
MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 137
JANUARY 1977, PAGES 163-179

Some Stable Methods for Calculating Inertia
and Solving Symmetric Linear Systems

By James R. Bunch* and Linda Kaufman**

Abstract. Several decompositions of, symmetric matrices for calculating inertia and
solving systems of linear equations are discussed. New partial pivoting strategies for

decomposing symmetric matrices are introduced and analyzed.

1. Introduction. In [5] Bunch and Parlett present an algorithm, called the diagonal
pivoting method, for calculating the inertia of real symmetric or complex Hermitian
matrices, and for solving systems of linear equations when the matrix is real symmetric,
complex symmetric, or complex Hermitian. Using a pivoting strategy comparable to
complete pivoting for Gaussian elimination, Bunch [2] shows that the diagonal pivot-
ing method with this complete pivoting strategy is nearly as stable as Gaussian elimina-
tion with complete pivoting. (The bound on element growth is 3nf(n), cf. y/nf(n)^
where

/(„) = /rj t»/(*-DV/2 < l.6nW*»°*»;

the cost of stability is at least w3/12 but no more than «3/6 comparisons, cf. w3/3
comparisons, while requiring «3/6, cf. n3/3, multiplications and additions.)

In [3] Bunch discusses various partial pivoting strategies for the diagonal pivot-
ing method which require only 0(n2) comparisons instead of 0(n3), although these
increase element growth. In this paper we shall present and analyze several good
partial pivoting algorithms for the diagonal pivoting method.

In Section 2 we shall show that the diagonal pivoting method can be modified
so that only n2 comparisons are needed but element growth.is now bounded by
(2.57)"-1 (cf. 2"_1" for Gaussian elimination with partial pivoting). Thus, the diagonal
pivoting method can solve annx/i nonsingular symmetric system of linear equations
with n3/6 multiplications, n3/6 additions, <«2 comparisons, and n2/2 storage while
Gaussian elimination with partial pivoting requires «3/3 multiplications, n3/3 additions,
n2/2 comparisons, and n2 storage.

In Section 3 other variations of the algorithm are presented and analyzed. In
Section 4 the situation for symmetric band matrices is discussed. We are unable to
give an algorithm which preserves the band structure for every bandwidth 2m + 1.

Received February 25, 1975, revised March 23, 1976.
AMS (MOS) subject classifications (1970). Primary 65F05, 65F30, 15A21, 15A57, 15A63.
'Partial support was provided by NSF Grant MCS75-06510.
**Partial support was provided by NSF Grant MCS7S-23333.
Current address (L. Kaufman): Bell Laboratories, Murray Hill, New Jersey.

Copyright b 1977 American Mathematical Society

163

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

164 J. R. BUNCH AND LINDA KAUFMAN

However, we are able to give good algorithms for the important special cases when m
= 1 and m = 2 (tridiagonal and five-diagonal).

We have included an appendix for those who are unfamiliar with the diagonal
pivoting method. In the following sections we shall assume familiarity with the con-
cepts in the appendix.

2. A Partial Pivoting Strategy. In this section we describe and analyze a partial
pivoting strategy for transforming an n x n symmetric indefinite matrix A by stable
congruences into a block diagonal matrix £>, where each block is of order 1 or 2. As
in Bunch and Parlett's [5] complete pivoting strategy, the algorithm generates a se-
quence of matrices A^k' of order k according to the formula

A(k-s) =B_ çet^c*,

where A^ or a symmetric permutation of A^k\ P^^P^., is partitioned as

Lc fij

where £ is an s x s nonsingular matrix, C is a (k - s) x s matrix, and B is a (k - s) x
(k - s) matrix and s is either 1 or 2. If E is s x s, we say that an s x s pivot has been
used. (For convenience, we shall still denote PkA^k'Ptk as A^'.)

Bunch and Parlett's pivoting strategy may be considered analogous to Gaussian
elimination with complete pivoting. Unfortunately, there is no stable scheme exactly
analogous to Gaussian elimination with partial pivoting; one cannot construct an algo-
rithm for which there is a bound on the element growth of the sequence A^ when at
each stage only one column of A^k' is examined (see [3]). The method described in
this section guarantees that the element growth in A^ is bounded while searching
for the largest element in at most two columns in each A^k'. For future reference we
call the strategy Algorithm A.

In Algorithm A, the matrix A^k~s^ is determined as follows:
(1) Determine X^, the absolute value of the largest off-diagonal element in

absolute value in the first column of A^, i.e.

X<fe> = max \A¡k)\.
2«;<fc

If X^ = 0, decrease k by 1 and return to 1. Let r be the least integer such that
i4*>i = *(fc)-

(2) If {A[k^\ > aX(k) where 0 < a < 1, perform a 1 x 1 pivot to obtain
A^k~1', decrease k by 1 and return to (1). We will show that a good value for a is
(1 +VÏ7)/8.

(3) Determine <rfc% the absolute value of the largest off-diagonal element in ab-
solute value in the rth column of A^, i.e.

<> = max M<*>

m i=r

max \A(k\\.
Km<fc

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 165

(Recall that Arl is the largest off-diagonal element in the first column.)
(4) If aX(fc)2 < L4(nVfc), then perform a 1 x 1 pivot to obtain A(k~l), de-

crease k by 1, and return to (1). (We need this test to guarantee stability.)
(5) If \A^\ > aa^, then interchange the first and rth rows and columns of

A^k\ perform a 1 x 1 pivot with the new A^, decrease k by 1, and return to (1).
(6) Interchange the second and rth rows and columns of A^ so that \A$\ =

X(fc\ perform a 2 x 2 pivot to obtain A^k~2\ decrease kby 2 and return to (1). In
order to compute A^k~2^, either E~l can be formed directly (as in [2]) or E~XC{
can be formed by Gaussian elimination with partial pivoting. The stability analysis is
the same for each here, but the operation count is slightly higher (in the lower order
terms) for the former and these are the operation counts that we give here.

Step (4) of the algorithm deserves an explanation. The step was designed to
screen out a pathological case with 2x2 pivoting when the largest off-diagonal element
in absolute value of the rth column was larger than that of the first column, i.e. when
r/*) > }Sk\ In this case, step (4) is equivalent to:

scaling the first row and column of A^ so that the
absolute value of the largest element in the first column
of A^ is equal to a^ and repeating
steps (1) and (2) on the scaled matrix.

In the absence of roundoff error, the reduced matrix A^k"s^ generated by Algorithm
A and the one generated by using explicit scaling would be the same. If a 2 x 2
pivot had been performed when the test in step (4) dictated the use of a 1 x 1 pivot,
then the element growth of A^k~2' could not be bounded a priori. Whenever X^fc' >
r/fc\ the test in step (4) cannot be passed and one proceeds with step (5).

Note that whenever a 2 x 2 pivot is used, after permuting A^k', we have A^A2k2^
< a2 \A2kJ |2 < l^yl2; thus a 2 x 2 block in D corresponds to a positive-negative
pair of eigenvalues. This means that HA is positive definite then D will be diagonal.

We shall now analyze Algorithm A. Let ¡i = max1 <f <n \A¡A and «(,c) =
max1<f i«ík\A¡p\ for each reduced matrix A^ that exists. (If A^ uses a 2 x 2
pivot then A^k~1^ does not exist.) Note that both X^ and a^ are less than or equal
to pSk\

If a 1 x 1 pivot is used, after permuting A^k\ we have

Ak-i) _ Ak) _ Ak) Ak) /Ak)

so that by step (2) of Algorithm A,

(2-1) lit*"1) < u<k> + X«/a < pSk\\ + I/a);

by step (4),

(2.2) „<*-») < u(fc) + \W2l\A<ft\ < u(Ä) + oik)/a < /i(fc)(l + 1/a);

and by step (5),

(2.3) /i(fc_1) < M(k) + a(fc)/a < M(fc)0 + 1/a).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

166 J. R. BUNCH AND LINDA KAUFMAN

If a 2 x 2 pivot is used, after permuting A^, we have

(2.4)
Aij Ai+2j + 2

\(Ak) Ak) _ Ak) A(k)U(k) + (Ak) A(k)_Ak) A(k)U(k) i
1^1 + 2,1^22 ^1 + 2,2^2 1 >^/ + 2,l ^ ^¿ + 2,2^11 Ai + 2,lA2 1 //1/ + 2,2J

Since l/lftV0 < aX(fc)2 by step (4) and \A2kj\ < c*o(fc) by step (5),

W$*í)IWÍVl<aaX<*)a,
which implies that

I4V4V/4V - 4V ! > X(*}(1 - a2) or
(2.5) l/L4ft>4*>/4*> - 4*,>l < l/(X(fc)(l - a2))-
Equations (2.4) and (2.5) together imply that

r*-i. ,« (X<fcW*> + a<k>X<*>)X(fc> + (a<*>U4<*>l + X(fc)Vfc)
//" ¿> < //*> + -—-5

xW2(l-a2)
Since aw\A[k^\<oûSk)2,

Ak-2) <M(fc) + (a(J(k) + a(*) + aa(k) + a(*))/(1 _ a2}
(2.6)

< u<k>(l + 2(1 + a)/(l - a2)) = M(fc)(l + 2/(1 - a)).

By (2.1), (2.2), (2.3), and (2.6),

max M(fc) < max{(l + l/a)"-*, (1 + 2/(1 - a))^-^12}^
fc

The growth is minimized when (1 + 1/a)2 = (1 + 2/(1 - a)), i.e. when a =
(1 4- VÏ7)/8 = 0.6404, in which case maxfcJu(fc) < /¿(2.57)"-1.

As noted above, Algorithm A is equivalent to one which scales the first row and
column of A^k' at each step so that the maximum norm of the first and second col-
umns of .4'fc' are equal. If the scaling had been done explicitly, then the algorithm
would determine a permutation matrix P, a lower triangular matrix M, and a block
diagonal matrix D such that PAP1 -MDM1, where \Mif\ < max(l/a, 1/(1 - a)) and

|£\|<(2.57)"-V.
Algorithm A creates the same matrix P, but a unit lower triangular matrix M

and a block diagonal matrix D such that PAP1 = MDM1, where M = MS and D =
S DS , where S is a diagonal matrix given by

Skk

1 if (H<Vl > aX<fc>) or (L4$| > oa<*>) or (X<fc> > c/fe>),

nàa(y/oa^kV\A[% o<*>/X(fc)) otherwise,

i.e. \Skk\ > 1. The bound on the elemental growth of D is that of D.
The operation count is detailed in the following flowchart of Algorithm A. The

words comps, mults, adds and divs indicate the number of comparisons, multiplications,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 167

additions and divisions for each step of the algorithm.

Flowchart of operation count for computing A^k~s\ s = 1 or 2

Find X: Comps = k~2

Yes

|/ln|>aX? Comps. mults = 1

\No

Find a: Comps.= k - 2

1/1,.,.I >qu? Comps. mults = 1

No

Interchange

Use 1 x 1

Calculate
Multipliers: Divs = k - I

Form,4<*-,>..fMultS'Adds
*°rmA \k(k-l)l2

Yes

oL4,,|>oX2?

No

(Comps = 1, mults = 2)

(Note aX is already known)

t "Use 2 x 2

Interchange
Calculate (Mults: 2
determinant: ^Adds: 1
Calculate (Mults = 4(k - 2)
multipliers: VDivs = 3

(Adds = 2(k-2)

A{k-2). (Mults, Adds =

k: = k- \ k: = k-2

The comparison count is much less for Algorithm A than for the complete
pivoting scheme, and in practice this fact has had a much larger impact than originally
anticipated, sometimes cutting the execution time by about 40%. In the complete
pivoting scheme, at each stage of the algorithm the largest element in the current sub-
matrix is determined and the comparison count is bounded by n3/6 and «2/2 + n/3
(see [2]), while in Algorithm A at most two columns are searched and the compari-
son count is at most n2 - 1.

The table given below gives upper bounds for the number of operations and
storage space required for solving Ax = b by Algorithm A, Gaussian elimination with
partial pivoting and Aasen's tri diagonal algorithm [1]. In the table the decomposition
phase for Aasen includes only the reduction to tridiagonal form. The LU decomposi-
tion of the tridiagonal matrix is included in the solution phase.

3. Variations of the Algorithm.
3.1 Estimating ß^k\ For small n, we can construct examples for which the ele-

ment growth bound of (2.57)"_1/¿ for Algorithm A of Section 2 is attained. How-
ever, we have been unable to construct an example for arbitrary n which reaches
(2.57)"_1u. Furthermore, as with Gaussian élimination with partial pivoting, large
growth does not seem to occur in practice. Nevertheless, one would like to have a
quick method for obtaining an estimate of pSk^ so that whenever the element growth

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

168 J. R. BUNCH AND LINDA KAUFMAN

Multiplications and Divisions Additions Comparisons Storage Element
Growth

Algorithm A

decomposition

solution phase

Total

Gaussian
elimination
decomposition

solution phase

Total

Aasen

decomposition

solution phase

Total

" x 3" x 7
6 4 3

n' + In

T + V i. 13+ -jn

« j. ■> J 49
7 + 2" "7"
n¿ + An

"3 x -j 2 25T + 3n - T'

7 + T+o"

6 4

T+6

*_+»_

+ n<6

n2 + 2n

25
7"

n3 + 2«2 - ^n

n¿ - 1

0

n2-l

3n
2

" x3

"2 x5
T+2"
"2 x5

n' +n

n2 + 2n

n2 + 2n

y + 2
n2 11«
2 2

T +
il«

2.57"

is excessive, a switch can be made to the slower executing complete pivoting scheme
of Bunch and Parlett [5], for which the element growth is bounded by
\Jnf(n)c(ayi(n, a) where f(n) = fl£=2(A:1/(k_1))1/2 which grows slowly like
n(i/4)iog(n\and

c(a)h(n, a) < 3y/n for a0 = (1 + VÏ7)/8.

Businger [6] has presented an inexpensive algorithm for monitoring the growth
in Gaussian elimination with partial pivoting. Because of the symmetry of our decom-
position, Businger's idea is very satisfying when applied to Algorithm A.

According to (2.1), (2.2), and (2.3) when a 1 x 1 pivot is used to find ^(fc_1\

where

ß(k)

M(*-D <M(fc) +i3(fc);

X(k)/a if ¿(k_1) is formed at step (2),

\a(k)/a if A(k~l) is formed at steps (4) or (5).

According to (2.6), when a 2 x 2 pivot is used to find A^k~2>>,

where (3(k) = ^k"1) = o(k)/(l - a). Therefore

//k><M+ ¿ ffi\
j=k + l

Thus only the n2/2 comparisons to determine u, and k divisions and k additions are
needed to determine a decent estimate to //k\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 169

We suggest that whenever irk' > 13«/i the complete pivoting strategy of Bunch
and Parlett [5] should be used.

3.2 Accumulating Inner Products: Algorithm B. In [4] a reformulation of
Algorithm A is described which permits the accumulation of inner products in multi-
ple precision and which would probably be more suitable for electronic hand calcula-
tors. The method, called Algorithm B, relates to Algorithm A in the same way that
the Crout-Doolittle algorithm for solving a system of equations with a general matrix
relates to Gaussian elimination with partial pivoting; see [10]. Algorithm B was
motivated by Aasen's [1] description of Parlett and Reid's [9] algorithm.

3.3. Other Strategies. Other partial pivoting strategies, similar to Algorithm A,
can be formulated, including Algorithms C and D given below.

In Algorithm C,.^*-^ is determined as follows:
(1) Determine pSk^ = \A^\ = msx.i<i<k\A\p\ and permute the first and pth

rows and columns of A^ so that \A[kJ\ = p.[k\
(2) Determine X(k> = L4<k)| = max2<i<ikl4f>|.
(3) If y^k) > aX(k\ use Affl as a 1 x 1 pivot to obtain 4(k-1), decrement k

by 1, and return to (1). As before, a good value for a is (1 + >/l7)/8.
(4) Determine a(k) = max2<m<Jfcwl#r|^>.|.
(5) If aX(k) < \A<$\ a(k), use A[kJ as a 1 x 1 pivot to obtain A{k~l), decre-

ment k by 1, and return to (1).
(6) Interchange the second and rth rows and columns oï A^k' so that |>l2k^| =

X^ and perform a 2 x 2 pivot to obtain A^k~2\ decrement k by 2 and return to

(1).
Because the maximum element of a positive-definite matrix is on the diagonal,

when Algorithm C is applied to a positive-definite matrix A, one obtains the decompo-
sition PAP1 = MDM1 with \MtA < 1. For some applications this is very desirable.
Unfortunately, on most problems, Algorithm C is more costly than Algorithm A be-
cause at each stage the diagonal is searched and extra interchanges might be required.
In Algorithm A between n2/2 + 0(ri) and n2 + 0(n) comparisons are needed to
determine the pivot strategy while in Algorithm C between 3«2/4 + 0(n) and 3n2/2
+ 0(n) comparisons are needed to determine the pivot strategy. The bound on ele-
ment growth in A^ for Algorithm C is the same as for Algorithm A. When solving
a system of equations with A, Algorithm C will probably give a smaller error than
Algorithm A.

In Algorithm D, A^-k~^ is determined as follows:
(1) Determine X(k) = \A$\ = max2</<fc|>íí(f)l.
(2) If 1.4 ft* I > aX(k), use ¿ft* as a 1 x 1 pivot to obtain A{k~l), decrement

it by 1, and return to (1). Below we shall show that a good value of a is about
0.525.

(3) Determine a(k) = max2<m<k\A^r\.
(4) If aX(k) < |y4(1k)|a(k), then use ,4 ft* as a 1 x 1 pivot to obtain ^(k-1),

decrement k by 1, and return to (1).
(5) Interchange the second and rth rows and columns of A^ so that \A2*$\ =

X*k*, perform a 2 x 2 pivot to obtain A^k~2\ decrement k by 2 and return to (1).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

170 J. R. BUNCH AND LINDA KAUFMAN

Whenever a 1 x 1 pivot is used in Algorithm D, no interchanges are performed,
which means less bookkeeping, fewer references to memory in general, and fewer
opportunities to interfere with the structure of the system. In particular, the algo-
rithm is quite amenable to tridiagonal systems.

The disadvantage of Algorithm D is a larger bound in the element growth in
the matrix. As in Section 2, let //k* = maxj^,. .<fcL4J[**|. As in Algorithm A,
whenever a 1 x 1 pivot is used, //k_1* < //k*(l + 1/a). When a 2 x 2 pivot is
used, after permuting A^k\

L4ft*|^2k*|<L4ft*|a(k*<aX(k*2,
so

I4V49/4V - 4*}i > ̂ o - «)•
which is a slightly smaller bound than in Algorithm A. Because ¡j422*¡ < r/** and
|¿ftVk* < aX(k)2, Eq. (2.4) implies

M<*-2) < [i +(3+a)/(l-a)]M(*).

Thus

M(k) < max{(l + 1/a)""*, [1 + (3 + a) 1(1 - a)]("-k*/2}u,

which is minimized when (1 + 1/a)2 = 1 + (3 + a)/(l - a). This occurs when a is
approximately 0.525, giving a bound of (2.92)"_1u, which is larger than in Algorithm
A.

4.1 Band Matrices. Many of the problems in numerical linear algebra with sym-
metric indefinite matrices involve band matrices. A band matrix A is said to have
bandwidth m if Ay = 0 for \i - j\ > m. When A is band, one would like to use an
algorithm, like Gaussian elimination with partial pivoting, which takes advantage of
the band structure of the matrix to increase the efficiency of the algorithm.

Unfortunately, except for m = 1 and m = 2, none of the algorithms outlined
in Sections 2 and 3 guarantee the preservation of the band structure of the matrix.
The row and column interchanges used to guarantee stability destroy the band struc-
ture of the system.

Algorithm D does the least damage of all the algorithms A-D, since interchanges
only occur when a 2 x 2 pivot is used, and hence only in this case is the bandwidth
increased. Let mk be the bandwidth of the matrix A^ generated by Algorithm D.
When a 1 x 1 pivot is used,

Ímk - 1 if mk > m,

mk otherwise.

When a 2 x 2 pivot is used, mk_2 = max(mfc —2,m,j + m — 2) where the /th and
2nd columns are interchanged before the creation of A^k~2\ Since / < mk, one is
assured that

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 171

mk_2 <mk + m 2 and mt < m + (m - 2).

For m > 2, one must concede that the band structure might be ruined.
In Section 4.2 we discuss the tridiagonal case (m = 1) and in Section 4.3 we

present an algorithm for the five-diagonal case (m = 2).
4.2 Tridiagonal Matrices. Let £ be a symmetric tridiagonal matrix, i.e. Tu =

0 for \i -/| > 1. Of the many algorithms that have been proposed to solve Tx = b,
Gaussian elimination with partial pivoting has proved the least time-consuming. How-
ever, Gaussian elimination with partial pivoting does not preserve symmetry. In [3]
Bunch has proposed a symmetry preserving algorithm which can be used to determine
the inertia of T as well as solve a system of equations. Like those given in Sections 2
and 3, the algorithm finds the MDM1 decomposition of (1.1) by generating a sequence
of tridiagonal matrices £^k* of order k. We show the first step which is typical:

Let a be a fixed number such that 0 < a < 1.
(1) If \T11\> a\T2112, then use a 1 x 1 pivot to generate 7*"-1*.
(2) If |rn|< a|£21|2, then use a 2 x 2 pivot to generate T(n~2).
Bunch [3] shows that the bound on element growth is minimized when a =

(\/5 - l)/(2«) where u = max1<f/<n|£(..|. With this value of a,

max
i <;,/<*

ir<*>|<ÍLb¿9it-
Table 4.2 gives the operation counts and storage requirements for Bunch's al-

gorithm [3] and Gaussian elimination with partial pivoting. When storage is crucial,
Bunch's algorithm [3] is preferable to Gaussian elimination with partial pivoting.

Table 4.1. Operation Count: Tridiagonal Case

Bunch's
Original
Algorithm [3]

Modified
Algorithm

Gaussian
Elimination
with Partial
Pivoting

Decomposition
Only

Solving
Tx = b

Decomposition
Only

Solving
Tx = b

Decomposition
Only

Solving
Tx=b

Multiplications

Additions

Comparisons

Storage
Required

2" + 2P

2« + 2P

3/1

17 3Yn--p

An - p

5 x 1
2"+2P

4/1

7 x '
2" + 2P

V + 2P
3/1

In

An - p

5 x 1
2 2

Sn

3/1

2/1

n

5/1

7/1

5/1

n

6/1

(p represents the number of 1 x 1 pivots)

Bunch's algorithm entails examining the whole matrix to compute ju before
determining a. When the whole matrix cannot fit in main storage or when it is not
necessary to obtain the complete decomposition, searching through the whole matrix

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

172 J. R. BUNCH AND LINDA KAUFMAN

beforehand can be expensive. This problem can be remedied by changing the test
in step (1) to:

(1) If max (|^2 j |, i-422|, 1^32!) x \An\> aA\l, then use a 1 x 1 pivot.
Here a is simply ((y/5 - l)/2).

The bound on element growth with this modification is the same, but the de-
composition now requires An + p multiplications and 3w/2 + 3p/2 comparisons.

Bunch's original algorithm can be modified slightly to obtain an operation count
closer to that of Gaussian elimination when solving linear equations. The modification
involves realizing that one need not construct the MDM1 decomposition explicitly but
only that part of the decomposition which is useful in solving linear equations.

To solve Ax = b, one solves Mc = b for c, Dy = c for y and Mtx = y for x.
Let us assume that the first block of D is 2 x 2 and hence one may write

y2 = (ßc2- cx)/5 and yx = (c2 - D22y2)/D21,

where ß = Diï/D21 and 6 = D22ß - D21. The quantities ß and S are also needed in
the decomposition phase since M31 = ~T32/8 and M32 = ßM31. To decrease the
operation count we suggest saving ß in place of Dt j and storing 6 separately.

The computation requirements for this modified algorithm is given in the second
column of Table 4.1.

4.3 Five-Diagonal Matrices. In this section we consider two methods for a
symmetric indefinite five-diagonal matrix F, i.e. F(-. = 0 for \i -j\ > 2. Such a matrix
arises during the solution of partial differential equations with periodic boundary con-
ditions. As in the case of tridiagonal matrices, Gaussian elimination with partial
pivoting is still the least time-consuming stable algorithm for solving Fx = b, but it
destroys symmetry. In this section we describe two symmetry-preserving algorithms,
E and F, which, for an irreducible matrix F, determine matrices P, M, and D such
that

(4.1) PFP1=MDM1
as in (1.1). Here M„ = 0 for i > j + 3. With decomposition (4.1) one can solve
Fx = b with less storage than Gaussian elimination with partial pivoting but with a
slightly higher operation count.

The algorithms follow the ideas used in Sections 2 and 3 and generate a se-
quence of five-diagonal matrices F^k' of order k. They were designed so that the
bound on the element growth of F^k* is independent of k and the operation count
is kept low.

Both algorithms have the same bound on element growth. The bound on the
, operation count for Algorithm E is slightly higher than that of Algorithm F, but in
Algorithm E the probability of attaining the bound is less.

The first step of each algorithm is typical.
Algorithm E. (1) \î \F2X\> \F3l\, then let a = max(|F211, |F32|, |F42|).

(a) If a\Fl j I > a\F2l |2, generate F("-1) using a 1 x 1 pivot.
(b) If |F22| > a, then interchange the first and second rows and columns of F

and perform a 1 x 1 pivot on the new F to generate F*"-1*.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 173

Table 4.2. Operation Count: Five-Diagonal Matrices

Algorithm E Algorithm F Gaussian Elimination
with Partial Pivoting

Decomposition
Only

Solving
Fx = b

Decomposition
Only

Solving
Fx = b

Decomposition
Only

Solving
Fx = b

Multiplications

Additions

Comparisons

Storage

23 , 1
-jn + -p

H" + P)

39
- n 23 3

T""2P

An

2n"2P

§(«+p)

5//

11
y

i

3(n + p)

4/1

39 5— n - -p2 2H

25 3Yn--p

3(n + p)

5n

lO/i

8/1

In

8»

17«

14»

In

9/1

(c) Use a 2 x 2 pivot to generate F<" 2*.
(2) If |F211< \F311, then let a = max2<,.<slF,.3|.

(a) If o|Fj j | > a|F3112, then perform a 1 x 1 pivot to generate F("_1*.
(b) Interchange the second and third rows and columns of F and perform a

2x2 pivot step to generate F^"~2\
Algorithm F. (1) If \F2l \ > \F311, then

(a) if |Fj j | > a\F21\, then generate F("-1* using a 1 x 1 pivot.
(b) Leta = max(|F21|, |F32|, F42|).

If |F22| > a, then interchange the first and second rows and columns of F
and perform a 1 x 1 pivot on the new F

(c) If a\Fl ! I > a|F2 j |2, generate F("_1) using a 1 x 1 pivot.
(d) Use a 2 x 2 pivot to generate F(""2).

(2) If |F2 x | < |F311 then do the same as (2) in Algorithm E.
Step (lb) in each algorithm was included to ensure that the bound on IF^*!

would be independent of k. In Algorithm F step (la) was included so that the bound
on l/'ft*! would be independent of k.

The bound on element growth for each algorithm is minimized for a = 0.52542
(see [4]), and then |F¿k*| < 23.88 max1<(./<„F//|.

The operation count for each algorithm is largest when rows and columns are
interchanged. The bound on the operation count is slightly higher for Algorithm E
since more checking is done before the algorithm concedes that one must interchange
rows and columns before performing a 1 x 1 pivot. But because of the extra checks,
the bound will not be attained as often as it would be in Algorithm F.

In Table 4.2, p is the number of 1 x 1 pivots. If storage is crucial, Algorithm
E or F should be used rather than Gaussian elimination with partial pivoting.

For Algorithm F, the bounds on the multiplication, addition, and comparison
count cannot all be attained simultaneously. The bounds on multiplications and addi-
tions are attained only if all 1 x 1 pivots are done in (lb) and all the 2 x 2's in (2b).
In this case at most 5(« + p)/2 comparisons can be done. The bound on the compari-
son count is attained only if all 1 x 1 pivots are done in (lc) and all the 2 x 2's in
(Id). In this case 9n — 2p additions and 15« —p multiplications are needed to solve
a system of equations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

174 J. R. BUNCH AND LINDA KAUFMAN

Appendix. There are several decompositions of symmetric matrices, e.g. symmet-
ric triangular factorization (the LDL1 decomposition) [10], the Cholesky decomposi-
tion [10], the diagonal pivoting decomposition [2], [3], [5], the tridiagonal decompo-
sition [1], [9] and the orthogonal decomposition [10] ; there are analogous decompo-
sitions of Hermitian matrices. The decomposition used depends on the problem to be
solved, e.g. solving systems of linear equations, calculating inertia, or finding eigen-
systems. In the following, we will, in general, discuss the symmetric case only; the
Hermitian case follows by replacing t (transpose) by * (complex conjugate) throughout.
(Note that |x| represents absolute value of a real number x in the real symmetric case
and modulus of a complex number x in the complex symmetric or Hermitian case.)

When solving systems of linear equations where the coefficient matrix A is non-
singular and symmetric, we may always neglect the symmetry of A and use Gaussian
elimination (triangular factorization). This requires «3/3 multiplications, n3/3 addi-
tions, <«2/2 comparisons, and n2 + n storage to obtain the triangular factorization of
a permutation of A, i.e. PA = LU where £ is unit lower triangular, U is upper triangu-
lar, and F is a permutation matrix. Thus, if we want to solve Ax = b, we solve Ly =
Pb for y and then Ux =y for x, each requiring n2/2 multiplications and «2/2 additions.

Can we take advantage of the symmetry of A to solve Ax = b in n3/6 multipli-
cations and w3/6 additions?

If the LU decomposition of A exists when A is symmetric, then U = DL1, where
D is diagonal, and A = LDL1 can be computed with «3/6 multiplications, «3/6 addi-
tions, and «2/2 storage. However, the LDL1 decomposition of A need not exist, e.g.
[° \]. In fact, the LDL1 decomposition oí PAP1 need not exist for any permutation
matrix P, e.g. [° 0].

But if A is also positive definite or negative definite (x*Ax > 0, or xtAx < 0,
respectively, for all x J= 0), then the LDL1 decomposition of A exists. If A is positive
definite, then £>,-, > 0 for each /, and A = LL1 where £ = LD1'2 and £>1/2 =
diag{\/Dlv . . . , \/Dnn}', this is the Cholesky decomposition.

If A is real symmetric indefinite (A has at least one positive and one negative
eigenvalue, i.e. there exist x and y such that x1Ax > 0 and ytAy < 0), then these
methods can fail (and can be unstable in finite precision arithmetic [5, pp. 643—645]).

Since an « x n real symmetric (or complex Hermitian) matrix A has only real
eigenvalues [10], let u, v, w be the number of positive, negative, zero eigenvalues,
respectively. The triple (u, v, w) is called the inertia of A, while s = u - v is called
the signature of A. But n = u + v + w is the order of A and r = u + v is the rank of
A. Thus, u — lA(r + s),v - Vi(r - s), and w = n - r. Knowing the order, rank, and
signature of a real symmetric (or complex Hermitian) matrix A is equivalent to knowing
the inertia of A. If A is nonsingular, then w = 0 and r = n, so knowing the inertia
is equivalent to knowing the signature. Note that in the inertia problem we are seek-
ing only the signs of the eigenvalues, not the eigenvalues themselves, and hence we
seek some method that would be faster than calculating all the eigenvalues (cf. Cottle
[7]). (If A is complex symmetric, then its eigenvalues are not necessarily real, so we
do not have the concept of inertia in this case.)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 175

Suppose A = LDL1, where £ is unit lower triangular and D is diagonal. We
shall show below that u, v, w are equal to the number of positive, negative, and zero
elements, respectively, on the diagonal of D. Since it requires only n3/6 multiplica-
tions to compute the LDL1 decomposition, this is much less work than calculating the
eigenvalues.

The theoretical foundation for calculating inertia is provided by Sylvester's Inertia
Theorem [8, pp. 371—372] ; the inertia of a real symmetric (or complex Hermitian)
matrix is invariant under nonsingular congruences, i.e. if A is real symmetric (or com-
plex Hermitian) and S is nonsingular, then A and SAS1 (SAS*) have the same inertia,
and hence the same rank and signature.

The classical method for calculating the inertia of a real symmetric matrix is
based on Lagrange's method for the reduction of a quadratic form to a diagonal form.

If A is an n x n matrix and x is an «-vector, then we say that ip(x) = x1Ax =
2Znj=lAijX¡Xj is a quadratic form. If A is of rank r, then we say that <^(x) is a qua-
dratic form of rank r.

Note that B = lA(A + A1) is symmetric and xfBx = xfAx. Hence, without loss
of generality, we may assume that A is symmetric.

Lagrange's method (1759) reduces by nonsingular congruence transformations a
quadratic form ^x) = xfAx to a diagonal form ztDz, where D is a diagonal matrix
with exactly r = rank(^4) nonzero elements, i.e. xfAx = zfDz where z = Sx, det S =h 0.
Since A = S1DS, by Sylvester's Inertia Theorem, A and D have the same inertia.

We shall now relate Lagrange's method to Gaussian ehmination. If A11 =£ 0,
then

n
<p(x)=x1Ax = £ Aijxixj

í,/=i
n

= AllX\ + 2A12xtx2 +■■■ + 2Alnxlxn + £ AqXjt,
i,j=2

= Ajx2 + 2^xíx2 + --- + 2^xíxn) + Í Aifxñ
\ ^11 11 / hl=2

Thus, take
12 A

Dn=All and z1=x1+ — x2+- --+-^ xn.

(This is also called the method of completing the square.)
Note that this is identical to the first step of the LDL1 decomposition of A, i.e.

the symmetric form of Gaussian elimination. Let

where E = Alt # 0, Cis (n - 1) x 1 and B is (n - 1) x (n - 1). Then A = L1A1L[,
where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

176 J. R. BUNCH AND LINDA KAUFMAN

Ll~[cE-' /„J and ^ = [o B-CE-'C1}-
Nowzj = L\x and *-«-*«*-1*-W
If A22 ~A2,l/All # 0, we may continue with the process.

If Alt =0, but ^4fcfc =£ 0 for some k, then we may interchange the /rth and
first rows and columns and proceed as before. In matrix form, let P be the permuta-
tion matrix obtained from interchanging the kfh and first columns of the n x n iden-
tity matrix. Then tfx) = xfAx = x^PAP'Px = (Px)1(PAP1XPx), where Px =
[xk, x2, . . . , xk_1, Xj, xk + 1, . . . , xn\ and (/vl/*)1 j = Akk.

But, what do we do if Alx = • • ■ = Ann = 0 (or if at some stage of the process
the diagonal of the remaining submatrix is all zero)? If A = 0, then the rank of A is
zero and we take D = 0 and z = x. If A ^ 0 but Axl — • • • = Ann = 0, then Ars =£
0 for some r¥^ s. We can now interchange the rth and first, and the sth and second,
rows and columns, and then the (2, 1) element of the resulting matrix is nonzero.
Without loss of generality, we may assume A2l =£0.

Let jj = 1Mjx1 + x2), y2 = H(xj - x2), and y¡ = x¡ for 3 < 1 < «, i.e. y =
T~xx, where T = S @ I„_2, S = [} _Xj] and In_2 is the identity matrix of order n -
2. Then x*Ax = yX^ATfy with (TtAT)í t =2A12*0. Thus we may proceed as
before.

We shall now show that the above is equivalent to performing a block 2x2
elimination. Let

A = _c b ¡' T= Lo ir
det E =£ 0, and order(F) = order(5). Then

PAT
[SfES S^1!

ICS B]
Lagrange's method is equivalent to choosing S to be of order 2 so that SfES = D is
diagonal. If we use F as a block pivot in A and perform a block decomposition, then
the reduced matrix is B - CE-1 Cf= B - CSD~1S1C1. Thus we need not find a 2 x 2
matrix S which diagonalizes E, but we can perform a block decomposition with the
2x2 submatrix E. If the diagonal of A is null, then there exists a nonsingular prin-
cipal 2x2 submatrix unless A = 0.

However, the above decomposition also exists for complex symmetric matrices.
Hence, given any symmetric matrix A, there exists a permutation matrix P such that
PAP1 = MDM1, where M is unit lower triangular, D is block diagonal with blocks of
order 1 or 2, and Mi+1 ¡ = 0 whenever Di+1 ¡ =£ 0.

Let us look at the determinant of such a block of order 2:

det = -ö,+iAi+i-0 Du+1

If .4 is real symmetric, then det = -D2+í ¡ < 0, and if A is complex Hermitian, then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 177

det = -A+i,IA+i,,=-lö(+1>Il2<o.

Hence, by Sylvester's Inertia Theorem, one positive and one negative eigenvalue of A
is associated with this 2x2 block.

Let p be the number of 1 x 1 blocks in D. Hence there are q = xh(n - p)
blocks of order 2. Let a, b, c be the number of positive, negative, and zero lxl
blocks. Thus the inertia of A is (a + q, b 4- q, c), the rank of A is n - c, and the
signature of A is a - b.

In finite precision arithmetic on a computer, in order to maintain stability and
insure a good solution we must prevent large growth in the elements of the reduced
matrices generated during the decomposition process [5], [10]. Hence, we will want
to use 2x2 pivots whenever the diagonal is small as well as whenever the diagonal is
null [5], [10]. Our knowledge of the inertia will be preserved as long as the deter-
minant of each 2x2 pivot remains negative when A is real symmetric or complex
Hermitian.

Based on the above method, called the diagonal pivoting method, Bunch [2]
showed that inertia can be calculated and nonsingular real symmetric, complex symmet-
ric, and complex Hermitian systems of linear equations can be solved by only n3/6
multiplications, n3/6 additions, and n2/2 storage. The method is almost as stable as
Gaussian elimination with complete pivoting. The price paid for stability is >n3/l2
but <«3/6 comparisons.

Let us consider the first step of the algorithm. Let

where E is of order s = 1 or 2. Let

/i0 = max|v4f.|, Wi = maxl^l, v = |det E\.
U '

If s = 1, then v = \E\. Assume v =£ 0. Then

\E C1! _ [1 0 "I \E 0 "1 fl C'/El
IC BJ-lC/E /„_J Lo ¿<«-»>J L0 /„_,_!'

where A^""1^ = B - CC1/E and In_1 is the identity matrix of order n — 1. So,

™x\A¡r1)\<n0+ijriip.
1,1

Thus large element growth will not occur for a 1 x 1 pivot if v = |F| is large relative
toii0.

If E is of order 2 and v # 0, then

\E Cn_[I2 0 1TF 0]p2 F-'Cn
LC B J - ICE-1 In_J Lo ¿C-2*J LO /„_2 J'

where A^~2) =B- CSF-1C*. So,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

178 J. R. BUNCH AND LINDA KAUFMAN

max,^-2*^^^^^]^-

Let a be a fixed number with 0 < a < 1. We shall use a 1 x 1 pivot if jux >
o/i0. If so, we interchange the 1st and kth rows and columns, where Wj = max(|,4¿J|
= \Akk |. Without loss of generality, we may assume \Alt\ = /i1. Hence, v = ni and
mWyWjf-^KO + l/a)w0.

If/j1 < a/i0, where ju0 = \Ar | for r ¥= q, then interchange the rth and 2nd
rows and columns and the qfh and 1st rows and columns, and use a 2 x 2 pivot.
Without loss of generality, we may assume «0 = \A2l\. Then,

v = \AiXA22 -A2lAl2\ > \A2l\\A12\ - |i4n||i422|

= ßl-\AiA\A22\>nl-p\>(\-a2)p2
and

max|4;-2*|<[l + 2/(1-<*)]«„ •
U

(Note that this holds whether A is real symmetric, complex symmetric, or complex
Hermitian.)

Thus, all the elements in all the reduced matrices are bounded by B(a)"~1,
where B(a) = max{l + I/a, [1 + 2/(1 - a)]1/2}.

Now

min B(a) = B(a0) = (1 + \/Ï7)/2 < 2.57,
0<a<l

where a0 = (1 + y/ïï)/& = 0.6404.
Since we must search for the largest element in each reduced matrix, this is a

complete pivoting strategy analogous to Gaussian elimination with complete pivoting.
Furthermore, Bunch [2] proves that the element growth in the diagonal pivoting

method with complete pivoting is bounded by 3nf(n) in comparison with \/nf(n) for
Gaussian elimination with complete pivoting, where

m = (n *1/(*-1)Y/2 < i-saiC/4*'08".

Acknowledgement. We would like to thank B. N. Parlett and the referee for
their helpful suggestions.

Department of Mathematics
University of California at San Diego
La Jolla, California 92093

Department of Computer Science
University of Colorado
Boulder, Colorado 80302

1. J. O. AASEN, "On the reduction of a symmetric matrix to tridiagonal form," BIT, v. 11,
1971, pp. 233-242. MR 44 #6139.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

CALCULATING INERTIA 179

2. J. R. BUNCH, "Analysis of the diagonal pivoting method," SIAM J. Numer. Anal, v. 8,
1971, pp. 656-680. MR 45 #1367.

3. J. R. BUNCH, "Partial pivoting strategies for symmetric matrices," SIAM J. Numer. Anal,
v. 11, 1974, pp. 521-528. MR 50 #15294.

4. J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving
symmetric linear systems," Univ. of Colorado Tech. Report 63, CU:CS:06375.

5. J. R. BUNCH & B. N. PARLETT, "Direct methods for solving symmetric indefinite
systems of linear equations," SIAM J. Numer. Anal, v. 8, 1971, pp. 639-655. MR 46 #4694.

6. P. A. BUSINGER, "Monitoring the numerical stability of Gaussian elimination," Numer.
Math., v. 16, 1971, pp. 360-361.

7. R. W. COTTLE, "Manifestations of the Schur complement," Linear Algebra and AppL,
v. 8, 1974, pp. 189-211.

8. L. MIRSKY, An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955. MR
17, 573.

9. B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose
matrix is symmetric but not definite," BIT, v. 10, 1970, pp. 386-397.

10. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
MR 32 #1894.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

