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S om e  Specia l So lu tions o f  the E quations o f  A x ia lly  Symm etric  

Gravita tiona l F ields.

By T. Le w is , M.Sc ., Aberystwyth.

(Communicated by G. A. Schott, F.R.S.—Received November 26, 1931.)

Introduction.

The problem of axially symmetric fields was first treated  by Weyl,* who 

succeeded in obtaining solutions for a static  field in term s of the Newtonian 

potential of a distribution of m atter in an associated canonical space. He also 

solved the more general problem involving the  electric field. Levi Civita,f 

by slightly different methods, obtained solutions differing from those of Weyl 

in one respect, and discussed fully the case in which the field is produced by an 

infinite cylinder. R. Bach'l has discussed the special case of two spheres and 

has calculated their m utual a ttraction . Bach also considered the field of a 

slowly rotating sphere, and obtained approxim ate solutions, taking the Schwarz- 

child solution as his zero-th approxim ation. The same field was discussed 

earlier by Leuse and Thirring,§ who considered, the linear terms, only, in the 

gravitational equation. Kornel Lanczos|| has also considered a special case 

of stationary fields and applied the results to  cosmological problems. The 

more general case of gravitational fields produced by m atter in stationary 

rotation has been treated  by W. R. Andress^[ and E. Akeley.** Both these 

authors obtain approximate solutions of the general problem, and the latter 

treats a t length the field of a rotating fluid.

The object of this paper is to  present some special, bu t exact, solutions which 

the author obtained some years ago and, also, two methods of successive 

approximation for obtaining solutions of a more general type, which behave 

in an assigned manner a t infinity and on a surface of revolution enclosing the 

rotating m atter to  which the field is due. Our solutions include as special 

cases the solutions of Weyl, Levi Civita and others which pertain to static 

fields. Also, the approximate solutions for stationary fields obtained by Leuse

* ‘ A n n . P h y s i k , ’ v o l .  5 4 ,  p .  1 1 7  (1 9 1 7 ) .

f  ‘ I t .  A c c .  L i n c e i , ’ 5 ,  v o l .  2 8 ,  p . 1 0 1  (1 9 1 9 ) .

t  ‘ M a t . Z . ,’ v o L  1 3 ,  p .  1 3 4  (1 9 2 2 ) .

§ ‘ P h y s .  Z . ,’ v o l .  1 9 ,  p . 1 5 6  (1 9 1 8 ) .

|| ‘ Z . P h y s i k , ’ v o l .  2 1 ,  p .  7 3  (1 9 2 4 ) .

If ‘ P r o c .  R o y .  S o c . , ’ A , v o l .  1 2 6 ,  p .  5 9 2  (1 9 3 0 ) .

* *  ‘ P h i l .  M a g ., ’ v o l .  1 1 ,  p . 3 2 2  (1 9 3 1 ) .
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Axially Symmetric Gravitational Fields. 177

and Thirring, Bach and Andress are contained in our solutions when appro­

priate choice of boundary conditions is made and higher order term s are 

neglected.

The special feature of th is paper is the  simplification of the gravitational 

equations which results on the  in troduction of canonical co-ordinates. This is 

always admissible in space free of m atter. In  order to  illustrate the advantage 

gained by working with canonical co-ordinates we express Andress’ approxim ate 

equations in these co-ordinates and show th a t, to  the  approxim ation con­

sidered by him, they  are equivalent to  our equations. No loss of generality 

is involved in the use of canonical co-ordinates, which are connected with any 

other co-ordinates preserving the  norm al form of the line element by a trans­

form ation of the type
r +  iz

In  fact, the  canonical co-ordinates serve to  remind one of the  degree of 

arbitrariness involved in our solutions.

We do not concern ourselves w ith the  problem of finding the  gravitational 

field inside m atter. Certain stresses, of non-gravitational origin, are 

necessary to  m aintain the steady ro tation  of the  field producing m atter, so 

we will assume th a t  inside m atte r th e  gravitational potentials have any 

reasonable values which are continuous on the  surface, and regard the  equations

Kit — — (1^  +

as equations to  determine the  tik (Tifc being the components of the energy- 

momentum tensor).

The gravitational equations will be derived from a Variational Princip le  

after the m anner of Weyl. The la tte r’s work was criticised by Levi Civita 

on the  grounds th a t  he did no t make full use of the  principle. Weyl based his 

calculation of the  action function  on a norm al form of the  line element and 

thereby obtained a set of equations which are no t complete, though certainly 

compatible w ith the  complete set. In  order to  avoid th is difficulty we shall 

base our calculation of the  action function  on a non-normalised line element 

and show th a t it can be normalised w ithout violating the gravitational 

equations. The possibility of introduction of canonical co-ordinates is 

immediately suggested by the form of our equations.

Exact solutions will be given in the case of the  field due to  an infinite 

rotating cylinder in the canonical space, and, to  illustrate one method of 

approximation in the general case, the field of a rotating sphere will be worked 

out to  a second order of approximation.

v o l . c x x x v i . — A. N
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178 T. Lewis.

§ 1. The Hamiltonian Function and Gravitational Equations.

The field will depend upon two variables xx and x2, x1 — 0 being the axis of 

symmetry of the field. x0 will be interpreted as time co-ordinate and as 

an angular variable varying from 0 to The fundam ental quadratic form 

may be written

ds2 — fd x 02 — {e^dxj2 +  e"dx +  

in which v will be pu t equal to  (jl after the gravitational equations have been 

deduced. The effect of the rotation is represented mainly by the last term. 

W ith the usual notation we find th a t

— g =  r2e!x+v, where r2 m2, (1.2)

and

g°o =  r~2l, gn  =  — e~~'x, g22 — — =  — r -2/', g02 — — r~2m.

The only 3-index symbols which concern us are the following :

{«»} =  K ' / i . {?} =  *i, f f l  =  - i e ~ “ h, {?} =

=  K 7 &  {“ } =  -  f l }  =  i v 2, { ? }  =  -  ie~%, ®  =  - J e -  m2,

where the suffix 1 denotes differentiation with respect to  and 2 with respect

to  x 2.

The action function from which the field equations are derived differs from 

R,V — g  by the divergence of a function of the gravitational potentials and 

their derivatives. I t  is G, defined by

2G = {*r} h ,  <»“ v Z - d  -  u } irk (3“
Inserting the above expressions for the 3-index symbols we obtain, finally, 

2G =  e- (M-o/2 (f i h ± ™ i2 +  2rlVl) +  { +  2r2(x2) . (1.3)

The gravitational equations are the necessary and sufficient set of conditions 

for a stationary value of the integral

J G dx

for arbitrary small variations of the gi!c which vanish on the boundary of the 

region of integration.
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Axially Symmetric Gravitational Fields. 179

dxl \ r

0 (h.

dx2 \ r

a_

J2

On carrying out the variation and pu tting  v =  fx the following equations 

are obtained :—

2r22 +  (*it*i — r 2[i2) +  ~  {(Ah + % 2) — { f z h  +  ^

— 2 rn  +  ( r ^  — r2\L2) +  £  { (/A  +  mx2) — ( f 2h  +  ™22)} =  0, 

jL (A ) +  A .  (&) +  £  | [ M ± I ^ d  +  2 v  v }  =  o, (i.6)

s ;  w +< 7 ) + £  F ] T , m]  +  2V24  -  ° ’ (L 7 >

i .  /a )  + a (a )  +  2  rc/.q+[".■»]+ 2w l  =  0 (1.8)
0a?! \ r J ox2 \ r / 2r { 2 J

where

[ M ]  =  <M l +  ^2^2»
and

v 2 =  i L  +  i i
a#!2 a#.,2

§ 2. The Compatibility o f our Equations and Introduction o f Canonical

Co-ordinates.

We notice th a t  th e  last three equations are invariant w ith respect to  a 

transform ation of the type

x1 +  ix 2 =  
*

Again, subtracting (1.5) from (1.4) yields a simple equation involving r  only, 

namely,

*11 +  r 22 =  (2.1)

Hence, if 2  be the conjugate of r, we can make the following identification

iz  =  x1 +  2* (2-2)

This equation defines our canonical co-ordinates. The equations (1.4) 

and (1.5) now become identical.

Multiplying (1.6) by l, (1.7) b y / ,  (1.8) by 2m, and adding, we get, in virtue of

( 1 . 2 )

I  <rr) + 1  i ~ )  - }  t o l] +  [*• v v = 0.

8 ( 6 2 . ) + 3 ( 6 3 . )  =  0 .
or \ r  / (72 \ r /

n  2

But
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180 T. Lewis.

Hence

v v  =  p  { [ / . ' I +  [«*.*»]}• (2.3)

The remaining equations now become

Pi =  — ^ . ( / A  +  mi ~  ( f ih  +  m 2% (2.4)

f n  + / a 2  + (2.5)

h i + h z ~ ~ = (2.6)

mn  +  w 22 — “  =  — ^  {[/» Q +[»», *»]}. (2.7)

The last three equations are not independent. I f /  and l, for example, have 

been found (1.2) determines m  which will satisfy (2.7) identically.

We also notice th a t w hen /, l, m  have been determin

(2.3) and (2.4). But instead of the la tte r equation it is convenient to  use 

another equation which has been calculated separately, namely, the one 

resulting from

B 1 2  =  0.

(This equation could have been obtained by including a term  dxx dx2 in 

our quadratic form and putting  g12 =  0 after variation of G.)

In  canonical co-ordinates the equation is

^ 2  =  — \ Y { f i h  +  +  2m1m2}. (2.8)

If (2.5)-(2.7) are taken into account, one easily verifies th a t [x12 — |x2ij=  

and th a t (2.3) is a consequence of (2.4) and (2.8). We can therefore write

{x =  — j ~  {/&  +  — ( f 2l2 +  m 2)} dr +  ~  { / / 2 + f

Thus the determination of / ,  l, m  completely determines p, except for an 

additive constant, and it follows th a t \i cannot assume an arbitrarily assigned 

value on the boundary.

§ 3. Transformation o f Equations (2.5)-(2.7).

One can always find a linear transform ation of the  differentials of the 

co-ordinates such th a t the fundamental quadratic form (1.1) transforms into

ds2 =  F  dt'2 -  {(f- {dr2 +  dz2) +  L
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Axially Symmetric Gravitational Fields. 181

In  general, th is transform ation is purely local, i.e ., non-integrable. For 

example, let

dx0 = dt =  d t'cosh u  — d0' sinh u, d0 =  dx3 d0 ' cosh u  — ' sinh u, (3.1) 

/  =  F  cosh2 u  — L sinh2 u, l =  L cosh2 u  — F  sinh2 u,

m  == A ('ll —

1$ follows th a t
f l  -f- m2 — FL  =  r2.

This relation suggests the substitutions

F  =  re~A, L =  

The action function now becomes

G =  ~  — \r[X, X] +  2 sinh2 X [u, u] +  [r, p], 

and variation gives the  following equations for X and u  :—

I k  I )  + 1  (rl ) + 2r 2X “] = °’

A special set of solutions suggests itself a t once, namely,

u — constant, X =  log r  — 2^ ,

(L — F) sinh 2 (3.2)

(3.3)

(3 .4 )

(3 .5 )

(3 .6 )

(3 .7 )

where ^  is the  Newtonian potential of an arb itrary  axially symmetric distribution 

of m atte r in the  canonical space (r, z, 0). I t  follows th a t  F  and L are identical 

w ith the  /  and l found by W eyl in the  static  case. Our /  and l are linear com­

binations of W eyl’s, w ith constant coefficients. They adm it of a very simple 

in terpretation—the observer in the  canonical space (r, z, 0) is using a system of 

reference which ro tates w ith constant angular speed to  describe the static  

field of the canonical space ( / ,  z', 0').

§ 4. Special Solutions involving Functional Relation between

X and u.

I t  is possible to  obtain solutions of (3.5) and (3.6) on the assum ption th a t 

u is a function of X. I t  is easily verified th a t the  condition for this is

d2u . n du,, .
— +  2 s r ° th X 2 ( sinh 2X =  0. (4 .1 )
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182 T. Lewis.

The general solution of this equation is

u  =  «0 +  \  log
cosh X T  V F  sinh2 X -f- 1 

sinh X
(4.2)

where u0 and k  are arbitrary  constants, and k2 need not be positive. 

now pu t

j sinh2 X du — ±  i
sinh XdX *

V  k2sinh2 X +  1

Equation (3.6) shows th a t <]; satisfies the equation for a Newtonian potential 

in the canonical space, namely,

4n +  4*22 +  4i/r == 0* (4-3)

Integration of the expression for ^ gives

4  =  ± ^ lo g  (*  X -j- s in h 2 X +  1), (4 .4 )

Solving this equation for cosh X we get

and

cosh X =  4  {e±2^  -  (1 -  e*2k* }
L/C

>.

V k 2sinh2 X +  1 =  \{e±2** +  (1 -  k2) eT2k*} J

(4.5)

We can substitute these expressions in (4.2) and thus find u, and then find 

/ ,  l, m from the formulae (3.2) and (3.4). The calculation, however, which is 

long and tedious, will not be given here. B ut one can verify directly th a t

f — r(oq2 e* — yx2 e %l =  r { — oc22 e* +  y 22e +),

a1a 2e'i' +  (4-6)

satisfy equations (2.5), (2.6) and (2.7), where the constants satisfy the equation

aiT2 — a 2Yi =  L  (4-7)

and ^ is any function which is a formal solution of (4.3). But since / ,  l, 

m ust be real, 4» cannot be complex—it m ust be real or purely imaginary.

We notice th a t if ^  is a function of r only, the solutions (4.6) are the most 

general solutions, for they involve four arbitrary  constants, the fourth being 

contained in 4*, which is now of the form

4̂ == — k log r / r0, (4.8)
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Axially Symmetric Gravitational Fields. 183

where both k  and r 0 are arbitrary. (r0, however, plays no essential role, for it  

can be absorbed in the  constants (ax, a 2, y1? y 2) w ithout violating (4.7)).

In  this special case

i** =  -  b s> 1 +  o = -  b 1 ~  ’

which, on integration, gives

[j, =  1 (7c2 — 1) log r  4- constant, (4.9)

k  is not necessary real. The solutions corresponding to  an im aginary k  will 

be given separately.

I t  is convenient to  introduce new constants defined by the formulae

ai =  Kpi, y1 =  /cco(32, a 2 = /c(op2_1, y 2 =  1 — =  e (4.10)

where k  — (1 — co2)- *.

The expressions (4.6) and (4.9) can now be w ritten  in the form

J == k2 ( (^ V  -  6>2(322r2-e), l =  k2 -  co2p2“ 2

m — k2(x> (p22 r 2_e — re) 1 (4.11)

eM =  (r/r0)~e(2_e)/2. (4.12)

W hen o) — 0, these solutions reduce to  those discussed by Levi Civita, i.e., 

those characteristic of the  gravitational field of an  infinite cylinder in the 

canonical space. The modification of the  field due to  the stationary rotation 

of the  cylinder is thus represented by the  term s involving co, which is of zero 

dimensions and m ay be regarded as a measure of the  angular velocity of ro ta­

tion. e is of zero dimensions and proportional to  the mass per un it length of 

cylinder. is of zero dimensions and very nearly equal to  unity  and (32 is the 

reciprocal of a length—Newtonian theory  gives no indication of its magnitude.

One of the most interesting effects of the  rotation is to  disturb  the radial 

character of the field. I t  can be shown from the  equations of motion th a t, 

in general, a particle started  a t rest anywhere in the  field will not move radially, 

as in the corresponding static  field. (The exceptional case is given by co =  1, 

which makes k  infinite.) This result is consistent with E instein’s fundam ental 

hypothesis th a t a gravitational field is equivalent to  an acceleration field. 

In  our case, the forces derived from the  co2 term s in /  and l are analogous to  

centrifugal forces, and the forces derived from m  correspond to  Coriolis forces 

of the classical theory of rotating axes.
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184 T. Lewis.

The more general solutions (4.6) allow for a variation of the density of the 

cylinder as z  varies, bu t they  are essentially solutions associated wit

infinite cylinder.

If we write ity for in (4.6), the corresponding/, l, m  are still formal solutions 

of the gravitational equations. We easily verify th a t these solutions are 

real provided

ai2 “  Yi2> a 22 — Y22> aia 2  ~  Y1Y2  are real
and

ai2 +  Yi2» a 22 +  Y22> a ia 2  +  Y1Y2  imaginary.

These conditions are satisfied if we introduce new real constants defined

by _

V 2oq =  a1 -\- ibv  V 2yx =  +  âv  V =  u2 +  ^ 2 ’ V 2y2 =  &2 -f

The new constants are arbitrary  except for the condition

&1&2 #2^1 ”  i* (4-7)

The solutions may now be written

r -1/ — (oq2 — 6X2) cos 41 — 2a161 sin — r - 1 1 =  (a22 — b22) cos <J>

— 2a2b2 sin — r~1m =  (axa 2 — &1&2) cos — (a1b2 +  «2&i) sin (4.6)'

If ^  is a function of r  only, it is of the form

and

I t  follows th a t

log (r/v0),

Vi =  “  \ r (! +  r % 2) ¥ 1 ± 1
2  r *

(x =  — (&'2 + 1 )  log r +  constant.

(4.8)'

(4.9)'

These solutions are interesting because there are no corresponding, real 

solutions of the static problem, i.e ., the constants a and

as to  make m  vanish everywhere.

The space-time defined by these solutions is entirely without resemblance 

to space-time, em pty of m atter, ordinarily available to  physical exploration. 

Its  deviation from fla t space-time could be demonstrated without exploring 

very large tracts of it. If these solutions have any applications a t all, it must 

be to  the fields of vast astronomical distributions of m atter. The discussion 

of such fields is safer in the hands of astronomers.

Some further special solutions of (3.5) and (3.6) may be obtained by assuming 

X to be a function of r  only and th a t

u — v (r) +  az,

where a is a constant.
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Axially Symmetric Gravitational Fields. 185

X and v  satisfy the  differential equations

T" (r ~ r )  +  2r sinh 2 X sinh* X +  «2) =* 0 
dr \ dr !

^  =  Jc/r sinh2 X. 
dr

W hen a  is zero, the  solutions of these equations reduce to  those already 

discussed. The equation for X m ay be solved by a m ethod of successive 

approxim ation, b u t as the solutions obtained in th is way do not appear to  

have any obvious application they  will no t be pursued. A more general 

solution obtained by successive approxim ations is given in the next paragraph.

§ 5. Approxim ate Solutions sa tisfying  given Boundary Conditions.

If we m ultiply (2.5) by l, (2.6) by —/ ,  and add, we obtain the equation

! 0 - y « } + | G < y . - / u } = o .

Introducing new functions defined by the  equations

2^  =  log l/f , =  m /r , (5.1)

the  above equation becomes

4*n +  4^22 +  4'iA ’ =  f ~ ^ 2  4']- ( 5 -2 )

The equation for r  is obtained by writing t  for m  in (2.7). I t  is

* n  +  t 22 +  t J r  — t /r2 =  —  ^  { [ / ,  l] +

where

/  =  r V  1 — t 2 e- '*', 1 — t 2 e * . (5.4)

Provided m  and the differential coefficients o f /  are small quantities, equations 

(5.2) and (5.3) are forms suitable for obtaining solutions by successive approxi­

mations. The first approximations are got by neglecting the right-hand sides. 

They are

4 ,o =  lo g  r — 2 V, t  =  t 0, (5.5)

where V is the Newtonian potential of an arbitrary, axially symmetrical dis­

tribution of m atter in the canonical space (r, z, 0), and t 0 is the coefficient of
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186 T. Lewis.

sin 0 in the expansion of </> ( r,

potential. I t  is of the form
CO

(f> — (f>0(r, z) +  xQsin 0 +  2  sin ® +  
n  =  2

Bach term  of the expansion is a solution of Laplace’s equation.

I t  will be assumed th a t all the m atter producing the field is enclosed by a 

surface of revolution S and th a t on this surface f ,  m  assume assigned values, 

while a t infinity / - >  1, l -> r2, m -> 0, th a t is, the metric approaches th a t of the 

Special Theory o f Relativity.

We can always determine and t 0 such th a t these conditions are satisfied.*

If we write
tj/ =  <]; — t ' T T0, (5.6)

<j/ and t ' are small quantities of the second order which vanish on S and a t 

infinity. They satisfy the differential equations

4 rn  +  4**22 +  V i / r ^  4^’ (5-2)'

+  t ' 22 4- T 'J r  — T'/r2 =  — {[/, +  [w

Approximate solutions of these equations can be obtained if on the right- 

hand sides quantities of order higher than  the second are neglected, t 0 and the 

differential coefficients o f /b e in g  treated  as small.

To this order, the right-hand side of (5.2)' is

Po =  2 t 0t  01/r, (5.7)

and the right-hand side of (5.3)', by means of (5.4) and (5.5)

a 0 = - 4 T 0Y1/r. (5.8)

I t  is convenient to  introduce the functions

/ '  =  t ' sin 0, a '0 =  a0 sin 0. (5.9)

We have now to find functions <j/ and / '  which vanish on S and a t infinity 

and satisfy the Poisson equations

V Y  =  Po> V2/ '  =  a 0'.

The problem may be regarded as a purely geometric one and can be solved 

with the aid of Green’s function, i.e., a function G (x, y , z ; x', y', z’), which

* D i r i c h l e t ’s  p r o b le m  fo r  s p a c e .
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Axially Symmetric Gravitational Fields. 187

vanishes on S and a t infinity, and satisfies Laplace’s equation a t all points

except ( x ' , y ', z'), where it behaves like 1/4t t \ / (x  x')2 + _ _ _  In  term s of

this function

<]/ =  — f G (x, ..., x ', ...) p0 (x', ...) ... 1

<j> — — j G ( x , ..., x ', ...) (x ', . . . )  dx' ...

(5.10)

where the  region of integration is the  space bounded by S and the  sphere a t 

infinity.

Approximations of higher order can be obtained by similar processes. 

Using the expressions (5.4) f o r / a n d  l, one easily verifies the  relations

A h  +  m 2 =  l - r 2 {(1 -  T 2)  4q2 -  r 2/ ( l  -  T 2) } ,  

y 2 +  m 22 =  — r2 {(1 — T2) <p22 — t 2 2 / ( 1  — t2)}>

f ih  + fzh  +  2m1w 2 =  — 2r2{(l — t 2) <jh^2 — t 1t 2/(1 — t 2)}.

If we substitu te these expressions in (2.9) and neglect term s of order higher 

th an  the second, and bear in m ind the  equations satisfied by Y and t|/, we 

get, eventually,

V- +  2V -  =  j  ir {4 (V,« -  V22) -  T 02 / r 2 -  ( t 012 -  % !)}

+  {8V1V2 2t 0iT02 (5.11)

A nother m ethod of approxim ation is available when S has certain forms. 

This m ethod will be illustrated by  an example in § 7.

§ 6. Andress’ Equations in  Canonical Co-ordinates.

In  the second p a rt of his paper Andress deduces the  approxim ate equations 

of the  stationary field with axial sym m etry on the  basis of the quadratic

form

ds2 =  — ex (dx2 -f- dr2) — r2e-p+e -f- ep+* dt2 +  2 0 dt, (6.1)

and the final forms of his differential equations are*

^ii +  t 22 +  t  J r  — v /r2 =  0, 

V2 (p +  s) =  — Tj2 — (t 2 +  T/r)2, (6.3)

£n  +  £ 2 2  +  2e2 jr  =  — (Tl2 +  t 22 +  t t  J r  +  t  (6.4)

* Loc. c it .,  p p .  6 0 1 ,  6 0 2 .  I n  ( 6 .5 ) ,  A n d r e s s ’ ( 5 .4 4 ) ,  h e  h a s  e  i n s t e a d  o f  — s  o n  t h e  l e f t -  

h a n d  s i d e s .  B u t  i t  i s  c le a r  f r o m  h i s  e q u a t i o n s  ( 2 .1 1 ) - ( 2 .1 4 )  a n d  ( 5 .1 1 ) ,  ( 5 .1 2 )  a n d  (5 .1 6 )  

t h a t  — e  i s  c o r r e c t .  T h e r e  a r e  o t h e r  m in o r  m i s p r in t s  i n  t h e  i n d i c e s  o f  t h e  l a s t  e q u a t io n .
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188 T. Lewis.

(X +  p — s) = J | r  (p22 — Pl2) — r (en  — e22)

— rx  (xn  — t 22 — — \ r  ( t x2 — t 22 +(6 .5)

0

^ ( X  +  p — e) =  r Plp2 +  2 rs12 +  rxx( r 2 +  +  2rTT12

where the suffix 1 means differentiation with respect to  x  and 2 with respect 

to r.

Comparing (6.1) with (1.1) of this paper we get

* = e p+e, l — r2e~p+t, m  — — rx, p. =  X.

I t  follows from (5.1) th a t

2cj; =  log l / f  2 log — 2p

and
f l  +  m2 ~  r2 (e2e -f* t 2).

( 6 .6 )

(6 .7 )

In  virtue of the existence of canonical co-ordinates we can write

e2e -J- t 2 =  1, ( 6 . 8 )

i.e., we can identify r and x  with the canonical co-ordinates without changing 

the form of (6.1). The relation (6.8) does not follow accurately from Andress’ 

equations on account of his neglecting all bu t linear term s in (6.2).

However, to  the order of approximation considered by Andress, we can 

write, in virtue of (6.8),
s  =  —  i  t 2. (6.9)

On substituting this expression for e in (6.4) we find th a t the latter is 

identically satisfied in virtue of (6.2). Making the same substitution in (6.3) 

it reduces to

( 6 . 1 0 )

which is identical with the equation satisfied by <J/ of this paper when higher 

order terms are neglected.

The equations (6.5) reduce to

j r (*  +  p) =  (p22 — px2) +  (t j2 — t 22) — T2/2r,

^ ( X  +  p )  =  W 2  —  rxxxi

. (6 .1 1 )

These last equations are equivalent to  (5.11) of this paper if (2V — 40 is 

written for p and p. for X on the left-hand sides and 2V for p and x0 for x on

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 0

4
 A

u
g
u
st

 2
0
2
2
 



Axially Symmetric Gravitational Fields. 189

the right-hand sides. The solution of (6.10) actually  given by Andress is a 

particular one—the Poisson Integral. He omits the complementary function 

2V which is necessary to  make the  solution reduce to  his solution for the static  

case for a vanishing t .

We thus see th a t  the  use of canonical co-ordinates greatly simplifies the 

differential equations to  be solved. If  we consider any transform ation of 

co-ordinates which preserves the norm al form of eM(dr2 -f- dz2), the expressions 

f o r / ,  l, m  are obtained by  direct substitu tion  in the expressions for these 

potentials in the  canonical system, and m ust be m ultiplied by the  modulus 

of the  transform ation. W hen discussing the  static  case Andress actually 

introduces canonical co-ordinates by pu tting  v =  — p .  In  the  stationary 

case, however, it is no t so easy to  spot canonical co-ordinates unless one 

proceeds from the  variational principle.

§ 7. The F ie ld  o f a Rotating Sphere.

Green’s function is known for a spherical surface, b u t the  integrations 

involved in the  calculation of second order term s are very cumbersome, and 

labour is saved by using another m ethod. We will show how to  calculate 

second order term s in <];, b u t th e  calculation for the  second order term s in t  

will no t be given in detail. The m ethod is essentially the  same in the two 

cases, though the differential equations involved are different.

I t  is convenient to  use spherical polar co-ordinates associated w ith the 

canonical space. They are defined by the transform ation

x =  R  sin 6' cos 6, y  — R  sin 0' sin 0, z == R  cos 0', 

The first approxim ations in th is case m ay be w ritten

V =  - T T +  S  A „P„(cos 0 ')/R ”+1 
-ft 1

T„ =  +  S  (cos 6 ')/R ”+1
n = 2

r  =  R  sin 0'.
(7.1)

‘ (7.2)

— kM/R is the  ordinary Newtonian potential for a spherically symmetrical 

distribution of m atter. We will assume th a t the distribution in the canonical 

space deviates b u t slightly from spherical sym m etry and th a t the angular 

speed is not too great. This am ounts to  assuming th a t the An are small 

quantities of the second order. We also assume, for simplicity, th a t the 

Bn (n == 2, 3, ...) are of the second order. The A n and Bn have been chosen
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190 T. Lewis.

so as to satisfy boundary conditions on the  surface of the sphere. As these 

boundary conditions do not affect the determination of terms of higher order, 

we need not limit ourselves to any particular set of boundary values.

Hence, disregarding all terms other than  the dominant ones, we find that, 

by (5.7)
Po =  2 t 0t  01/r  =  2BX2 (1 — 3 sin2 6 ')

I t  is required to  find a solution of the equation (5.2)', which becomes

k  (R21 ) +  s lT F  W  (s“ 6' w )  =  2B>a (1 -  3 sin2 e')/R*

The right-hand side of this equation can be written in the form

Po =  s  K (cos 6 ')/R 4. (7.3)'
where

&o =  —  2 B X2, k2 iB f ,

and all the other Jcn are zero.

We can find a particular solution of (7.4) of the form

2  fnP n (cos 0'),

where f n satisfies the differential equation

s(R,i)—
This equation has a particular integral

JcJB,4 {12 — n2 — n).
I t  follows th a t

Bj2 ( -  1 +  4P2 (c o s  6') )/6R4 (7.5)

is a particular solution of (7.4).

B ut on the sphere R =  a (ais not to be confused with the gravitat

<{/ is zero. Hence to (7.5) one m ust add a term  of the type

Cj , C2P 2 (cos 0')

R  R 3

Substituting boundary conditions we find, ultimately, th a t

-  Bi2 {a® - © + * ( & -  k h  <cos e ' ) } / 6 R -
(7.6)
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Axially Symmetric Gravitational Fields. 191

Again, putting  in their values for the dom inant term s in (5.11), we get 

, ny  1 / _  f r f4/c2M2 (r2 — z2) Bx2 (5r4 —
( A - j - i i V  9  | o  1 T?6 X>10 JR 10

. r f 8/c2M2rz
~r ~

2 l R 6

=  -  A W / R 4 +  Bx2 { -  r2/2R 6 +  9r*/8W }. 

To the same order, we get from (5.8) and (7.2)

o0 =  — 4Bx/cM sin G'/R5 ; 

and equation (5.3)' for t ' m ay be w ritten

+  dz

(7 .7 )

(7.8)

0R 3RJ sin 6' 36' (Sm 6

d  / - p 2 3 t '\  , 1 t '
^ 2 0 /  =  -  4Bi*M sin 07 R3- (7.9)

This equation has a particu lar solution of the  form

k  sin 0 '/R 3.

Evaluating the constant and adding a solution of the homogeneous equation, 

we finally get a function satisfying (7.9) and  vanishing on the surface of the 

sphere and a t infinity. I t  is

t ' =  -  B, kM s in  6 ' ( j p  -  i )  • (7 .1 0 )

I t  is assumed th a t both  B x and /cM are small. Approxim ations of higher 

order can be obtained in an analogous m anner. The solutions will proceed in 

powers of /cM and Bx. A t no stage do we introduce a singularity other than  

the original one a t R  =  0, so there should be no difficulty about convergence, 

provided the above-named constants are small.

Disregarding Ax, B 2, etc., the  values of f, l, m, as far as second order terms, 

are obtained by expanding (5.4) and pu tting  in the  expressions for Y, t{/, t 0 

and t '. These values are

, 2/cM +  Bx2/6a3 2k2M2 2Bx2P 2 (c o s  6')

J  R  +  R 2 +  3uR3

B12 (1 +  2P2 (c o s  6 '))

6R4

_27 _  , , 2/cM +  Bx2/6a3 , 2 AM2 2Bx2P 2 (c o s  6'), _ i+ - _ _

Bx2 (1 -  2P2 (c o s  0 ') )

2R4

r~2m =  6 ' {(1  +  k M /a)-  acM/R}

(7.11)
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192 A x ia lly  Symm etric  G ravita tiona l F ields.

If squares and products of k M  and Bx are neglected, the form (1.1) becomes

d*2 =  (1 — * 2-  |  ( i +  (<fr2 +  * 2 +  *?e*)} -  ? |e f  de i t

This approximation is identical with the form obtained by Leuse and 

Thirring, and with Bach’s first approximation. These authors write —k  4  M 

for Bj, i.e.,they  assume Bx to be proportional to  the angular momentum.

If we examine the coefficient of 1/K in the first two of equations (7.11), we 

notice th a t a t a sufficiently great distance from the sphere the effect of the 

rotation is to increase the effective mass of the sphere by B^/12/ca8.

We also notice th a t t 0 is proportional to  the magnetic potential of a uniformly 

magnetised sphere. The effect of this term  on the motion of a material particle 

is analogous to  the effect of a Coriolis force.

One cannot expect our second order term s to  fit w ith the second order terms 

obtained by Bach. For, in fact, they  do not represent the field of the same 

distribution of m atter. A sphere in Bach’s space is not a sphere in the canonical 

space. Weyl has shown, in the static case, th a t the canonical co-ordinates are 

connected with the co-ordinates of the Schwarzchild space by the transforma­

tion
, • , . (a/2)2

r-f  iz = r +
r  +  iz

where a  is the gravitational radius of the particle, in this case. The particle 

is transformed into a uniform rod of length 2a in the  canonical space. Since 

the transformation involves the square of a  (or k M),  the first approximations 

of Bach are necessarily contained in our first approximations when boundary 

conditions are suitably chosen.

[Note.—When the field in question is due to  a large body there is no com­

parison between the gravitational radius and the ordinary radius. For 

example, the gravitational radius of the sun is about 1-47 kilometres and the 

gravitational radius of the earth only 5 millimetres. Hence there is no danger 

of our method of approximation leading to  a singularity of the gravitational 

potentials outside m atter.]

My thanks are due to  Professor Schott for the interest he has taken in this 

work and for many valuable suggestions.
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