (6.2). Making the same substitution in (6.3)
it reduces to.

V%=—¥?, (6.10)

which is identical with the equation satisfied by )’ of this paper when higher
order terms are neglected.
The equations (6.5) reduce to

2 (A ) = dr (pg® — o) + br (52 — =a8) — 22,

- (6.11)
3 (AT 0) =Tpipy — 1717y

These last equations are equivalent to (5.11) of this paper if (2V — ¢') is
written for p and w for A on the left-hand sides and 2V for p and 7, for = on
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the right-hand sides. The solution of (6.10) actually given by Andress is a
particular one—the Poisson Integral. He omits the complementary function
2V which is necessary to make the solution reduce to his solution for the static
case for a vanishing 7.

We thus see that the use of canonical co-ordinates greatly simplifies the
differential equations to be solved. If we consider any transformation of
co-ordinates which preserves the normal form of e*(dr? 4- dz?), the expressions
for f, I, m are obtained by direct substitution in the expressions for these

g potentials in she canonical system, and ¢ must be multiplied by the modulus
N of the transformation. When discussing the static case Andress actually
?Dintroduces canonical co-ordinates by putting v= —p. In the stationary
<:£ case, however, it is not so easy to spot canonical co-ordinates unless one
I proceeds from the variational principle.

§ 7. The Field of a Rotating Sphere.

Green’s function is known for a spherical surface, but the integrations
involved in the calculation of second order terms are very cumbersome, and
35 labour is saved by using another method. We will show how to calculate

in ¢, but the calculation for the second order terms in =
will not be given in detail. The method is essentially the same in the two
cases, though the differential equations involved are different.

It is convenient to use spherical polar co-ordinates associated with the
canonical space. They are defined by the transformation

ishing.org/ on

ietyp
{7 2]
3
-
=
Q
&
~
c’.
:
B

z=Rsin 6 cos0, y=Rsin®sinh, z=Rcos®, r=Rsinb.
(1.1)
The first approximations in this case may be written

N - i + s AP, (cos 0)/R"*!
R i

(7.2)

Downloaded from https://royalsoc

to=120 | 3 B, (cos 0)/R"
n=2

— kM/R is the ordinary Newtonian potential for a spherically symmetrical
distribution of matter. We will assume that the distribution in the canonical
space deviates but slightly from spherical symmetry and that the angular
speed is not too great. This amounts to assuming that the A, are small
quantities of the second order. We also assume, for simplicity, that the
B, (n=2,3, ...) are of the second order. The A, and B, have been chosen



Downloaded from https://royalsocietypublishing.org/ on 04 August 2022

190 T. Lewis.

so as to satisfy boundary conditions on the surface of the sphere. As these

boundary conditions do not affect the determination of terms of higher order,

we need not limit ourselves to any particular set of boundary values.
Hence, disregarding all terms other than the dominant ones, we find that,

by (5.7)
Po = 2101'01/')' = 2B12 (1— 3 sin? 0')/R° (7.3)

It is required to find a solution of the equation (5.2)', which becomes

_8_/,% _1_1 fa‘l"__s__'s'c
o5 (B aR)+Sm 7 aa,(\smﬁﬁ-e—,)—2Bl (1 — 3 sin® @')/Re, (7.4)

The right-hand side of this equation can be written in the form

po =2k, P, (cos 0')/R4, (7.3)
where
ko _ - 2B12, kz = 4B12,

and all the other k, are zero.
We can find a particular solution of (7.4) of the form

Z £, P, (cos 0),
where f, satisfies the differential equation

3

2 (me g%) —n(n+1)f, =k,/RE.

This equation has a particular integral

' k, /R {12 — n® — n}.
It follows that
B2 (— 1+ 4P, (cos 0') )/6R* (7.5)
is a particular solution of (7.4).

But on the sphere R = a (a is not to be confused with the gravitational radius)
' is zero. Hence to (7.5) one must add a term of the type

C; | CyPy (cos 6)
R + RS )
Substituting boundary conditions we find, ultimately, that

V=B L — k4 — k) Py (con )} /sn. (1.6)
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Again, putting in their values for the dominant terms in (5.11), we get

v [r[6SMR (2 —2%) B2 (5 —11/%24 224)\
r [8M2z | 6B, (22 — 22) r2)|
+ 2 [ R“ + RIO ’ dz
= — k232 /R4 + B2 {— 72/2R® + 9r4/8R%}. (7.7)
To the same order, we get from (5.8) and (7.2)

6o = — 4B;kM sin 0'/R? ; (7.8)
and equation (5.3)" for " may be written

0 (Rza'r'\ I @ ( e,a‘r)_ 7

o} — 4B;«M sin 6°/R3. (7.9)

R\ oR/ " sin 0’30’ 0 St
This equation has a particular solution of the form
k sin 6'/R;.

Evaluating the constant and adding a solution of the homogeneous equation,
we finally get a function satisfying (7.9) and vanishing on the surface of the
sphere and at infinity. It is

¥ = — ByiMsin 0 (55— ). (7.10)

It is assumed that both B, and «M are small. Approximations of higher
order can be obtained in an analogous manner. The solutions will proceed in
powers of kM and B,. At no stage do we introduce a singularity other than
; the original one at R = 0, so there should be no difficulty about convergence,
provided the above-named constants are small.

Disregarding A,, B, etc., the values of £, I, m, as far as second order terms,
are obtained by expanding (5.4) and putting in the expressions for V, {’, 7,
and 7/. These values are
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_ 1 _2M 4 B2/6a® | 2*M? | 2B,*P, (cos ') T
__ B2(1 + 2Py (cos 0))
6R4
a1 o 2M 4 B2/6a% | 2A3EM2  2B,*P, (cos ') L. (.11
ri=1+4 R i RE 3aR° [ L)
__ B2(1 — 2P, (cos 6°) )
2R4
r~im = B sm 4 {(1 + «M/a) — xM/R}
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If squares and products of kM and B, are neglected, the form (1.1) becomes

it =1 _%_M)dts_ {(1 $ ?E_M\ (@8 + de? +r’d6’)} e %ﬁdedz.

This approximation is identical with the form obtained by Leuse and
Thirring, and with Bach’s first approximation. These authors write —« & M2y
for Bl; i.e., they assume B, to be proportional to the angular momentum.

If we examine the coefficient of 1/R in the first two of equations (7.11), we
notice that at a sufficiently great distance from the sphere the effect of the
rotation is to increase the effective mass of the sphere by B,2/12«a?.

We also notice that =, is proportional to the magnetic potential of a uniformly
magnetised sphere. The effect of this term on the motion of a material particle

/

is analogous to the effect of a Coriolis force.

One cannot expect our second order terms to fit with the second order terms
obtained by Bach. For, in fact, they do not represent the field of the same
distribution of matter. A sphere in Bach’s space is not a sphere in the canonical
space. Weyl has shown, in the static case, that the canonical co-ordinates are
connected with the co-ordinates of the Schwarzchild space by the transforma-
tion

r+wiz=r 4w — —,(0/2),2,
r 4 1z
where a is the gravitational radius of the particle, in this case. The particle
is transformed into a uniform rod of length 2a in the canonical space. Since
the transformation involves the square of a (or «M), the first approximations
of Bach are necessarily contained in our first approximations when boundary
conditions are suitably chosen.

[Note—When the field in question is due to a large body there is no com-
parison between the gravitational radius and the ordinary radius. For
example, the gravitational radius of the sun is about 147 kilometres and the
gravitational radius of the earth only 5 millimetres. Hence there is no danger
of our method of approximation leading to a singularity of the gravitational
potentials outside matter.)

My thanks are due to Professor Schott for the interest he has taken in this
work and for many valuable suggestions.




