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Some Spinor-Curvature Identities

James M. Nester †, Roh-Suan Tung† and Vadim V. Zhytnikov ‡ *

Department of Physics, National Central University, Chung-Li, Taiwan 32054

Abstract: We describe a class of spinor-curvature identities which exist for Rieman-
nian or Riemann-Cartan geometries. Each identity relates an expression quadratic in
the covariant derivative of a spinor field with an expression linear in the curvature
plus an exact differential. Certain special cases in 3 and 4 dimensions which have been
or could be used in applications to General Relativity are noted.
02.40, 04.20

Spinor techniques continue to provide new results in physics and mathematics. For any
n-dimensional Riemann or Riemann-Cartan geometry with a spinor structure we have
found a certain class of identities each of which relates an expression quadratic in the
covariant differential of a spinor field with an expression linear in the curvature plus an
exact differential. We describe these identities in general and consider in particular certain
special cases in 3 and 4 dimensions which have application to Einstein’s gravity theory.

An orthonormal coframe field ϑa (note: the metric tensor components gab are con-
stant) and the metric compatible connection 1-form ωab = −ωba are “potentials” for the
torsion and curvature 2-forms:

Θa := dϑa + ωa
b ∧ ϑb, Ωa

b := dωa
b + ωa

c ∧ ωc
b. (1)

The dual n-k forms ηab··· := ∗(ϑa ∧ ϑb · · ·) are sometimes convenient.
A Clifford algebra {1, γa, · · · , γab···c, · · · , γ}, where γab···c := γ[aγb · · ·γc] and γ :=

γ1γ2 · · ·γn, is generated by “Dirac matrices” satisfying γaγb + γbγa = 2gab. Some of our
results are most succinctly presented in terms of the Clifford algebra valued forms:

ϑ := γaϑ
a, ω := 1

4
γabω

ab (2)

Θ := γaΘ
a, Ω := 1

4γabΩ
ab, (3)

In this notation eqs (1) become

Θ := Dϑ := dϑ+ ω ∧ ϑ+ ϑ ∧ ω, Ω := dω + ω ∧ ω. (4)
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(A nice development of such “Clifforms” is given by Dimakis and Müller-Hoissen 1991.)
The identities discussed here are all linear combinations of expressions of the general

type

2D(ψA) ∧D(Bψ) ≡ d{ψA ∧D(Bψ)− εD(ψA) ∧Bψ} − ε2ψA ∧ Ω ∧Bψ, (5)

where ψ is a Dirac spinor, A and B are matrix valued forms of rank a, b and ε = (−1)a.
The general identity is easily established from

d{ψA∧D(Bψ)−εD(ψA)∧Bψ} ≡ 2D(ψA)∧D(Bψ)+εψA∧D2(Bψ)−εD2(ψA)∧Bψ, (6)

using D2(Bψ) = ΩBψ and D2(ψA) = −ψAΩ. The simplest case, A = B = 1, yields an
identity with the full curvature 2-form:

2Dψ ∧Dψ ≡ d(ψDψ −Dψψ)− 1
2
Ωabψγabψ. (7)

It should be noted that identities of this general form considered here are not confined
to spinor fields, for example for 2 vector fields we have

DWα ∧DV α ≡ d(WαDV
α − V αDWα)− (WαD

2V α − V αD2Wα)

≡ d(WαDV
α − V αDWα)− 2WαΩ

α
βV

β .
(8)

Here, however, we consider spinor fields and focus on the cases where A and B in eq
(4) are simple combinations naturally constructed from ϑ, their matrix-wedge products
ϑK := ϑ ∧ ϑ ∧ . . . (K factors) and the Hodge dual ∗ because, for suitable choices of such
A and B, we can project out curvature combinations such as the Einstein tensor or the
scalar curvature; we do not know how to get these using vectors or tensors.

The 3 and 4 dimensional versions of such identities have application to gravity theory.
In particular they can be used to replace the curvature terms in Lagrangians and Hamil-
tonians. This can be advantageous because the quadratic spinor expressions have faster
asymptotic fall off.

The first construction of this type contained the 4-dimensional Einstein tensor and
was used in the Witten positive energy proof (Witten 1981, Nester 1981). Subsequently
it was shown that the Hamiltonian density for Einstein gravity could be expressed as a
4-covariant quadratic spinor 3-form (Nester 1984):

H(ψ) := 2{D(ψγ5ϑ) ∧Dψ −Dψ ∧D(γ5ϑψ)} ≡ 2NµGν
µην + dB, (9)

where
B := ψγ5ϑ ∧Dψ +D(ψγ5ϑ)ψ − ψD(γ5ϑψ) +Dψ ∧ (γ5ϑψ), (10)

and Nµ = ψγµψ. The key is that

Ωµν ∧ ψγ5(ϑγµν + γµνϑ)ψ ≡ Ωµν ∧ ηµναψγαψ ≡ Gν
µηνψγ

µψ. (11)

The Hamiltonian density (9) can be decomposed, with respect to the normal to any space-
like hypersurface, into positive and negative definite parts and is locally non-negative if ψ
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satisfies the Witten equation γaDaψ = 0, thereby permitting a positive energy proof and
more: a non-negative “localization” of gravitational energy.

More generally for an n-dimensional Riemanian space the Einstein tensor (for n > 3)
appears in the “Hamiltonian” n− 1 form (Mason and Frauendiener 1990):

H(ψ) := 4Dψ ∧ γϑ(n−3) ∧Dψ
≡ 2ψγbψGa

bηa + d{ψγϑ(n−3) ∧Dψ +Dψ ∧ γϑ(n−3)ψ}. (12)

The corresponding Riemann-Cartan expressions are considerably more complicated as it is
necessary to take into account non-vanishing contributions from Dϑ = Θ on the left hand
side and grade 5 Clifford algebra terms proportional to DΘa ≡ Ωa

b ∧ϑb on the right hand
side; the general pattern is binomial, in particular ψγ(Ωϑϑ+ 2ϑΩϑ+ ϑϑΩ)ψ projects out
the Einstein 4-form in 5 dimensions; for 6 dimensions ψγ(Ωϑϑϑ+3ϑΩϑϑ+3ϑϑΩϑ+Ωϑϑϑ)ψ
gives the Einstein 5-form, etc. By the way, the rank of such identities is not as restricted
as our discussion has indicated for we could take ψ to be a spinor valued differential form
of some suitable rank.

The next application came up in a new gravitational energy positivity proof and
localization using 3-dimensional spinors (Nester and Tung 1993). The scalar curvature

term and the boundary term in the ADM Hamiltonian were replaced using the new spinor

identity

2[∇(ϕ†iϑ) ∧ ∇ϕ−∇ϕ† ∧ ∇(iϑϕ)] ≡ dB − (ϕ†ϕ)Ωij ∧ ηij , (13)

where
B := ϕ†iϑ ∧ ∇ϕ− ϕ†∇(iϑϕ) +∇(ϕ†iϑ)ϕ+ (∇ϕ†) ∧ iϑϕ. (14)

The key detail is

ϕ†ϕR√gd3x ≡ ϕ†ϕΩij ∧ ηij ≡ Ωij ∧ ϕ†i(ϑγij + γijϑ)ϕ. (15)

Generalizing, we find an identity which contains the Riemannian scalar curvature
n-form: Rη = Ωab ∧ ηab,

2Dψ ∧ γϑ(n−2) ∧Dψ ≡ d{ψγϑ(n−2) ∧Dψ −Dψ ∧ γϑ(n−2)ψ} − ψψΩab ∧ ηab. (16)

The corresponding Reimann-Cartan identity is more complicated but again follows a bino-
mial pattern, the general structure can be inferred from the special cases in low dimensions.
For 3 dimensions we have eq (13), for 5 dimensions the Clifform combination which projects
out purely the scalar curvature 5-form is again ψγ(Ωϑϑϑ+3ϑΩθϑ+3ϑϑΩϑ+ϑϑϑΩ)ψ, for
4 dimensions it is ψγ(Ωϑϑ+ 2ϑΩϑ+ ϑϑΩ)ψ so that we have in detail

D(ψγϑ2) ∧Dψ − 2D(ψγϑ) ∧D(ϑψ) +Dψγ ∧D(ϑ2ψ) ≡ −Rψψη
+ d{−Dψ ∧ γϑ2ψ −D(ψγϑ) ∧ ϑψ − ψγϑ ∧D(ϑψ) + ψγϑ2 ∧Dψ}, (17)

for the 4-dimensional identity. This expression illustrates how much more complicated the
identities are with torsion. The Riemannian version is simply

4Dψ ∧ γϑ2 ∧Dψ ≡ −Rψψη + 2d{−Dψ ∧ γϑ2ψ + ψγϑ2 ∧Dψ}. (18)
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These 4-dimensional scalar curvature identities invite applications where the Einstein-
Hilbert Lagrangian is replaced by a quadratic spinor Lagrangian 4-form.

The higher dimensional identities could also be useful for gravity applications, e.g.,
unified field theories of the generalized Kaluza-Klein type. Moreover, a 5-dimensional
geometry is useful for embedding 4 geometries with a cosmological constant. However,
most gravity applications are in 3 and 4 dimensions.

In 3-dimensions, up to multiples of i there are only 2 interesting cases Dϕ† ∧ Dϕ,
which gives the full curvature 2-form (7), and the combination (13) which gives the scalar
curvature.

The basic 4-dimensional cases are as follows. First the 2-form Dψ ∧Dψ is related to
the full curvature tensor according to (7). Next we have the Einstein tensor (2). And the
scalar curvature (17). Moreover we can insert an additional γ5 into all of these.

We have found the Dirac spinor notation most suitable for the general case. However,
for the important special case of 4 dimensions (and 3 dimensions) another spinor notation
is also popular (Penrose and Rindler 1986). The basic identities in this notation have the
form (Riemannian geometry):

2DϕA ∧DχA ≡ d(ϕADχ
A −DϕAχ

A) + 2ϕAχBΩAB, (19)

2DϕA ∧ θAḂ ∧DχḂ ≡ d[ϕAθ
AḂ ∧DχḂ −DϕA ∧ θAḂχḂ ]− 2ϕAχḂΩ

Ḃ

Ḋ
∧ θAḊ, (20)

2DϕA ∧ SAB ∧DχB ≡ d[ϕASAB ∧DχB −DϕA ∧ SABχ
B ]− 2ϕAχBSAM ∧ ΩM

B

≡ d[ϕASAB ∧DχB −DϕA ∧ SABχ
B ]− i

4
RϕAχAη, (21)

where ϕA and χA are any two-component Weyl spinors, SAB is the self dual spinorial

2-form SAB := 1
2θA

Ḋ ∧ θBḊ and ΩAB is the spinorial curvature.
Four dimensional Dirac spinors and matrices can be expressed via Weyl spinors with

the help of the relations:

ψ = (χA ϕȦ), ψ =

(

ϕA

χȦ

)

, γa =
√
2

(

0 σaAḂ

σa
BȦ

0

)

, (22)

where σa
AḂ satisfies the identity σa

AḂσaCḊ = εACεḂḊ.
Identities (19)–(21) are complex, but with the help of (22) one can easily conclude

that eq (21) is the imaginary part of the (18) and the analog of (18) without γ is the real
part of (21). Similarly, eq (7) is the real part of (19).

We also note that such identities are not restricted only to the Riemann or Riemann-
Cartan connection. In 4 dimensions we may, for example, replace ωαβ and Ωαβ with their
self dual combinations: Aαβ := 1

2(ω
αβ + 1

2 iǫ
αβ

µνω
µν) and Fαβ := 1

2 (Ω
αβ + 1

2 iǫ
αβ

µνΩ
µν)

(for an application see Nester, Tung and Zhang 1993). Moreover, similar identities apply
to Yang-Mills connections, for example

2Dψ ∧Dψ ≡ d(ψDψ − (Dψ)ψ)− 2F pψTpψ, (23)
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where Dψ := dψ +ApTpψ and F p := dAp + ǫpqrA
q ∧ Ar is the Yang-Mills field strength.

We have focused on identities linear in curvature. However, identities of the type
discussed here need not be so restricted; we may choose, for example, A = Ωabγab in eq (5)
to obtain an identity involving quadratic curvature terms. Clearly there are many other
possibilities. We are not yet aware of any applications for such higher order identities.
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